Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of 
cardiovascular diseases (Review)

  • Authors:
    • Yishuo Zhang
    • Shanshan Zhang
    • Yijing Li
    • Wenqi Jin
    • Liya Zhou
    • Jing Lu
  • View Affiliations / Copyright

    Affiliations: College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China, College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Changchun, Jilin 130117, P.R. China, College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130017, P.R. China, Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 5
    |
    Published online on: October 15, 2025
       https://doi.org/10.3892/mmr.2025.13715
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cardiovascular diseases (CVDs) are among the main factors impacting negatively human health on a global scale. Every year, there is an increase in the prevalence of CVDs despite advancements in therapy for managing traditional risk factors. Research on exosomes is has garnered great interest due to their role in regulating intercellular communication. Exosome‑mediated epigenetic regulation is involved in the interaction between circulating cells and blood arteries, as well as in intercellular communication processes, and exosomes serve as biomarkers of cell activation. The present study aimed to summarize the recent research on exosome‑mediated epigenetic regulation mechanisms, as well as the roles of exosomes in the pathology and diagnosis of CVDs, which may increase the current understanding of the precise functions that exosomes play in the development of CVDs.
View Figures

Figure 1

Exosome biogenesis and communication
in cardiovascular disease. The diagram illustrates the process of
exosome biogenesis, including endosomal invagination, MVB
formation, cargo sorting and exosome release. ESCRT, endosomal
sorting complexes required for transport; ncRNA, noncoding RNA;
MVB, multivesicular body.

Figure 2

Mechanisms by which exosomal ncRNAs
and DNA methylation regulate CVDs. Exosomal miRNAs, lncRNAs and
circRNAs modulate gene expression in target cells through
post-transcriptional and epigenetic mechanisms, thereby influencing
vascular function and myocardial remodeling. In addition,
exosome-delivered DNA methyltransferases and associated factors can
reshape the epigenetic landscape of recipient cells, contributing
to the onset and progression of CVDs. miRNA or miR, microRNA;
lncRNA, long noncoding RNA; circRNA, circular RNA; p-,
phosphorylated; CVDs, cardiovascular diseases.
View References

1 

GBD 2019 Viewpoint Collaborators, . Five insights from the global burden of disease study 2019. Lancet. 396:1135–1159. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Shah R, Patel T and Freedman JE: Circulating extracellular vesicles in human disease. N Engl J Med. 379:958–966. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Théry C, Witwer KW, Aikawa E, Alcaraz JM, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018. View Article : Google Scholar : PubMed/NCBI

4 

Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S and Thum T: Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases. Circulation. 143:1426–1449. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Martin-Ventura JL, Roncal C, Orbe J and Blanco-Colio LM: Role of extracellular vesicles as potential diagnostic and/or therapeutic biomarkers in chronic cardiovascular diseases. Front Cell Dev Biol. 10:8138852022. View Article : Google Scholar : PubMed/NCBI

6 

Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P and Huang H: Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct Target Ther. 7:2002022. View Article : Google Scholar : PubMed/NCBI

7 

Khan MI, Alsayed RKME, Choudhry H and Ahmad A: Exosome-mediated response to cancer therapy: Modulation of epigenetic machinery. Int J Mol Sci. 23:62222022. View Article : Google Scholar : PubMed/NCBI

8 

Nasir A, Bullo MMH, Ahmed Z, Imtiaz A, Yaqoob E, Jadoon M, Ahmed H, Afreen A and Yaqoob S: Nutrigenomics: Epigenetics and cancer prevention: A comprehensive review. Crit Rev Food Sci Nutr. 60:1375–1387. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M and Napoli C: Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther. 210:1075142020. View Article : Google Scholar : PubMed/NCBI

10 

Hulshoff MS, Xu X, Krenning G and Zeisberg EM: Epigenetic regulation of Endothelial-to-mesenchymal transition in chronic heart disease. Arterioscler Thromb Vasc Biol. 38:1986–1996. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Chang W and Wang J: Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells. 8:8532019. View Article : Google Scholar : PubMed/NCBI

