|
1
|
Liu X, Hogg GD and DeNardo DG: Rethinking
immune checkpoint blockade: ‘Beyond the T cell’. J Immunother
Cancer. 9:e0014602021. View Article : Google Scholar
|
|
2
|
Blank C, Gajewski TF and Mackensen A:
Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T
cells as a mechanism of immune evasion: Implications for tumor
immunotherapy. Cancer Immunol Immunother. 54:307–314. 2005.
View Article : Google Scholar
|
|
3
|
Naimi A, Mohammed RN, Raji A, Chupradit S,
Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S,
Shomali N, et al: Tumor immunotherapies by immune checkpoint
inhibitors (ICIs); the pros and cons. Cell Commun Signal.
20:442022. View Article : Google Scholar
|
|
4
|
Korman AJ, Garrett-Thomson SC and Lonberg
N: The foundations of immune checkpoint blockade and the ipilimumab
approval decennial. Nat Rev Drug Discov. 21:509–528. 2022.
View Article : Google Scholar
|
|
5
|
Wei J, Li W, Zhang P, Guo F and Liu M:
Current trends in sensitizing immune checkpoint inhibitors for
cancer treatment. Mol Cancer. 23:2792024. View Article : Google Scholar
|
|
6
|
Cone EB, Haeuser L and Reese SW: Immune
checkpoint inhibitor monotherapy is associated with less cardiac
toxicity than combination therapy. PLoS One. 17:e02720222022.
View Article : Google Scholar
|
|
7
|
Salem JE, Manouchehri A, Moey M,
Lebrun-Vignes B, Bastarache L, Pariente A, Gobert A, Spano JP,
Balko JM, Bonaca MP, et al: Cardiovascular toxicities associated
with immune checkpoint inhibitors: An observational, retrospective,
pharmacovigilance study. Lancet Oncol. 19:1579–1589. 2018.
View Article : Google Scholar
|
|
8
|
Gougis P, Jochum F, Abbar B, Dumas E,
Bihan K, Lebrun-Vignes B, Moslehi J, Spano J, Laas E, Hotton J, et
al: Clinical spectrum and evolution of immune-checkpoint inhibitors
toxicities over a decade-a worldwide perspective.
EClinicalMedicine. 70:1025362024. View Article : Google Scholar
|
|
9
|
Hu JR, Florido R, Lipson EJ, Naidoo J,
Ardehali R, Tocchetti CG, Lyon AR, Padera RF, Johnson DB and
Moslehi J: Cardiovascular toxicities associated with immune
checkpoint inhibitors. Cardiovasc Res. 115:854–868. 2019.
View Article : Google Scholar
|
|
10
|
Yousif LI, Screever EM, Versluis D,
Aboumsallem JP, Nierkens S, Manintveld OC, de Boer RA and Meijers
WC: Risk factors for immune checkpoint inhibitor-mediated
cardiovascular toxicities. Curr Oncol Rep. 25:753–763. 2023.
View Article : Google Scholar
|
|
11
|
Mahmood SS, Fradley MG, Cohen JV, Nohria
A, Reynolds KL, Heinzerling LM, Sullivan RJ, Damrongwatanasuk R,
Chen CL, Gupta D, et al: Myocarditis in patients treated with
immune checkpoint inhibitors. J Am Coll Cardiol. 71:1755–1764.
2018. View Article : Google Scholar
|
|
12
|
Moslehi JJ, Salem JE, Sosman JA,
Lebrun-Vignes B and Johnson DB: Increased reporting of fatal immune
checkpoint Inhibitor-associated myocarditis. Lancet. 391:9332018.
View Article : Google Scholar
|
|
13
|
Wang F, Sun X, Qin S, Hua H, Liu X, Yang L
and Yang M: A retrospective study of immune checkpoint
inhibitor-associated myocarditis in a single center in China.
Cancer Commun. 9:162020.
|
|
14
|
Wang F, Qin S, Lou F, Chen FX, Shi M,
Liang X, Jiang H, Jiang Y, Chen Y, Du Y, et al: Retrospective
analysis of immune checkpoint Inhibitor-associated myocarditis from
12 cancer centers in China. J Clin Oncol. 38:e151302020. View Article : Google Scholar
|
|
15
|
Oren O, Yang EH, Molina JR, Bailey KR,
Blumenthal RS and Kopecky SL: Cardiovascular health and outcomes in
cancer patients receiving immune checkpoint inhibitors. Am J
Cardiol. 125:1920–1926. 2020. View Article : Google Scholar
|
|
16
|
Fenioux C, Abbar B, Boussouar S, Bretagne
M, Power JR, Moslehi JJ, Gougis P, Amelin D, Dechartres A, Lehmann
LH, et al: Thymus alterations and susceptibility to immune
checkpoint inhibitor myocarditis. Nat Med. 29:3100–3110. 2023.
View Article : Google Scholar
|
|
17
|
Shelly S, Agmon-Levin N, Altman A and
Shoenfeld Y: Thymoma and autoimmunity. Cell Mol Immunol. 8:199–202.
