Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 32 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment

  • Authors:
    • Tingting Dai
    • Lingchang Li
    • Jiaxin Li
    • Xiaobin Tan
    • Yi Luo
    • Xuedong Wang
    • Jie Song
    • Sujuan Li
    • Songshan Shi
  • View Affiliations / Copyright

    Affiliations: Department of Urinary Surgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210014, P.R. China, Ultrasonic Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China, Ultrasonic Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China, Department of Urinary Surgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210014, P.R. China
    Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 345
    |
    Published online on: October 8, 2025
       https://doi.org/10.3892/mmr.2025.13710
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Depression can accelerate the progression of colorectal cancer (CRC), and depressive remission improves cancer outcomes. Ginsenoside Rh1, the main metabolite of a steroidal saponin extracted from Panax ginseng, improves memory and learning and to inhibit tumor growth. However, its anticancer effects and mechanisms in CRC complicated by psychological stress remain unclear. The present study aimed to investigate the protective effect of Rh1 against CRC with coexisting symptoms of depression. A CRC xenograft mouse model exposed to chronic restraint stress (CRS) was established. Behavioral changes, 5‑hydroxytryptamine (5‑HT) levels, cytokine expression, intestinal microbiota diversity, T‑cell recruitment, myeloid‑derived suppressor cell (MDSC) proportions and dendritic cell (DC) maturation were analyzed following treatment of the mice with Rh1. Results showed that Rh1 inhibited tumor growth, ameliorated depressive‑like behaviors, enhanced cognitive function, upregulated brain 5‑HT and serum noradrenaline levels, and decreased serum cortisol, corticotropin‑releasing hormone, adrenaline, interleukin‑6, C‑X‑C motif chemokine ligand 1 and tumor necrosis factor‑α levels in mice with CRC under CRS. Furthermore, Rh1 intervention attenuated gut dysbiosis and decreased the Firmicutes/Bacteroidota ratio. Antibiotic‑induced depletion of gut bacteria further confirmed the involvement of gut microbiota in the anticancer and antidepressant effects of Rh1. Rh1 also promoted T cell activation and DC maturation, and reduced MDSC frequency, thereby reshaping the immune microenvironment. These findings indicate that Rh1 inhibited CRC tumor growth in the CRS‑exposed mice by stimulating the immune response and modulating the gut microbiota. Thus, it is suggested that Rh1 has potential as a novel therapeutic strategy for patients with CRC and depression.
View Figures

Figure 1

Rh1 treatment inhibits tumor growth
in mice with colorectal cancer and CRS. (A) Experimental schedule
and treatment groups. (B) Representative images of the excised
tumors. (C) Body weights and (D) tumor volume measurements taken
during the CRS procedure. Results are presented as the mean ± SD
(n=5). *P<0.05 and **P<0.01 vs. the control group;
#P<0.05 and ##P<0.01 vs. the model
group. (E) Representative TUNEL, H&E and Ki67
immunohistochemical staining images of the tumors; scale bar, 50
µm. Rh1, ginsenoside Rh1; Rh1H, high dose Rh1; Rh1L, low dose Rh1;
CRS, chronic restraint stress; H&E, hematoxylin and eosin.

Figure 2

Rh1 treatment alleviates
depression-like behaviors in mice bearing colorectal tumors and
subjected to chronic restraint stress. (A) Representative
trajectory plots from the OFT. (B) Total distance traveled,
distance traveled in the central region and time spent in the
central region during the OFT. (C) Representative trajectory plots
from the EPMT. (D) Total distance traveled and time spent in the
open arms during the EPMT. (E) Sucrose consumption data from the
sucrose preference test. Results are presented as the mean ± SD
(n=5). *P<0.05 and **P<0.01 vs. the control group;
#P<0.05 and ##P<0.01 vs. the model
group. Rh1, ginsenoside Rh1; Rh1H, high dose Rh1; Rh1L, low dose
Rh1; OFT, open field test; EPMT, elevated plus maze test.