12 

Mathieu M, Martin-Jaular L, Lavieu G and Théry C: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Shao H, Im H, Castro CM, Breakefield X, Weissleder R and Lee H: New technologies for analysis of extracellular vesicles. Chem Rev. 118:1917–1950. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Raiborg C and Stenmark H: The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 458:445–452. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Kalluri R: The biology and function of exosomes in cancer. J Clin Invest. 126:1208–1215. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Poddar S, Kesharwani D and Datta M: Interplay between the miRNome and the epigenetic machinery: Implications in health and disease. J Cell Physiol. 232:2938–2945. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Petrovic N and Ergun S: miRNAs as potential treatment targets and treatment options in cancer. Mol Diagn Ther. 22:157–168. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Lou Z, Zhou R, Su Y, Liu C, Ruan W, Jeon CO, Han X, Lin C and Jia B: Minor and major circRNAs in virus and host genomes. J Microbiol. 59:324–331. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Yang T, Long T, Du T, Chen Y, Dong Y and Huang ZP: Circle the cardiac remodeling with circRNAs. Front Cardiovasc Med. 8:7025862021. View Article : Google Scholar : PubMed/NCBI

22 

Hall IF, Climent M, Viviani Anselmi C, Papa L, Tragante V, Lambroia L, Farina FM, Kleber ME, März W, Biguori C, et al: rs41291957 controls miR-143 and miR-145 expression and impacts coronary artery disease risk. EMBO Mol Med. 13:e140602021. View Article : Google Scholar : PubMed/NCBI

23 

Jiang F, Chen Q, Wang W, Ling Y, Yan Y and Xia P: Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol. 72:156–166. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Hou Z, Qin X, Hu Y, Zhang X, Li G, Wu J, Li J, Sha J, Chen J, Xia J, et al: Longterm Exercise-derived exosomal miR-342-5p: A novel exerkine for cardioprotection. Circ Res. 124:1386–1400. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Chang YJ, Li YS, Wu CC, Wang KC, Huang TC, Chen Z and Chien S: Extracellular MicroRNA-92a mediates endothelial Cell-macrophage communication. Arterioscler Thromb Vasc Biol. 39:2492–2504. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Sindi HA, Russomanno G, Satta S, Abdul-Salam VB, Jo KB, Qazi-Chaudhry B, Ainscough AJ, Szulcek R, Jan Bogaard H, Morgan CC, et al: Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat Commun. 11:11852020. View Article : Google Scholar : PubMed/NCBI

27 

Miao Y, Ajami NE, Huang TS, Lin FM, Lou CH, Wang YT, Li S, Kang J, Munkacsi H, Maurya MR, et al: Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun. 9:2922018. View Article : Google Scholar : PubMed/NCBI

28 

Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, Zhao WK, Xu S, Fan LH, Zhang XJ, et al: APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun. 6:67792015. View Article : Google Scholar : PubMed/NCBI

29 

Liang H, Su X, Wu Q, Shan H, Lv L, Yu T, Zhao X, Sun J, Yang R, Zhang L, et al: LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting Mir26a. Autophagy. 16:1077–1091. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Viereck J, Bührke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K, Janssen-Peters H, Batkai S, Ramanujam D, Kraft T, et al: Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J. 41:3462–3474. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Omura J, Habbout K, Shimauchi T, Wu WH, Breuils-Bonnet S, Tremblay E, Martineau S, Nadeau V, Gagnon K, Mazoyer F, et al: Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation. 142:1464–1484. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Hua X, Wang YY, Jia P, Xiong Q, Hu Y, Chang Y, Lai S, Xu Y, Zhao Z, Song J, et al: Multi-level transcriptome sequencing identifies COL1A1 as a candidate marker in human heart failure progression. BMC Med. 18:22020. View Article : Google Scholar : PubMed/NCBI

33 

Mao YY, Wang JQ, Guo XX, Bi Y and Wang CX: Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem Biophys Res Commun. 505:119–125. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Shen L, Hu Y, Lou J, Yin S, Wang W, Wang Y, Xia Y and Wu W: CircRNA-0044073 is upregulated in atherosclerosis and increases the proliferation and invasion of cells by targeting miR-107. Mol Med Rep. 19:3923–3932. 2019.PubMed/NCBI