2011. View Article : Google Scholar
|
|
18
|
Zamami Y, Niimura T, Okada N, Koyama T,
Fukushima K, Izawa-Ishizawa Y and Ishizawa K: Factors associated
with immune checkpoint inhibitor-related myocarditis. JAMA Oncol.
5:1635–1637. 2019. View Article : Google Scholar
|
|
19
|
Puzanov I, Subramanian P, Yatsynovich YV,
Jacobs DM, Chilbert MR, Sharma UC, Ito F, Feuerstein SG, Stefanovic
F, Hicar MD, et al: Clinical characteristics, time course,
treatment and outcomes of patients with immune checkpoint
inhibitor-associated myocarditis. J Immunother Cancer.
9:e0025532021. View Article : Google Scholar
|
|
20
|
Bonaca MP, Olenchock BA, Salem JE, Wiviott
SD, Ederhy S, Cohen A, Stewart GC, Choueiri TK, Di Carli M,
Kumbhani DJ, et al: Myocarditis in the setting of cancer
therapeutics: Proposed case definitions for emerging clinical
syndromes in Cardio-oncology. Circulation. 140:80–91. 2019.
View Article : Google Scholar
|
|
21
|
Lehmann LH, Heckmann MB, Bailly G, Finke
D, Procureur A, Power JR, Stein F, Bretagne M, Ederhy S, Moslehi J,
et al: Cardiomuscular biomarkers in the diagnosis and
prognostication of immune checkpoint inhibitor myocarditis.
Circulation. 148:473–486. 2023. View Article : Google Scholar
|
|
22
|
Barac A, Wadlow RC, Deeken JF and
deFilippi C: Cardiac troponin I and T in ICI myocarditis screening,
diagnosis, and prognosis. J Am Coll Cardiol. 6:804–807. 2024.
|
|
23
|
Zotova L: Immune checkpoint
Inhibitors-related myocarditis: A review of reported clinical
cases. Diagnostics. 13:12432023. View Article : Google Scholar
|
|
24
|
Vasbinder A, Chen Y, Procureur A, Gradone
A, Azam TU, Perry D, Shadid H, Anderson E, Catalan T, Blakely P, et
al: Biomarker trends, incidence, and outcomes of immune checkpoint
Inhibitor-induced myocarditis. JACC CardioOncol. 4:689–700. 2022.
View Article : Google Scholar
|
|
25
|
Caio G: Myocarditis with immune checkpoint
blockade. N Engl J Med. 376:291–292. 2017.
|
|
26
|
Semeraro GC, Cipolla CM and Cardinale DM:
Role of cardiac biomarkers in cancer patients. Cancers (Basel).
13:54262021. View Article : Google Scholar
|
|
27
|
Song W, Zheng Y, Dong M, Zhong L, Bazoukis
G, Perone F, Li G, Ng CF, Baranchuk A, Tse G and Liu T:
Electrocardiographic features of immune checkpoint
inhibitor-associated myocarditis. Curr Probl Cardiol.
48:1014782023. View Article : Google Scholar
|
|
28
|
Faron A, Isaak A, Mesropyan N, Reinert M,
Schwab K, Sirokay J, Sprinkart AM, Bauernfeind FG, Dabir D, Pieper
CC, et al: Cardiac MRI depicts immune checkpoint Inhibitor-induced
myocarditis: A prospective study. Radiology. 301:602–609. 2021.
View Article : Google Scholar
|
|
29
|
Correction to. Routine application of
cardiac magnetic resonance imaging in patients with suspected
myocarditis from immune checkpoint inhibitor therapy. Eur Heart J.
46:3042025. View Article : Google Scholar
|
|
30
|
Pereyra M, Farina J, Mahmoud AK, Scalia I,
Tagle-Cornell MC, Kenyon C, Abbas MT, Baba N, Herrmann J, Arsanjani
R and Ayoub C: The prognostic value of criteria for diagnosis of
Immune Checkpoint Inhibitor Related Myocarditis: A comparison of
the Bonaca et al. Criteria and European Society of Cardiology
(ESC)-International Cardio-Oncology Society (ICOS) guidelines.
Circulation. 150 (Suppl 1):A41420442024. View Article : Google Scholar
|
|
31
|
Salem JE, Bretagne M, Abbar B,
Leonard-Louis S, Ederhy S, Redheuil A, Boussouar S, Nguyen LS,
Procureur A, Stein F, et al: Abatacept/Ruxolitinib and screening
for concomitant respiratory muscle failure to mitigate fatality of
Immune-checkpoint inhibitor myocarditis. Cancer Discov.