Figure 3

Rh1 regulates the levels of hormones
and inflammatory factors in the brain and serum of mice bearing
colorectal tumors and subjected to chronic restraint stress. (A)
Brain levels of 5-HT and serum levels of TNF-α, IL-6 and CXCL1. (B)
Serum levels of adrenaline, NE, CRH and CORT. Results are presented
as the mean ± SD (n=5). **P<0.01 vs. the control group;
#P<0.05 and ##P<0.01 vs. the model
group. Rh1, ginsenoside Rh1; Rh1H, high dose Rh1; Rh1L, low dose
Rh1; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; CXCL1,
C-X-C motif chemokine ligand 1; 5-HT, 5-hydroxytryptamine; CRH,
corticotropin-releasing hormone; CORT, cortisol; NE,
noradrenaline.

Figure 4

Rh1 treatment regulates the gut
microbial balance in mice bearing colorectal tumors and subjected
to chronic restraint stress. (A) ACE, Simpson and Shannon indices
of α-diversity and (B) PCoA analysis of the β-diversity of the gut
microbiota. (C) Community distribution and (D) richness of the
intestinal flora at the phylum level. (E) Firmicutes/Bacteroidota
ratios. (F) Heat map showing the Spearman correlation coefficients
for hormone or inflammatory factors with phylum abundance. n=5).
*P<0.05 and **P<0.01 vs. the control group;
#P<0.05 and ##P<0.01 vs. the model
group. Rh1, ginsenoside Rh1; Rh1H, high dose Rh1; Rh1L, low dose
Rh1; ACE, abundance-based coverage estimator; PCoA, principal
coordinate analysis; PC, principal component; ASV, amplicon
sequence variant; IL-6, interleukin-6; TNF-α, tumor necrosis
factor-α; CXCL1, C-X-C motif chemokine ligand 1; 5-HT,
5-hydroxytryptamine; NE, noradrenaline; CORT, cortisol; CRH,
corticotropin-releasing hormone.

Figure 5

Gut microbiota is involved in the
anticancer and antidepressive effect of Rh1. (A) Experimental
design for microbiota depletion by ABX in CRS-exposed mice bearing
colorectal tumors during Rh1 intervention. (B) Representative
images of the tumors, and tumor volume measurements during the CRS
procedure. (C) Trajectory plots from the open field test. Results
are presented as the mean ± SD (n=5). **P<0.01,
#P<0.05 and ##P<0.01 as indicated. Rh1,
ginsenoside Rh1; Rh1H, high dose Rh1; ABX, antibiotics; CRS,
chronic restraint stress; ns, not significant.

Figure 6

Rh1 promotes the infiltration of T
cells into the tumors of mice subjected to chronic restraint stress
and bearing colorectal tumors. Intracellular (A) IFN-γ and (B)
granzyme B levels in CD8+T and CD4+T cells in
colorectal tumors, detected by flow cytometry. n=3. **P<0.01 vs.
the control group; #P<0.05 and ##P<0.01
vs. the model group. (C) Immunofluorescent staining of CD8
expression in the tumor tissue; scale bar, 50 µm. Rh1, ginsenoside
Rh1; Rh1H, high dose Rh1.

Figure 7

Rh1 treatment promotes T-cell
function and reduces the proportion of MDSCs in the spleens of mice
subjected to chronic restraint stress and bearing colorectal
tumors. (A) Intracellular IFN-γ levels of CD8+T and
CD4+T cells in the spleen, analyzed by flow cytometry.
(B) MDSC and (C) M-MDSC percentages in the spleen. Representative
flow cytometry plots and combined data graphs are shown. n=3.
*P<0.05 and **P<0.01 vs. the control group;
#P<0.05 and ##P<0.01 vs. the model
group. Rh1, ginsenoside Rh1; Rh1H, high dose Rh1; MDSC,
myeloid-derived suppressor cell; M-MDSC, monocytic MDSC; Gr-1,
granulocyte antigen-1; Ly6C, lymphocyte antigen 6 complex, locus
C.