35 

Sygitowicz G and Sitkiewicz D: Involvement of circRNAs in the development of heart failure. Int J Mol Sci. 23:141292022. View Article : Google Scholar : PubMed/NCBI

36 

Wu N, Li C, Xu B, Xiang Y, Jia X, Yuan Z, Wu L, Zhong L and Li Y: Circular RNA mmu_circ_0005019 inhibits fibrosis of cardiac fibroblasts and reverses electrical remodeling of cardiomyocytes. BMC Cardiovasc Disord. 21:3082021. View Article : Google Scholar : PubMed/NCBI

37 

Zhang M, Wang Z, Cheng Q, Wang Z, Lv X, Wang Z and Li N: Circular RNA (circRNA) CDYL induces myocardial regeneration by ceRNA after myocardial infarction. Med Sci Monit. 26:e9231882020.PubMed/NCBI

38 

Leimena C and Qiu H: Non-Coding RNA in the pathogenesis, progression and treatment of hypertension. Int J Mol Sci. 19:9272018. View Article : Google Scholar : PubMed/NCBI

39 

Sun Y, Yang Z, Zheng B, Zhang XH, Zhang ML, Zhao XS, Zhao HY, Suzuki T and Wen JK: A novel regulatory mechanism of smooth muscle α-Actin expression by NRG-1/circACTA2/miR-548f-5p Axis. Circ Res. 121:628–635. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Yang K, Zhou Q, Qiao B, Shao B, Hu S, Wang G, Yuan W and Sun Z: Exosome-derived noncoding RNAs: Function, mechanism, and application in tumor angiogenesis. Mol Ther Nucleic Acids. 27:983–997. 2022. View Article : Google Scholar : PubMed/NCBI

41 

Qian Z, Shen Q, Yang X, Qiu Y and Zhang W: The role of extracellular vesicles: An epigenetic view of the cancer microenvironment. Biomed Res Int. 2015:6491612015. View Article : Google Scholar : PubMed/NCBI

42 

Radhakrishna U, Albayrak S, Zafra R, Baraa A, Vishweswaraiah S, Veerappa AM, Mahishi D, Saiyed N, Mishra NK, Guda C, et al: Placental epigenetics for evaluation of fetal congenital heart defects: Ventricular Septal Defect (VSD). PLoS One. 14:e02002292019. View Article : Google Scholar : PubMed/NCBI

43 

Li S, Geng Q, Chen H, Zhang J, Cao C, Zhang F, Song J, Liu C and Liang W: The potential inhibitory effects of miR-19b on vulnerable plaque formation via the suppression of STAT3 transcriptional activity. Int J Mol Med. 41:859–867. 2018.PubMed/NCBI

44 

Small EM and Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature. 469:336–342. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, Sun T, Lappalainen P, Yuan WJ, et al: Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci. 123:2444–2452. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, Ivey KN and Srivastava D: microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife. 2:e013232013. View Article : Google Scholar : PubMed/NCBI

47 

Van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA and Olson EN: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 103:18255–18260. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Benzoni P, Nava L, Giannetti F, Guerini G, Gualdoni A, Bazzini C, Milanesi R, Bucchi A, Baruscotti M and Barbuti A: Dual role of miR-1 in the development and function of sinoatrial cells. J Mol Cell Cardiol. 157:104–112. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB and Zhang C: MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 100:1579–1588. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, et al: MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 122:4190–202. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel T, Jahantigh MN, Lutgens E, et al: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2:ra812009. View Article : Google Scholar : PubMed/NCBI

52 

Mattei AL, Bailly N and Meissner A: DNA methylation: A historical perspective. Trends Genet. 38:676–707. 2022. View Article : Google Scholar : PubMed/NCBI

53 

Zhu L, Zhu C, Wang J, Yang R and Zhao X: The association between DNA methylation of 6p21.33 and AHRR in blood and coronary heart disease in Chinese population. BMC Cardiovasc Disord. 22:3702022. View Article : Google Scholar : PubMed/NCBI