13:1100–1115. 2023. View Article : Google Scholar
|
|
32
|
Thibault C, Vano Y, Soulat G and Mirabel
M: Immune checkpoint inhibitors myocarditis: Not all cases are
clinically patent. Eur Heart J. 39:35532018.
|
|
33
|
Domen H, Kaga K, Hida Y, Honma N, Kubota
R, Yagi Y and Matsui Y: Investigation of lung cancer patients with
cardiovascular disease. Kyobu Geka. 68:266–70. 2015.(In
Japanese).
|
|
34
|
Murtagh G, deFilippi C, Zhao Q and Barac
A: Circulating biomarkers in the diagnosis and prognosis of immune
checkpoint inhibitor-related myocarditis: Time for a risk-based
approach. Front Cardiovasc Med. 11:13505852024. View Article : Google Scholar
|
|
35
|
Palaskas N, Lopez-Mattei J, Durand JB,
Iliescu C and Deswal A: Immune checkpoint inhibitor myocarditis:
Pathophysiological characteristics, diagnosis, and treatment. J Am
Heart Assoc. 9:e0137572020. View Article : Google Scholar
|
|
36
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang
YC, Xu JY, Zhou JH, Yu SS and Wu SS: Insight of immune checkpoint
inhibitor related myocarditis. Int Immunopharmacol. 143:1135592024.
View Article : Google Scholar
|
|
37
|
Heilbroner SP, Few R, Mueller J, Chalwa J,
Charest F, Suryadevara S, Kratt C, Gomez-Caminero A and Dreyfus B:
Predicting cardiac adverse events in patients receiving immune
checkpoint inhibitors: A machine learning approach. J Immunother
Cancer. 9:e0025452021. View Article : Google Scholar
|
|
38
|
Zhang C, Bockman A and DuPage M: Breaking
up the CD8+ T cell: Treg pas de deux. Cell Mol Immunol. 42:941–942.
2024.
|
|
39
|
Yu L, Sun M, Zhang Q, Zhou Q and Wang Y:
Harnessing the immune system by targeting immune checkpoints:
Providing new hope for oncotherapy. Front Immunol. 13:9820262022.
View Article : Google Scholar
|
|
40
|
Keir ME, Butte MJ, Freeman GJ and Sharpe
AH: PD-1 and its ligands in tolerance and immunity. Annu Rev
Immunol. 26:677–704. 2008. View Article : Google Scholar
|
|
41
|
Boussiotis VA: Molecular and biochemical
aspects of the PD-1 checkpoint pathway. N Engl J Med.
375:1767–1778. 2016. View Article : Google Scholar
|
|
42
|
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu
K: Combination strategies with PD-1/PD-L1 blockade: Current
advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar
|
|
43
|
Gaikwad S, Agrawal MY, Kaushik I,
Ramachandran S and Srivastava SK: Immune checkpoint proteins:
Signaling mechanisms and molecular interactions in cancer
immunotherapy. Semin Cancer Biol. 86:137–150. 2022. View Article : Google Scholar
|
|
44
|
Malmberg R, Zietse M, Dumoulin DW,
Hendrikx JJMA, Aerts JGJVA, van der Veldt AAM, Koch BCP, Sleijfer
S, van Leeuwen RWF, Koch BCP, et al: Alternative dosing strategies
for immune checkpoint inhibitors to improve cost-effectiveness: A
special focus on nivolumab and pembrolizumab. Lancet Oncol.
23:e552–e561. 2022. View Article : Google Scholar
|
|
45
|
Wolchok JD, Chiarion-Sileni V, Gonzalez R,
Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D,
Ferrucci PF, et al: Overall survival with combined nivolumab and
ipilimumab in advanced melanoma. N Engl J Med. 377:1345–1356. 2017.
View Article : Google Scholar
|
|
46
|
Xu D, Wang H, Bao Q, Jin K, Liu M, Liu W,
Yan X, Wang L, Zhang Y, Wang G, et al: The anti-PD-L1/CTLA-4
bispecific antibody KN046 plus lenvatinib in advanced unresectable
or metastatic hepatocellular carcinoma: A phase II trial. Nat
Commun. 16:14432025. View Article : Google Scholar
|
|
47
|
Schaub J and Tang SC: Beyond checkpoint
inhibitors: The three generations of immunotherapy. Clin Exp Med.
25:432025. View Article : Google Scholar
|
|
48
|
Buehning F, Lerchner T, Vogel J,
Hendgen-Cotta UB, Totzeck M, Rassaf T and Michel L: Preclinical
models of cardiotoxicity from immune checkpoint inhibitor therapy.
Basic Res Cardiol. 120:171–185. 2025. View Article : Google Scholar
|
|
49
|
Wu MM, Yang YC, Cai YX, Jiang S, Xiao H,
Miao C, Jin XY, Sun Y, Bi X, Hong Z, et al: Anti-CTLA-4 m2a
antibody exacerbates cardiac injury in experimental autoimmune
myocarditis mice by promoting Ccl5-Neutrophil infiltration. Adv
Sci. 11:e24004862024. View Article : Google Scholar
|
|
50
|
Shang AQ, Yu CJ, Bi X, Jiang WW, Zhao ML,
Sun Y, Guan H and Zhang ZR: Blocking CTLA-4 promotes pressure
Overload-induced heart failure via activating Th17 cells. FASEB J.