Figure 8

Rh1 treatment promotes DC maturation.
(A) Populations of MHCII+CD11c+DCs,
considered to represent mature DCs, in the spleen, tumor and
tumor-draining lymph nodes of mice bearing colorectal tumors and
subjected to chronic restraint stress. (B) Immunofluorescent
staining of CD11c (red) and CD80 (green) in the tumors; scale bar,
50 µm. n=3. **P<0.01 vs. the control group;
#P<0.05 and ##P<0.01 vs. the model
group. Rh1, ginsenoside Rh1; Rh1H, high dose Rh1; MHCII, major
histocompatibility complex class II; DC, dendritic cell; SSC, side
scatter.
View References

1 

Salvucci M, Crawford N, Stott K, Bullman S, Longley DB and Prehn JHM: Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut. 71:1600–1612. 2022.PubMed/NCBI

2 

Zhao N, Lai C, Wang Y, Dai S and Gu H: Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer. 1879:1890962024. View Article : Google Scholar : PubMed/NCBI

3 

Zheng Z, Hou X, Bian Z, Jia W and Zhao L: Gut microbiota and colorectal cancer metastasis. Cancer Lett. 555:2160392023. View Article : Google Scholar : PubMed/NCBI

4 

Wang J and Liao ZX: Research progress of microrobots in tumor drug delivery. Food Med Homol. 1:94200252024. View Article : Google Scholar

5 

Ye L, Hou Y, Hu W, Wang H, Yang R, Zhang Q, Feng Q, Zheng X, Yao G and Hao H: Repressed Blautia-acetate immunological axis underlies breast cancer progression promoted by chronic stress. Nat Commun. 14:61602023. View Article : Google Scholar : PubMed/NCBI

6 

Yang S, Li Y, Zhang Y and Wang Y: Impact of chronic stress on intestinal mucosal immunity in colorectal cancer progression. Cytokine Growth Factor Rev. 80:24–36. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Otun S, Achilonu I and Odero-Marah V: Unveiling the potential of Muscadine grape Skin extract as an innovative therapeutic intervention in cancer treatment. J Funct Foods. 116:1061462024. View Article : Google Scholar : PubMed/NCBI

8 

Urakami H, Yoshikawa S, Nagao K, Miyake K, Fujita Y, Komura A, Nakashima M, Umene R, Sano S, Hu Z, et al: Stress-experienced monocytes/macrophages lose anti-inflammatory function via β2-adrenergic receptor in skin allergic inflammation. J Allergy Clin Immunol. 155:865–879. 2025. View Article : Google Scholar : PubMed/NCBI

9 

Globig AM, Zhao S, Roginsky J, Maltez VI, Guiza J, Avina-Ochoa N, Heeg M, Araujo Hoffmann F, Chaudhary O, Wang J, et al: The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature. 622:383–392. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Zhang S, Yu F, Che A, Tan B, Huang C, Chen Y, Liu X, Huang Q, Zhang W, Ma C, et al: Neuroendocrine regulation of stress-induced T cell dysfunction during lung cancer immunosurveillance via the kisspeptin/GPR54 signaling pathway. Adv Sci (Weinh). 9:e21041322022. View Article : Google Scholar : PubMed/NCBI

11 

Wang XH, Fu YL, Xu YN, Zhang PC, Zheng TX, Ling CQ and Feng YL: Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor. J Integr Med. 22:709–718. 2024. View Article : Google Scholar : PubMed/NCBI

12 

Sommershof A, Scheuermann L, Koerner J and Groettrup M: Chronic stress suppresses anti-tumor T(CD8+) responses and tumor regression following cancer immunotherapy in a mouse model of melanoma. Brain Behav Immun. 65:140–149. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Zhou M, Fan Y, Xu L, Yu Z, Wang S, Xu H, Zhang J, Zhang L, Liu W, Wu L, et al: Microbiome and tryptophan metabolomics analysis in adolescent depression: Roles of the gut microbiota in the regulation of tryptophan-derived neurotransmitters and behaviors in human and mice. Microbiome. 11:1452023. View Article : Google Scholar : PubMed/NCBI

14 

Zou Y, Wang S, Zhang H, Gu Y, Chen H, Huang Z, Yang F, Li W, Chen C, Men L, et al: The triangular relationship between traditional Chinese medicines, intestinal flora, and colorectal cancer. Med Res Rev. 44:539–567. 2024. View Article : Google Scholar : PubMed/NCBI