54 

Zhang Y, Yang R, Burwinkel B, Breitling LP, Holleczek B, Schöttker B and Brenner H: F2RL3 methylation in blood DNA is a strong predictor of mortality. Int J Epidemiol. 43:1215–1225. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Guarrera S, Fiorito G, Onland-Moret NC, Russo A, Agnoli C, Allione A, Di Gaetano C, Mattiello A, Ricceri F, Chiodini P, et al: Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin Epigenetics. 7:1332015. View Article : Google Scholar : PubMed/NCBI

56 

Zhang W, Song M, Qu J and Liu GH: Epigenetic modifications in cardiovascular aging and diseases. Circ Res. 123:773–786. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Nakamura TY, Iwata Y, Arai Y, Komamura K and Wakabayashi S: Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res. 103:891–899. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Chen S, Ma J, Chi J, Zhang B, Zheng X, Chen J and Liu J: Roles and potential clinical implications of tissue transglutaminase in cardiovascular diseases. Pharmacol Res. 177:1060852022. View Article : Google Scholar : PubMed/NCBI

59 

Westerman K, Sebastiani P, Jacques P, Liu S, DeMeo D and Ordovás JM: DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clin Epigenetics. 11:1422019. View Article : Google Scholar : PubMed/NCBI

60 

GTEx Consortium; Laboratory, Data Analysis & Coordinating Center (LDACC)-Analysis Working Group; Statistical Methods groups-Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site-NDRI et al., . Genetic effects on gene expression across human tissues. Nature. 550:204–213. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Walaszczyk E, Luijten M, Spijkerman AMW, Bonder MJ, Lutgers HL, Snieder H, Wolffenbuttel BHR and van Vliet-Ostaptchouk JV: DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: A systematic review and replication in a case-control sample of the Lifelines study. Diabetol. 61:354–368. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, Irvin MR, Marioni R, Shen J, Tsai PC, et al: DNA methylation analysis identifies loci for blood pressure regulation. American. J Human Genet. 101:888–902. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Kennel PJ, Liao X, Saha A, Ji R, Zhang X, Castillero E, Brunjes D, Takayama H, Naka Y, Thomas T, et al: Impairment of myocardial glutamine homeostasis induced by suppression of the amino acid carrier SLC1A5 in failing myocardium. Circ Heart Fail. 12:e0063362019. View Article : Google Scholar : PubMed/NCBI

64 

Fernández-Sanlés A, Sayols-Baixeras S, Curcio S, Subirana I, Marrugat J and Elosua R: DNA Methylation and Age-independent cardiovascular risk, an Epigenome-wide approach: The REGICOR study (REgistre GIroní del COR). Arterioscler Thromb Vasc Biol. 38:645–652. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Guarrera S, Fiorito G, Onland-Moret NC, Russo A, Agnoli C, Allione A, Di Gaetano C, Mattiello A, Ricceri F, Chiodini P, et al: Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin Epigenetics. 7:1332015. View Article : Google Scholar : PubMed/NCBI

66 

Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, Belvisi MG, Brown R, Vineis P and Flanagan JM: Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet. 22:843–851. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, Ramírez-Ruz J, Gomez A, Gonçalves I, Moran S and Esteller M: DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 7:692–700. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T, Colicino E, Waite LL, Joehanes R, Guan W, et al: DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 17:2552016. View Article : Google Scholar : PubMed/NCBI

69 

Navas-Acien A, Domingo-Relloso A, Subedi P, Riffo-Campos AL, Xia R, Gomez L, Haack K, Goldsmith J, Howard BV, Best LG, et al: Blood DNA methylation and incident coronary heart disease: Evidence from the strong heart study. JAMA Cardiol. 6:1237–1246. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Luo X, Hu Y, Shen J, Liu X, Wang T, Li L and Li J: Integrative analysis of DNA methylation and gene expression reveals key molecular signatures in acute myocardial infarction. Clin Epigenetics. 14:462022. View Article : Google Scholar : PubMed/NCBI

71 

Yoshioka J, Imahashi K, Gabel SA, Chutkow WA, Burds AA, Gannon J, Schulze PC, MacGillivray C, London RE, Murphy E and Lee RT: Targeted deletion of thioredoxin-interacting protein regulates cardiac dysfunction in response to pressure overload. Circ Res. 101:1328–1338. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH and Accornero F: The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 139:533–545. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Yin T, Wang N, Jia F, Wu Y, Gao L, Zhang J and Hou R: Exosome-based WTAP siRNA delivery ameliorates myocardial ischemia-reperfusion injury. Eur J Pharm Biopharm. 197:1142182024. View Article : Google Scholar : PubMed/NCBI