38:e238512024. View Article : Google Scholar
|
|
51
|
Hossen MM, Ma Y, Yin Z, Xia Y, Du J, Huang
JY, Huang JJ, Zou L, Ye Z and Huang Z: Current understanding of
CTLA-4: From mechanism to autoimmune diseases. Front Immunol.
14:11983652023. View Article : Google Scholar
|
|
52
|
Maurer MF, Lewis KE, Kuijper JL, Ardourel
D, Gudgeon CJ, Chandrasekaran S, Mudri SL, Kleist KN, Navas C,
Wolfson MF, et al: The engineered CD80 variant fusion therapeutic
davoceticept combines checkpoint antagonism with conditional CD28
costimulation for anti-tumor immunity. Nat Commun. 13:17902022.
View Article : Google Scholar
|
|
53
|
Wang J, Sanmamed MF, Datar I, Su TT, Ji L,
Sun J, Chen L, Chen Y, Zhu G, Yin W, et al: Fibrinogen-like protein
1 is a major immune inhibitory ligand of LAG-3. Cell.
176:334–347.e12. 2019. View Article : Google Scholar
|
|
54
|
Cillo AR, Cardello C, Shan F, Karapetyan
L, Kunning S, Sander C, Rush E, Karunamurthy A, Massa RC, Rohatgi
A, et al: Blockade of LAG-3 and PD-1 leads to Co-Expression of
cytotoxic and exhaustion gene modules in CD8+ T cells to promote
antitumor immunity. Cell. 187:4373–4388.e15. 2024. View Article : Google Scholar
|
|
55
|
Andrews LP, Butler SC, Cui J, Cillo AR,
Cardello C, Liu C, Brunazzi EA, Baessler A, Xie B, Kunning SR, et
al: LAG-3 and PD-1 synergize on CD8+ T cells to drive T cell
exhaustion and hinder autocrine IFN-γ-dependent anti-tumor
immunity. Cell. 187:4355–4372.e22. 2024. View Article : Google Scholar
|
|
56
|
Sordo-Bahamonde C, Lorenzo-Herrero S,
González-Rodríguez AP, Payer AR, González-García E, López-Soto A
and Gonzalez S: LAG-3 Blockade with Relatlimab (BMS-986016)
restores Anti-leukemic responses in chronic lymphocytic leukemia.
Cancers (Basel). 13:21122021. View Article : Google Scholar
|
|
57
|
Tawbi HA, Schadendorf D, Lipson EJ,
Ascierto PA, Matamala L, Gutiérrez EC, Rutkowski P, Gogas HJ, Lao
CD, De Menezes JJ, et al: Relatlimab and nivolumab versus nivolumab
in untreated advanced melanoma. N Engl J Med. 386:24–34. 2022.
View Article : Google Scholar
|
|
58
|
Schwartz RH: Historical overview of
immunological tolerance. Cold Spring Harb Perspect Biol.
4:a0069082012. View Article : Google Scholar
|
|
59
|
Chen X, Ghanizada M, Mallajosyula V, Sola
E, Capasso R, Kathuria KR and Davis MM: Differential roles of human
CD4+ and CD8+ regulatory T cells in controlling self-reactive
immune responses. Nat Immunol. 26:230–239. 2025. View Article : Google Scholar
|
|
60
|
Coutinho A, Caramalho I, Seixas E and
Demengeot J: Thymic commitment of regulatory T cells is a pathway
of TCR-dependent selection that isolates repertoires undergoing
positive or negative selection. Curr Top Microbiol Immunol.
293:43–71. 2005.
|
|
61
|
Kisielow P: How does the immune system
learn to distinguish between good and evil? The first definitive
studies of T cell central tolerance and positive selection.
Immunogenetics. 71:513–518. 2019. View Article : Google Scholar
|
|
62
|
Spetz J, Presser AG and Sarosiek KA: T
cells and regulated cell death: Kill or be killed. Int Rev Cell Mol
Biol. 342:27–71. 2019. View Article : Google Scholar
|
|
63
|
Lv H, Havari E, Pinto S, Gottumukkala
RVSRK, Cornivelli L, Raddassi K, Matsui T, Rosenzweig A, Bronson
RT, Smith R, et al: Impaired thymic tolerance to α-Myosin directs
autoimmunity to the heart in mice and humans. J Clin Invest.
121:1561–1573. 2011. View Article : Google Scholar
|
|
64
|
Sur M, Rasquinha MT, Arumugam R,
Massilamany C, Gangaplara A, Mone K, Lasrado N, Yalaka B, Doiphode
A, Gurumurthy C, et al: Transgenic mice expressing functional TCRs
specific to cardiac Myhc-α 334–352 on Both CD4 and CD8 T cells are
resistant to the development of myocarditis on C57BL/6 genetic
background. Cells. 12:23462023. View Article : Google Scholar
|
|
65
|
Nindl V, Maier R, Ratering D, De Giuli R,
Züst R, Thiel V, Scandella E, Di Padova F, Kopf M, Rudin M, et al:
Cooperation of Th1 and Th17 cells determines transition from
autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol.