15 

Zheng W, Shen P, Yu C, Tang Y, Qian C, Yang C, Gao M, Wu Y, Yu S, Tang W, et al: Ginsenoside Rh1, a novel casein kinase II subunit alpha (CK2α) inhibitor, retards metastasis via disrupting HHEX/CCL20 signaling cascade involved in tumor cell extravasation across endothelial barrier. Pharmacol Res. 198:1069862023. View Article : Google Scholar : PubMed/NCBI

16 

Hou J, Xue J, Lee M, Yu J and Sung C: Long-term administration of ginsenoside Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus. Int J Mol Med. 33:234–240. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H and Zhang H: Structural characters and pharmacological activity of protopanaxadiol-type saponins and protopanaxatriol-type saponins from ginseng. Adv Pharmacol Pharm Sci. 2024:90967742024. View Article : Google Scholar : PubMed/NCBI

18 

Wang H, Yang Y, Yang S, Ren S, Feng J, Liu Y, Chen H and Chen N: Ginsenoside Rg1 ameliorates neuroinflammation via suppression of connexin43 ubiquitination to attenuate depression. Front Pharmacol. 12:7090192021. View Article : Google Scholar : PubMed/NCBI

19 

Han D, Zhao Z, Mao T, Gao M, Yang X and Gao Y: Ginsenoside Rg1: A neuroprotective natural dammarane-type triterpenoid saponin with anti-depressive properties. CNS Neurosci Ther. 30:e701502024. View Article : Google Scholar : PubMed/NCBI

20 

Wang YZ, Chen J, Chu SF, Wang YS, Wang XY, Chen NH and Zhang JT: Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1′s metabolites ginsenoside Rh1 and protopanaxatriol. J Pharmacol Sci. 109:504–510. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Nahar J, Boopathi V, Murugesan M, Rupa EJ, Yang DC, Kang SC and Mathiyalagan R: Investigating the anticancer activity of G-Rh1 using in silico and in vitro studies (A549 Lung Cancer Cells). Molecules. 27:83112022. View Article : Google Scholar : PubMed/NCBI

22 

Lyu X, Xu X, Song A, Guo J and Zhang Y and Zhang Y: Ginsenoside Rh1 inhibits colorectal cancer cell migration and invasion in vitro and tumor growth in vivo. Oncol Lett. 18:4160–4166. 2019.PubMed/NCBI

23 

Jin Y, Huynh DTN and Heo KS: Ginsenoside Rh1 inhibits tumor growth in MDA-MB-231 breast cancer cells via mitochondrial ROS and ER stress-mediated signaling pathway. Arch Pharm Res. 45:174–184. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Jiang Y, Hu Y, Yang Y, Yan R, Zheng L, Fu X, Xiao C and You F: Tong-Xie-Yao-Fang promotes dendritic cells maturation and retards tumor growth in colorectal cancer mice with chronic restraint stress. J Ethnopharmacol. 319((Pt 1)): 1170692024. View Article : Google Scholar : PubMed/NCBI

25 

Olescowicz G, Neis VB, Fraga DB, Rosa PB, Azevedo DP, Melleu FF, Brocardo PS, Gil-Mohapel J and Rodrigues ALS: Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Prog Neuropsychopharmacol Biol Psychiatry. 81:395–407. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Wang W, Liu L, Yang X, Gao H, Tang QK, Yin LY, Yin XY, Hao JR, Geng DQ and Gao C: Ketamine improved depressive-like behaviors via hippocampal glucocorticoid receptor in chronic stress induced-susceptible mice. Behav Brain Res. 364:75–84. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Wu X, Shetty AK and Reddy DS: Long-term changes in neuroimaging markers, cognitive function and psychiatric symptoms in an experimental model of Gulf War Illness. Life Sci. 285:1199712021. View Article : Google Scholar : PubMed/NCBI

28 

Liu L, Liu Y, Li R, Teng Y, Zhao S, Chen J, Li C, Hu X and Sun L: Identification of critical signature in post-traumatic stress disorder using bioinformatics analysis and in vitro analyses. Brain Behav. 15:e702432025. View Article : Google Scholar : PubMed/NCBI