74 

Madsen A, Krause J, Höppner G, Hirt MN, Tan WLW, Lim I, Hansen A, Nikolaev VO, Foo RSY, Eschenhagen T and Stenzig J: Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. J Mol Cell Cardiol. 154:115–123. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Madsen A, Höppner G, Krause J, Hirt MN, Laufer SD, Schweizer M, Tan WLW, Mosqueira D, Anene-Nzelu CG, Lim I, et al: An important role for DNMT3A-Mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation. 142:1562–1578. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Schiano C, Balbi C, Burrello J, Ruocco A, Infante T, Fiorito C, Panella S, Barile L, Mauro C, Vassalli G and Napoli C: De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis. 354:41–52. 2022. View Article : Google Scholar : PubMed/NCBI

77 

Fang X, Poulsen RR, Wang-Hu J, Shi O, Calvo NS, Simmons CS, Rivkees SA and Wendler CC: Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes. FASEB J. 30:3238–3255. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Stenzig J, Schneeberger Y, Löser A, Peters BS, Schaefer A, Zhao RR, Ng SL, Höppner G, Geertz B, Hirt MN, et al: Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol. 120:53–63. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Bomer N, Grote Beverborg N, Hoes MF, Streng KW, Vermeer M, Dokter MM, IJmker J, Anker SD, Cleland JGF, Hillege HL, et al: Selenium and outcome in heart failure. Eur J Heart Fail. 22:1415–1423. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Zhu H, Wang X, Meng X, Kong Y, Li Y, Yang C, Guo Y, Wang X, Yang H, Liu Z and Wang F: Selenium supplementation improved cardiac functions by suppressing DNMT2-Mediated GPX1 Promoter DNA methylation in AGE-induced heart failure. Oxid Med Cell Longev. 2022:54029972022. View Article : Google Scholar : PubMed/NCBI

81 

Ramachandran B, Stabley JN, Cheng SL, Behrmann AS, Gay A, Li L, Mead M, Kozlitina J, Lemoff A, Mirzaei H, et al: A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells. J Biol Chem. 293:7942–7968. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Putra SED, Reichetzeder C, von Websky K, Neuber C, Halle H, Kleuser B, Krämer BK and Hocher B: Association between placental global DNA methylation and blood pressure during human pregnancy. J Hypertens. 40:1002–1009. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, Hochberg FH, Breakefield XO, Lee H, Weissleder R, et al: Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 6:69992015. View Article : Google Scholar : PubMed/NCBI

84 

Yu W, Zhang L, Wei Q and Shao A: O6-Methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front Oncol. 9:15472019. View Article : Google Scholar : PubMed/NCBI

85 

Cao YL, Zhuang T, Xing BH, Li N and Li Q: Exosomal DNMT1 mediates cisplatin resistance in ovarian cancer. Cell Biochem Funct. 35:296–303. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Chen M and Wong CM: The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 19:442020. View Article : Google Scholar : PubMed/NCBI

87 

Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, et al: METTL3 facilitates tumor progression via an mA-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 18:1122019. View Article : Google Scholar : PubMed/NCBI

88 

Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al: The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 23:1369–1376. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Han M, Liu Z, Xu Y, Liu X, Wang D, Li F, Wang Y and Bi J: Abnormality of m6A mRNA methylation is involved in Alzheimer's disease. Front Neurosci. 14:982020. View Article : Google Scholar : PubMed/NCBI

90 

Fang J, Wu X, He J, Zhang H, Chen X, Zhang H, Novakovic B, Qi H and Yu X: RBM15 suppresses hepatic insulin sensitivity of offspring of gestational diabetes mellitus mice via m6A-mediated regulation of CLDN4. Mol Med. 29:232023. View Article : Google Scholar : PubMed/NCBI