42:2311–2321. 2012. View Article : Google Scholar
|
|
66
|
Raffin C, Vo LT and Bluestone JA: Treg
Cell-based therapies: Challenges and perspectives. Nat Rev Immunol.
20:158–172. 2020. View Article : Google Scholar
|
|
67
|
Cheru N, Hafler DA and Sumida TS:
Regulatory T cells in peripheral tissue tolerance and diseases.
Front Immunol. 14:11545752023. View Article : Google Scholar
|
|
68
|
ElTanbouly MA and Noelle RJ: Rethinking
peripheral T cell tolerance: Checkpoints across a T cell's journey.
Nat Rev Immunol. 21:257–267. 2021. View Article : Google Scholar
|
|
69
|
Bluestone JA and Anderson M: Tolerance in
the age of immunotherapy. N Engl J Med. 383:1156–1166. 2020.
View Article : Google Scholar
|
|
70
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar
|
|
71
|
Sharpe AH and Pauken KE: The diverse
functions of the PD1 inhibitory pathway. Nat Rev Immunol.
18:153–167. 2018. View Article : Google Scholar
|
|
72
|
Wing K, Onishi Y, Prieto-Martin P,
Yamaguchi T, Miyara M, Fehervari Z, Nomura T and Sakaguchi S:
CTLA-4 control over Foxp3+ regulatory T cell function. Science.
322:271–275. 2008. View Article : Google Scholar
|
|
73
|
Aggarwal V, Workman CJ and Vignali DAA:
LAG-3 as the third checkpoint inhibitor. Nat Immunol. 24:1415–1422.
2023. View Article : Google Scholar
|
|
74
|
Grabie N, Lichtman AH and Padera R: T cell
checkpoint regulators in the heart. Cardiovasc Res. 115:869–877.
2019. View Article : Google Scholar
|
|
75
|
Tan CL, Kuchroo JR, Sage PT, Liang D,
Francisco LM, Buck J, Thaker YR, Zhang Q, McArdel SL, Juneja VR, et
al: PD-1 restraint of regulatory T cell suppressive activity is
critical for immune tolerance. J Exp Med. 218:e201822322021.
View Article : Google Scholar
|
|
76
|
Zhang A, Ren Z, Tseng K-F, Liu X, Li H, Lu
C, Cai Y, Minna JD and Fu YX: Dual targeting of CTLA-4 and CD47 on
Treg cells promotes immunity against solid tumors. Sci Transl Med.
13:eabg86932021. View Article : Google Scholar
|
|
77
|
Guo X, Wang H, Zhou J, Li Y, Duan L, Si X
and Zhang L, Fang L and Zhang L: Clinical manifestation and
management of immune checkpoint Inhibitor-associated
cardiotoxicity. Thorac Cancer. 11:475–480. 2020. View Article : Google Scholar
|
|
78
|
Huertas RM, Serrano CS, Perna C, Gómez AF
and Gordoa TA: Cardiac toxicity of Immune-checkpoint inhibitors: A
clinical case of Nivolumab-induced myocarditis and review of the
evidence and new challenges. Cancer Manag Res. 11:4541–4548. 2019.
View Article : Google Scholar
|
|
79
|
Axelrod ML, Meijers WC, Screever EM, Qin
J, Carroll MG, Sun X, Tannous E, Zhang Y, Sugiura A, Taylor BC, et
al: T cells specific for α-Myosin drive Immunotherapy-related
myocarditis. Nature. 611:818–826. 2022. View Article : Google Scholar
|
|
80
|
Lim SY, Lee JH, Gide TN, Menzies AM,
Guminski A, Carlino MS, Breen EJ, Yang JYH, Ghazanfar S, Kefford
RF, et al: Circulating cytokines predict Immune-related toxicity in
melanoma patients receiving Anti-PD-1-based immunotherapy. Clin
Cancer Res. 25:1557–1563. 2019. View Article : Google Scholar
|
|
81
|
Johnson DB, Balko JM, Compton ML, Chalkias
S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL, et
al: Fulminant myocarditis with combination immune checkpoint
blockade. N Engl J Med. 375:1749–1755. 2016. View Article : Google Scholar
|
|
82
|
Wang DY, Salem JE, Cohen JV, Chandra S,
Menzer C, Ye F, Zhao S, Das S, Beckermann KE, Ha L, et al: Fatal
toxic effects associated with immune checkpoint inhibitors: A
systematic review and Meta-analysis. JAMA Oncol. 4:1721–1728. 2018.
View Article : Google Scholar
|
|
83
|
Martínez-Lostao L, Anel A and Pardo J: How
do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res.
21:5047–5056. 2015. View Article : Google Scholar
|
|
84
|
Del Re DP, Amgalan D, Linkermann A, Liu Q
and Kitsis RN: Fundamental mechanisms of regulated cell death and
implications for heart disease. Physiol Rev. 99:1765–1817. 2019.