29 

Wu J, Zhang T, Yu L, Huang S, Yang Y, Yu S, Li J, Cao Y, Wei Z, Li X, et al: Zhile capsule exerts antidepressant-like effects through upregulation of the BDNF signaling pathway and neuroprotection. Int J Mol Sci. 20:1952019. View Article : Google Scholar : PubMed/NCBI

30 

Sui H, Zhang L, Gu K, Chai N, Ji Q, Zhou L, Wang Y, Ren J, Yang L, Zhang B, et al: YYFZBJS ameliorates colorectal cancer progression in Apc(Min/+) mice by remodeling gut microbiota and inhibiting regulatory T-cell generation. Cell Commun Signal. 18:1132020. View Article : Google Scholar : PubMed/NCBI

31 

Simpson EH: Measurement of diversity. Nature. 163:6881949. View Article : Google Scholar : PubMed/NCBI

32 

Chao A and Lee SM: Estimating the number of classes via sample coverage. J Am Stat Assoc. 87:210–217. 1992. View Article : Google Scholar

33 

Shannon CE: Shannon CE. A mathematical theory of communication. Bell System Technical Journal. 27:379–423. 1948. View Article : Google Scholar

34 

Ren Q, He C, Sun Y, Gao X, Zhou Y, Qin T, Zhang Z, Wang X, Wang J, Wei S and Wang F: Asiaticoside improves depressive-like behavior in mice with chronic unpredictable mild stress through modulation of the gut microbiota. Front Pharmacol. 15:14618732024. View Article : Google Scholar : PubMed/NCBI

35 

Zhao L, Zhu X, Ni Y, You J and Li A: Xiaoyaosan, a traditional Chinese medicine, inhibits the chronic restraint stress-induced liver metastasis of colon cancer in vivo. Pharm Biol. 58:1085–1091. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Yan X, Shi L, Zhu X, Zhao Y, Luo J, Li Q, Xu Z and Zhao J: From microbial homeostasis to systemic pathogenesis: A narrative review on gut flora's role in neuropsychiatric, metabolic, and cancer disorders. J Inflamm Res. 18:8851–8873. 2025. View Article : Google Scholar : PubMed/NCBI

37 

Chu Y, Qian L, Ke Y, Feng X, Chen X, Liu F, Yu L, Zhang L, Tao Y, Xu R, et al: Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. J Nanobiotechnology. 20:1902022. View Article : Google Scholar : PubMed/NCBI

38 

Hao Y, Ge H, Sun M and Gao Y: Selecting an appropriate animal model of depression. Int J Mol Sci. 20:48272019. View Article : Google Scholar : PubMed/NCBI

39 

Ding H, Lin J, Xu Z, Wang HHX, Huang L, Huang J and Wong MCS: The association between organised colorectal cancer screening strategies and reduction of its related mortality: A systematic review and meta-analysis. BMC Cancer. 24:3652024. View Article : Google Scholar : PubMed/NCBI

40 

He L, Tian Y, Liu Q, Bao J and Ding RB: Antidepressant sertraline synergistically enhances paclitaxel efficacy by inducing autophagy in colorectal cancer cells. Molecules. 29:37332024. View Article : Google Scholar : PubMed/NCBI

41 

Huynh DTN, Jin Y, Myung CS and Heo KS: Ginsenoside Rh1 induces MCF-7 cell apoptosis and autophagic cell death through ROS-Mediated Akt signaling. Cancers (Basel). 13:18922021. View Article : Google Scholar : PubMed/NCBI

42 

Mathiyalagan R, Wang C, Kim YJ, Castro-Aceituno V, Ahn S, Subramaniyam S, Simu SY, Jiménez-Pérez ZE, Yang DC and Jung SK: Preparation of polyethylene glycol-ginsenoside Rh1 and Rh2 conjugates and their efficacy against lung cancer and inflammation. Molecules. 24:43672019. View Article : Google Scholar : PubMed/NCBI

43 

Guo Y, Xie J, Zhang L, Yang L, Ma J, Bai Y, Ma W, Wang L, Yu H, Zeng Y, et al: Ginsenoside Rb1 exerts antidepressant-like effects via suppression inflammation and activation of AKT pathway. Neurosci Lett. 744:1355612021. View Article : Google Scholar : PubMed/NCBI