91 

Liu Y, Wang X, Huang M, Luo A, Liu S, Cai M, Li W, Yuan S, Zheng Z, Liu X and Tang C: METTL3 facilitates kidney injury through promoting IRF4-mediated plasma cell infiltration via an m6A-dependent manner in systemic lupus erythematosus. BMC Med. 22:5112024. View Article : Google Scholar : PubMed/NCBI

92 

Henning RJ: Cardiovascular exosomes and MicroRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res. 14:195–212. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Boulanger CM, Loyer X, Rautou PE and Amabile N: Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. 14:259–272. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Waldenström A and Ronquist G: Role of exosomes in myocardial remodeling. Circ Res. 114:315–324. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Lao KH, Zeng L and Xu Q: Endothelial and smooth muscle cell transformation in atherosclerosis. Curr Opin Lipidol. 26:449–456. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Wang Z, Gao D, Wang S, Lin H, Wang Y and Xu W: Exosomal microRNA-1246 from human umbilical cord mesenchymal stem cells potentiates myocardial angiogenesis in chronic heart failure. Cell Biol Int. 45:2211–2225. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Wu T, Chen Y, Du Y, Tao J, Li W, Zhou Z and Yang Z: Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J Thorac Dis. 10:6211–6220. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Wu T, Chen Y, Du Y, Tao J, Zhou Z and Yang Z: Serum exosomal MiR-92b-5p as a potential biomarker for acute heart failure caused by dilated cardiomyopathy. Cell Physiol Biochem. 46:1939–1950. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Wang L, Liu J, Xu B, Liu YL and Liu Z: Reduced exosome miR-425 and miR-744 in the plasma represents the progression of fibrosis and heart failure. Kaohsiung J Med Sci. 34:626–633. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Xie Y, Hang JZ, Zhang N and Liu G: Clinical significance of MiR-27a expression in serum exosomes in patients with heart failure. Cell Mol Biol (Noisy-le-grand). 67:324–331. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Natrus L, Labudzynskyi D, Muzychenko P, Chernovol P and Klys Y: Plasma-derived exosomes implement miR-126-associated regulation of cytokines secretion in PBMCs of CHF patients in vitro. Acta Biomed. 93:e20220662022.PubMed/NCBI

102 

Fuchs FD and Whelton PK: High blood pressure and cardiovascular disease. Hypertension. 75:285–292. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Bress AP, Colantonio LD, Cooper RS, Kramer H, Booth JN III, Odden MC, Bibbins-Domingo K, Shimbo D, Whelton PK, Levitan EB, et al: Potential cardiovascular disease events prevented with adoption of the 2017 American college of Cardiology/American heart association blood pressure guideline. Circulation. 139:24–36. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Gan L, Guo X, Dong S and Sun C: The biology of exosomes and exosomal non-coding RNAs in cardiovascular diseases. Front Pharmacol. 16:15293752025. View Article : Google Scholar : PubMed/NCBI

105 

Bhaskara M, Anjorin O and Wang M: Mesenchymal stem Cell-derived exosomal microRNAs in cardiac regeneration. Cells. 12:28152023. View Article : Google Scholar : PubMed/NCBI

106 

Jayaseelan VP and Arumugam P: Exosomal microRNAs as a promising theragnostic tool for essential hypertension. Hypertens Res. 43:74–75. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Ren XS, Tong Y, Qiu Y, Ye C, Wu N, Xiong XQ, Wang JJ, Han Y, Zhou YB, Zhang F, et al: MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles. 9:16987952019. View Article : Google Scholar : PubMed/NCBI

108 

Wu N, Ye C, Zheng F, Wan GW, Wu LL, Chen Q, Li YH, Kang YM and Zhu GQ: MiR155-5p inhibits cell migration and oxidative stress in vascular smooth muscle cells of spontaneously hypertensive rats. Antioxidants (Basel). 9:2042020. View Article : Google Scholar : PubMed/NCBI

109 

Zou X, Wang J, Chen C, Tan X, Huang Y, Jose PA, Yang J and Zeng C: Secreted monocyte miR-27a, via mesenteric arterial Mas receptor-eNOS pathway, causes hypertension. Am J Hypertens. 33:31–42. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, Sakurai E, Miura K and Iwao H: Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res. 40:353–360. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Oh J, Matkovich SJ, Riek AE, Bindom SM, Shao JS, Head RD, Barve RA, Sands MS, Carmeliet G, Osei-Owusu P, et al: Macrophage secretion of miR-106b-5p causes renin-dependent hypertension. Nat Commun. 11:47982020. View Article : Google Scholar : PubMed/NCBI