View Article : Google Scholar
|
|
85
|
Galluzzi L, Vitale I, Aaronson SA, Abrams
JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews
DW, et al: Molecular mechanisms of cell death: Recommendations of
the nomenclature committee on cell death 2018. Cell Death Differ.
25:486–541. 2018. View Article : Google Scholar
|
|
86
|
Voskoboinik I, Whisstock JC and Trapani
JA: Perforin and Granzymes: Function, dysfunction and human
pathology. Nat Rev Immunol. 15:388–400. 2015. View Article : Google Scholar
|
|
87
|
Wang W, Green M, Choi JE, Gijón M, Kennedy
PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T
cells regulate tumour ferroptosis during cancer immunotherapy.
Nature. 569:270–274. 2019. View Article : Google Scholar
|
|
88
|
Alshoubaki YK, Nayer B, Lu YZ, Salimova E,
Lau SN, Tan JL, Amann-Zalcenstein D, Hickey PF, Del Monte-Nieto G,
Vasanthakumar A, et al: Tregs Delivered Post-myocardial infarction
adopt an Injury-specific phenotype promoting cardiac repair via
macrophages in mice. Nat Commun. 15:64802024. View Article : Google Scholar
|
|
89
|
Zhu H, Galdos FX, Lee D, Waliany S, Huang
YV, Ryan J, Dang K, Neal JW, Wakelee HA, Reddy SA, et al:
Identification of pathogenic immune cell subsets associated with
checkpoint Inhibitor-induced myocarditis. Circulation. 146:316–335.
2022. View Article : Google Scholar
|
|
90
|
Zhang N and Bevan MJ: CD8(+) T cells: Foot
soldiers of the immune system. Immunity. 35:161–168. 2011.
View Article : Google Scholar
|
|
91
|
Ma P, Liu J, Qin J, Lai L, Heo GS,
Luehmann H, Sultan D, Bredemeyer A, Bajapa G, Feng G, et al:
Expansion of pathogenic cardiac macrophages in immune checkpoint
inhibitor myocarditis. Circulation. 149:48–66. 2024. View Article : Google Scholar
|
|
92
|
Blum SM, Zlotoff DA, Smith NP, Kernin IJ,
Ramesh S, Zubiri L, Caplin J, Samanta N, Martin S, Wang M, et al:
Immune responses in checkpoint myocarditis across heart, blood and
tumour. Nature. 636:215–223. 2024. View Article : Google Scholar
|
|
93
|
Moslehi JJ, Brinkley DM and Meijers WC:
Fulminant myocarditis: Evolving diagnosis, Evolving biology,
evolving prognosis. J Am Coll Cardiol. 74:312–314. 2019. View Article : Google Scholar
|
|
94
|
Altan M, Toki MI, Gettinger SN,
Carvajal-Hausdorf DE, Zugazagoitia J, Sinard JH, Herbst RS and Rimm
DL: Immune checkpoint Inhibitor-associated pericarditis. J Thorac
Oncol. 14:1102–1108. 2019. View Article : Google Scholar
|
|
95
|
Salem JE, Allenbach Y, Vozy A, Brechot N,
Johnson DB, Moslehi JJ and Kerneis M: Abatacept for severe immune
checkpoint Inhibitor-associated myocarditis. N Engl J Med.
380:2377–2379. 2019. View Article : Google Scholar
|
|
96
|
Grossman Z and Paul WE: Dynamic tuning of
lymphocytes: Physiological basis, mechanisms, and function. Annu
Rev Immunol. 33:677–713. 2015. View Article : Google Scholar
|
|
97
|
Schwartz DM, Bonelli M, Gadina M and
O'Shea JJ: Type I/II Cytokines, JAKs, and new strategies for
treating autoimmune diseases. Nat Rev Rheumatol. 12:25–36. 2016.
View Article : Google Scholar
|
|
98
|
Yan L, Wang J, Cai X, Liou YC, Shen HM,
Hao J, Huang C, Luo G and He W: Macrophage plasticity: Signaling
pathways, tissue repair, and regeneration. MedComm. 5:e6582024.
View Article : Google Scholar
|
|
99
|
Bracamonte-Baran W and Čiháková D: Cardiac
autoimmunity: Myocarditis. Adv Exp Med Biol. 1003:187–221. 2017.
View Article : Google Scholar
|
|
100
|
Cao Z, Zhang Y, Jia H, Sun X, Feng Y, Wu
H, Xu B and Wei Z: Immune checkpoint inhibitors mediate myocarditis
by promoting macrophage polarization via cGAS/STING pathway.
Cytokine. 187:1568732025. View Article : Google Scholar
|
|
101
|
Chen G, Jiang H, Yao Y, Tao Z, Chen W,
Huang F and Chen X: Macrophage, a potential targeted therapeutic
immune cell for cardiomyopathy. Front Cell Dev Biol. 10:9087902022.