44 

Li J, Gao W, Zhao Z, Li Y, Yang L, Wei W, Ren F, Li Y, Yu Y, Duan W, et al: Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis. Mol Neurobiol. 59:2855–2873. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Wang L, Zhang QQ, Xu YY, Zhang R, Zhao Q, Zhang YQ, Huang XH, Jiang B and Ni M: Ginsenoside Rb1 Suppresses AOM/DSS-induced colon carcinogenesis. Anticancer Agents Med Chem. 23:1067–1073. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Liu R, Zhang B, Zou S, Cui L, Lin L and Li L: Ginsenoside Rg1 induces autophagy in colorectal cancer through inhibition of the Akt/mTOR/p70S6K pathway. J Microbiol Biotechnol. 34:774–782. 2024. View Article : Google Scholar : PubMed/NCBI

47 

Yang Z, Wu X, Shen J, Gudamu A, Ma Y, Zhang Z and Hou M: Ginsenoside Rh1 regulates gastric cancer cell biological behaviours and transplanted tumour growth in nude mice via the TGF-β/Smad pathway. Clin Exp Pharmacol Physiol. 49:1270–1280. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Zhang Z, Shao S, Zhang Y, Jia R, Hu X, Liu H, Sun M, Zhang B, Li Q and Wang Y: Xiaoyaosan slows cancer progression and ameliorates gut dysbiosis in mice with chronic restraint stress and colorectal cancer xenografts. Biomed Pharmacother. 132:1109162020. View Article : Google Scholar : PubMed/NCBI

49 

Gao Y: Inflammation and gut microbiota in the alcoholic liver disease. Food Med Homol. 1:94200202024. View Article : Google Scholar

50 

Wang J, Fan L, Teng T, Wu H, Liu X, Yin B, Li X, Jiang Y, Zhao J, Wu Q, et al: Adolescent male rats show altered gut microbiota composition associated with depressive-like behavior after chronic unpredictable mild stress: Differences from adult rats. J Psychiatr Res. 173:183–191. 2024. View Article : Google Scholar : PubMed/NCBI

51 

Shao S, Jia R, Zhao L, Zhang Y, Guan Y, Wen H, Liu J, Zhao Y, Feng Y, Zhang Z, et al: Xiao-Chai-Hu-Tang ameliorates tumor growth in cancer comorbid depressive symptoms via modulating gut microbiota-mediated TLR4/MyD88/NF-κB signaling pathway. Phytomedicine. 88:1536062021. View Article : Google Scholar : PubMed/NCBI

52 

Xu JY, Liu MT, Tao T, Zhu X and Fei FQ: The role of gut microbiota in tumorigenesis and treatment. Biomed Pharmacother. 138:1114442021. View Article : Google Scholar : PubMed/NCBI

53 

Zaharuddin L, Mokhtar NM, Muhammad Nawawi KN and Raja Ali RA: A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 19:1312019. View Article : Google Scholar : PubMed/NCBI

54 

Piccinno G, Thompson KN, Manghi P, Ghazi AR, Thomas AM, Blanco-Míguez A, Asnicar F, Mladenovic K, Pinto F, Armanini F, et al: Pooled analysis of 3,741 stool metagenomes from 18 cohorts for cross-stage and strain-level reproducible microbial biomarkers of colorectal cancer. Nat Med. 31:2416–2429. 2025. View Article : Google Scholar : PubMed/NCBI

55 

Jamal R, Messaoudene M, de Figuieredo M and Routy B: Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Semin Immunol. 67:1017542023. View Article : Google Scholar : PubMed/NCBI

56 

Ugel S, Peranzoni E, Desantis G, Chioda M, Walter S, Weinschenk T, Ochando JC, Cabrelle A, Mandruzzato S and Bronte V: Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Rep. 2:628–639. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Foley ÉM, Parkinson JT, Mitchell RE, Turner L and Khandaker GM: Peripheral blood cellular immunophenotype in depression: A systematic review and meta-analysis. Mol Psychiatry. 28:1004–1019. 2023. View Article : Google Scholar : PubMed/NCBI