112 

Rodosthenous RS, Kloog I, Colicino E, Zhong J, Herrera LA, Vokonas P, Schwartz J, Baccarelli AA and Prada D: Extracellular vesicle-enriched microRNAs interact in the association between long-term particulate matter and blood pressure in elderly men. Environ Res. 167:640–649. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Ren Y and Zhang H: Emerging role of exosomes in vascular diseases. Front Cardiovasc Med. 10:10909092023. View Article : Google Scholar : PubMed/NCBI

114 

Chen L, Hu L, Li Q, Ma J and Li H: Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation. Acta Biochim Biophys Sin (Shanghai). 51:1233–1241. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Shaheen N, Shaheen A, Diab RA and Desouki MT: MicroRNAs (miRNAs) role in hypertension: Pathogenesis and promising therapeutics. Ann Med Surg (Lond). 86:319–328. 2023. View Article : Google Scholar : PubMed/NCBI

116 

Han J, Kang X, Su Y, Wang J, Cui X, Bian Y and Wu C: Plasma exosomes from patients with coronary artery disease promote atherosclerosis via impairing vascular endothelial junctions. Sci Rep. 14:298132024. View Article : Google Scholar : PubMed/NCBI

117 

Guo B, Zhuang TT, Li CC, Li F, Shan SK, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, et al: MiRNA-132/212 encapsulated by adipose tissue-derived exosomes Worsen atherosclerosis progression. Cardiovasc Diabetol. 23:3312024. View Article : Google Scholar : PubMed/NCBI

118 

Wehbe Z, Wehbe M, Al Khatib A, Dakroub AH, Pintus G, Kobeissy F and Eid AH: Emerging understandings of the role of exosomes in atherosclerosis. J Cell Physiol. 240:e314542025. View Article : Google Scholar : PubMed/NCBI

119 

Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967. 2021. View Article : Google Scholar : PubMed/NCBI

120 

Alidadi M, Hjazi A, Ahmad I, Mahmoudi R, Sarrafha M, Reza Hosseini-Fard S and Ebrahimzade M: Exosomal non-coding RNAs: Emerging therapeutic targets in atherosclerosis. Biochem Pharmacol. 212:1155722023. View Article : Google Scholar : PubMed/NCBI

121 

Li L, Wang Z, Hu X, Wan T, Wu H, Jiang W and Hu R: Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 479:343–350. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Li J, Tan M, Xiang Q, Zhou Z and Yan H: Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb Res. 154:96–105. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Zhong X, Gao W, Wu R, Liu H and Ge J: Dendritic cell exosome-shuttled miRNA146a regulates exosome-induced endothelial cell inflammation by inhibiting IRAK-1: A feedback control mechanism. Mol Med Rep. 20:5315–5323. 2019.PubMed/NCBI

124 

Liu P, Wang S, Wang G, Zhao M, Du F, Li K, Wang L, Wu H, Chen J, Yang Y and Su G: Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation. J Cell Mol Med. 26:5165–5180. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y, Song LL, Jin LS, Zhan H, Zhang H, Li JS and Wen JK: Exosome-Mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther. 25:1279–1294. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Loyer X, Potteaux S, Vion AC, Guérin CL, Boulkroun S, Rautou PE, Ramkhelawon B, Esposito B, Dalloz M, Paul JL, et al: Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 114:434–443. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Masson JJR, Cherry CL, Murphy NM, Sada-Ovalle I, Hussain T, Palchaudhuri R, Martinson J, Landay AL, Billah B, Crowe SM and Palmer CS: Polymorphism rs1385129 Within Glut1 Gene SLC2A1 is linked to poor CD4+ T cell recovery in Antiretroviral-Treated HIV+ individuals. Front Immunol. 9:9002018. View Article : Google Scholar : PubMed/NCBI