View Article : Google Scholar
|
|
102
|
Munir AZ, Gutierrez A, Qin J, Lichtman AH
and Moslehi JJ: Immune-checkpoint inhibitor-mediated myocarditis:
CTLA4, PD1 and LAG3 in the heart. Nat Rev Cancer. 24:540–553. 2024.
View Article : Google Scholar
|
|
103
|
Thibult ML, Mamessier E, Gertner-Dardenne
J, Pastor S, Just-Landi S, Xerri L, Chetaille B and Olive D: PD-1
is a novel regulator of Human B-cell activation. Int Immunol.
25:129–137. 2013. View Article : Google Scholar
|
|
104
|
Lu J, Wu J, Mao L, Xu H and Wang S:
Revisiting PD-1/PD-L pathway in T and B cell response: Beyond
immunosuppression. Cytokine Growth Factor Rev. 67:58–65. 2022.
View Article : Google Scholar
|
|
105
|
Esen F, Deniz G and Aktas EC: PD-1,
CTLA-4, LAG-3, and TIGIT: The roles of immune checkpoint receptors
on the regulation of human NK cell phenotype and functions. Immunol
Lett. 240:15–23. 2021. View Article : Google Scholar
|
|
106
|
Judge SJ, Dunai C, Aguilar EG, Vick SC,
Sturgill IR, Khuat LT, Stoffel KM, Van Dyke J, Longo DL, Darrow MA,
et al: Minimal PD-1 expression in mouse and human NK cells under
diverse conditions. J Clin Invest. 130:3051–3068. 2020. View Article : Google Scholar
|
|
107
|
Merino A, Zhang B, Dougherty P, Luo X,
Wang J, Blazar BR, Miller JS and Cichocki F: Chronic stimulation
drives human NK cell dysfunction and epigenetic reprograming. J
Clin Invest. 129:3770–3785. 2019. View Article : Google Scholar
|
|
108
|
Racine JJ, Bachman JF, Zhang JG, Misherghi
A, Khadour R, Kaisar S, Bedard O, Jenkins C, Abbott A, Forte E, et
al: Murine MHC-deficient nonobese diabetic mice carrying human
HLA-DQ8 develop severe myocarditis and myositis in response to
anti-PD-1 immune checkpoint inhibitor cancer therapy. J Immunol.
212:1287–1306. 2024. View Article : Google Scholar
|
|
109
|
Taneja V and David CS: Spontaneous
autoimmune myocarditis and cardiomyopathy in HLA-DQ8.NODAbo
transgenic mice. J Autoimmun. 33:260–269. 2009. View Article : Google Scholar
|
|
110
|
Taylor JA, Havari E, McInerney MF, Bronson
R, Wucherpfennig KW and Lipes MA: A spontaneous model for
autoimmune myocarditis using the human MHC molecule HLA-DQ8. J
Immunol. 172:2651–2658. 2004. View Article : Google Scholar
|
|
111
|
Konstantina T, Konstantinos R, Anastasios
K, Anastasia M, Eleni L, Ioannis S, Sofia A and Dimitris M: Fatal
adverse events in two thymoma patients treated with anti-PD-1
immune check point inhibitor and literature review. Lung Cancer.
135:29–32. 2019. View Article : Google Scholar
|
|
112
|
Chen Q, Huang DS, Zhang LW, Li YQ, Wang HW
and Liu HB: Fatal myocarditis and rhabdomyolysis induced by
nivolumab during the treatment of type B3 thymoma. Clin Toxicol
(Phila). 56:667–671. 2018. View Article : Google Scholar
|
|
113
|
Nguyen LS, Bretagne M, Arrondeau J, Zahr
N, Ederhy S, Abbar B, Pinna B, Allenbach Y, Mira JP, Moslehi J, et
al: Reversal of Immune-checkpoint inhibitor fulminant myocarditis
using Personalized-Dose-Adjusted abatacept and ruxolitinib: Proof
of concept. J Immunother Cancer. 10:e0046992022. View Article : Google Scholar
|
|
114
|
Huang GZ and Lo YL: Correlation between
acetylcholine receptor antibody levels and thymic pathology in
myasthenia gravis: A review. J Clin Neuromuscul Dis. 14:209–217.
2013. View Article : Google Scholar
|
|
115
|
Régnier P, Le Joncour A, Maciejewski-Duval
A, Darrasse-Jèze G, Dolladille C, Meijers WC, Bastarache L, Fouret
P, Bruneval P, Arbaretaz F, et al: CTLA-4 pathway is instrumental
in giant cell arteritis. Circ Res. 133:298–312. 2023. View Article : Google Scholar
|
|
116
|
Gil-Cruz C, Perez-Shibayama C, De Martin
A, Ronchi F, van der Borght K, Niederer R, Onder L, Lütge M,
Novkovic M, Nindl V, et al: Microbiota-derived peptide mimics drive
lethal inflammatory cardiomyopathy. Science. 366:881–886. 2019.