58 

Shi H, He J, Li X, Han J, Wu R, Wang D, Yang F and Sun E: Isorhamnetin, the active constituent of a Chinese herb Hippophae rhamnoides L, is a potent suppressor of dendritic-cell maturation and trafficking. Int Immunopharmacol. 55:216–222. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Lu YT, Li J, Qi X, Pei YX, Shi WG and Lin HS: Effects of Shugan Jianpi Formula () on myeloid-derived suppression cells-mediated depression breast cancer mice. Chin J Integr Med. 23:453–460. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Bai Y, Cai Y, Chang D, Li D, Huo X and Zhu T: Immunotherapy for depression: Recent insights and future targets. Pharmacol Ther. 257:1086242024. View Article : Google Scholar : PubMed/NCBI

61 

Du Y, Dou Y, Wang M, Wang Y, Yan Y, Fan H, Fan N, Yang X and Ma X: Efficacy and acceptability of anti-inflammatory agents in major depressive disorder: A systematic review and meta-analysis. Front Psychiatry. 15:14075292024. View Article : Google Scholar : PubMed/NCBI

62 

Baghdadi LR: Tocilizumab reduces depression risk in rheumatoid arthritis patients: A systematic review and meta-analysis. Psychol Res Behav Manag. 17:3419–3441. 2024. View Article : Google Scholar : PubMed/NCBI

63 

Iyengar RL, Gandhi S, Aneja A, Thorpe K, Razzouk L, Greenberg J, Mosovich S and Farkouh ME: NSAIDs are associated with lower depression scores in patients with osteoarthritis. Am J Med. 126:1017.e11–8. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Drago A, Crisafulli C, Calabrò M and Serretti A: Enrichment pathway analysis. The inflammatory genetic background in Bipolar Disorder. J Affect Disord. 179:88–94. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Argue BMR, Casten LG, McCool S, Alrfooh A, Richards JG, Wemmie JA, Magnotta VA, Williams AJ, Michaelson J, Fiedorowicz JG, et al: Immune dysregulation in bipolar disorder. J Affect Disord. 374:587–597. 2025. View Article : Google Scholar : PubMed/NCBI

66 

Dai S, Mo Y, Wang Y, Xiang B, Liao Q, Zhou M, Li X, Li Y, Xiong W, Li G, et al: Chronic stress promotes cancer development. Front Oncol. 10:14922020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dai T, Li L, Li J, Tan X, Luo Y, Wang X, Song J, Li S and Shi S: Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment. Mol Med Rep 32: 345, 2025.
APA
Dai, T., Li, L., Li, J., Tan, X., Luo, Y., Wang, X. ... Shi, S. (2025). Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment. Molecular Medicine Reports, 32, 345. https://doi.org/10.3892/mmr.2025.13710
MLA
Dai, T., Li, L., Li, J., Tan, X., Luo, Y., Wang, X., Song, J., Li, S., Shi, S."Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment". Molecular Medicine Reports 32.6 (2025): 345.
Chicago
Dai, T., Li, L., Li, J., Tan, X., Luo, Y., Wang, X., Song, J., Li, S., Shi, S."Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment". Molecular Medicine Reports 32, no. 6 (2025): 345. https://doi.org/10.3892/mmr.2025.13710
Copy and paste a formatted citation
x
Spandidos Publications style
Dai T, Li L, Li J, Tan X, Luo Y, Wang X, Song J, Li S and Shi S: Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment. Mol Med Rep 32: 345, 2025.
APA
Dai, T., Li, L., Li, J., Tan, X., Luo, Y., Wang, X. ... Shi, S. (2025). Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment. Molecular Medicine Reports, 32, 345. https://doi.org/10.3892/mmr.2025.13710
MLA
Dai, T., Li, L., Li, J., Tan, X., Luo, Y., Wang, X., Song, J., Li, S., Shi, S."Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment". Molecular Medicine Reports 32.6 (2025): 345.
Chicago
Dai, T., Li, L., Li, J., Tan, X., Luo, Y., Wang, X., Song, J., Li, S., Shi, S."Ginsenoside Rh1 inhibits tumor growth in mice with colorectal cancer and depressive symptoms via modulation of the gut microbiota and tumor microenvironment". Molecular Medicine Reports 32, no. 6 (2025): 345. https://doi.org/10.3892/mmr.2025.13710
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team