View Article : Google Scholar
|
|
117
|
Muser D, Santangeli P and Liang JJ:
Mechanisms of ventricular arrhythmias and implications for catheter
ablation. Card Electrophysiol Clin. 14:547–558. 2022. View Article : Google Scholar
|
|
118
|
Francis Stuart SD, De Jesus NM, Lindsey ML
and Ripplinger CM: The crossroads of inflammation, fibrosis, and
arrhythmia following myocardial infarction. J Mol Cell Cardiol.
91:114–122. 2016. View Article : Google Scholar
|
|
119
|
Hulsmans M, Clauss S, Xiao L, Aguirre AD,
King KR, Hanley A, Hucker WJ, Wulfers EM, Seemann G, Courties G, et
al: Macrophages facilitate electrical conduction in the heart.
Cell. 169:510–522.e20. 2017. View Article : Google Scholar
|
|
120
|
Zhang Y, Qin J, Amancherla K, Jing Y, Hu
Q, Liang K, Zhang Z, Ye Y, Huang LA, Nguyen TK, et al: Hormonal
therapies upregulate MANF and overcome female susceptibility to
immune checkpoint inhibitor-myocarditis. Sci Transl Med.
14:eabo19812022. View Article : Google Scholar
|
|
121
|
Feng S, Yang M, Dong P, Ding F, Hong Y,
Cai H and Liu X: Investigation of MANF regulation of glioma
stemness via STAT3/TGF-β/SMAD4/p38 pathway based on pan-cancer
analysis. Transl Oncol. 60:1024972025. View Article : Google Scholar
|
|
122
|
Zhang Y, Sun C, Li Y, Qin J, Amancherla K,
Jing Y, Hu Q, Liang K, Zhang Z, Ye Y, et al: Hormonal therapies
Up-Regulate MANF and overcome female susceptibility to immune
checkpoint inhibitor myocarditis. Sci Transl Med. 14:eabo19812022.
View Article : Google Scholar
|
|
123
|
Wang J and Han B: Dysregulated CD4+ T
cells and microRNAs in myocarditis. Front Immunol. 11:5392020.
View Article : Google Scholar
|
|
124
|
Tajczak PM and Jóźwik K: Artificial
intelligence and myocarditis-a systematic review of current
applications. Heart Fail Rev. 29:1217–1234. 2024. View Article : Google Scholar
|
|
125
|
Brahmer JR, Abu-Sbeih H, Ascierto PA,
Brufsky J, Cappelli LC, Cortazar FB, Gerber DE, Hamad L, Hansen E,
Johnson DB, et al: Society for Immunotherapy of cancer (SITC)
clinical practice guideline on immune checkpoint inhibitor-related
adverse events. J Immunother Cancer. 9:e0024352021. View Article : Google Scholar
|
|
126
|
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J,
Ning Y and Fan S: Clinical Implications of the interaction between
PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment
of non-small cell lung cancer. J Cancer. 13:3434–3443. 2022.
View Article : Google Scholar
|
|
127
|
Ramayya T, Mitchell JD, Hartupee JC,
Lavine K, Ridley CH, Kotkar KD, Jimenez J, Lin CY, Alvarez-Cardona
JA, Krone RK and Campbell CM: Delayed diagnosis and recovery of
fulminant immune checkpoint Inhibitor-associated myocarditis on
VA-ECMO support. JACC CardioOncol. 4:722–726. 2022. View Article : Google Scholar
|
|
128
|
Osinga TE, Oosting SF, van der Meer P, de
Boer RA, Kuenen BC, Rutgers A, Bergmann L, Oude Munnink TH, Jalving
M and van Kruchten M: Immune checkpoint inhibitor-associated
myocarditis: Case reports and a review of the literature. Neth
Heart J. 30:295–301. 2022. View Article : Google Scholar
|
|
129
|
Lipe DN, Qdaisat A, Krishnamani PP, Nguyen
TD, Chaftari P, El Messiri N, Srinivasan A, Galvis-Carvajal E and
Reyes-Gibby CC: Myocarditis, myositis, and myasthenia gravis
overlap syndrome associated with immune checkpoint inhibitors: A
systematic review. Diagnostics (Basel). 14:17942024. View Article : Google Scholar
|
|
130
|
Schneider BJ, Naidoo J, Santomasso BD,
Lacchetti C, Adkins S, Anadkat M, Atkins MB, Brassil KJ, Caterino
JM, Chau I, et al: Management of immune-related adverse events in
patients treated with immune checkpoint inhibitor therapy: ASCO
guideline update. J Clin Oncol. 39:4073–4126. 2021. View Article : Google Scholar
|
|
131
|
Lyon AR, Lopez-Fernandez T, Couch LS,
Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D,
Cordoba R, Cosyns B, et al: 2022 ESC Guidelines on cardio-oncology
developed in collaboration with the European Hematology Association
(EHA), the European Society for Therapeutic Radiology and Oncology
(ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur
Heart J. 43:4229–4361. 2022. View Article : Google Scholar
|