128 

Lee MA, Raad N, Song MH, Yoo J, Lee M, Jang SP, Kwak TH, Kook H, Choi EK, Cha TJ, et al: The matricellular protein CCN5 prevents adverse atrial structural and electrical remodelling. J Cell Mol Med. 24:11768–11778. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Stamatikos A, Knight E, Vojtech L, Bi L, Wacker BK, Tang C and Dichek DA: Exosome-mediated transfer of Anti-miR-33a-5p from transduced endothelial cells enhances macrophage and vascular smooth muscle cell cholesterol efflux. Hum Gene Ther. 31:219–232. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Chen F, Li J, She J, Chen T and Yuan Z: Exosomal microRNA-16-5p from macrophage exacerbates atherosclerosis via modulating mothers against decapentaplegic homolog 7. Microvasc Res. 142:1043682022. View Article : Google Scholar : PubMed/NCBI

131 

Wang G, Li Y, Liu Z, Ma X, Li M, Lu Q, Li Y, Lu Z, Niu L, Fan Z and Lei Z: Circular RNA circ_0124644 exacerbates the ox-LDL-induced endothelial injury in human vascular endothelial cells through regulating PAPP-A by acting as a sponge of miR-149-5p. Mol Cell Biochem. 471:51–61. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Lin B, Xie W, Zeng C, Wu X, Chen A, Li H, Jiang R and Li P: Transfer of exosomal microRNA-203-3p from dendritic cells to bone marrow-derived macrophages reduces development of atherosclerosis by downregulating Ctss in mice. Aging (Albany NY). 13:15638–15658. 2021. View Article : Google Scholar : PubMed/NCBI

133 

Adamidis PS, Pantazi D, Moschonas IC, Liberopoulos E and Tselepis AD: Neutrophil extracellular traps (NETs) and atherosclerosis: Does hypolipidemic treatment have an effect? J Cardiovasc Dev Dis. 11:722024.PubMed/NCBI

134 

Sano M, Maejima Y, Nakagama S, Shiheido-Watanabe Y, Tamura N, Hirao K, Isobe M and Sasano T: Neutrophil extracellular traps-mediated Beclin-1 suppression aggravates atherosclerosis by inhibiting macrophage autophagy. Front Cell Dev Biol. 10:8761472022. View Article : Google Scholar : PubMed/NCBI

135 

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A: Neutrophil extracellular traps kill bacteria. Science. 303:1532–1535. 2004. View Article : Google Scholar : PubMed/NCBI

136 

Zhang YG, Song Y, Guo XL, Miao RY, Fu YQ, Miao CF and Zhang C: Exosomes derived from oxLDL-stimulated macrophages induce neutrophil extracellular traps to drive atherosclerosis. Cell Cycle. 18:2674–268. 2019. View Article : Google Scholar : PubMed/NCBI

137 

Wang X, Li D, Chen H, Wei X and Xu X: Expression of Long Noncoding RNA LIPCAR promotes cell proliferation, cell migration, and change in phenotype of vascular smooth muscle cells. Med Sci Monit. 25:7645–7651. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Hu N, Zeng X, Tang F and Xiong S: Exosomal long non-coding RNA LIPCAR derived from oxLDL-treated THP-1 cells regulates the proliferation of human umbilical vein endothelial cells and human vascular smooth muscle cells. Biochem Biophys Res Commun. 575:65–72. 2021. View Article : Google Scholar : PubMed/NCBI

139 

Liu Y, Zhang WL, Gu JJ, Sun YQ, Cui HZ, Bu JQ and Chen ZY: Exosome-mediated miR-106a-3p derived from ox-LDL exposed macrophages accelerated cell proliferation and repressed cell apoptosis of human vascular smooth muscle cells. Eur Rev Med Pharmacol Sci. 24:7039–7050. 2020.PubMed/NCBI

140 

Zhang Z, Yi D, Zhou J, Zheng Y, Gao Z, Hu X, Ying G, Peng X and Wen T: Exosomal LINC01005 derived from oxidized low-density lipoprotein-treated endothelial cells regulates vascular smooth muscle cell phenotypic switch. Biofactors. 46:743–753. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Chen L, Yang W, Guo Y, Chen W, Zheng P, Zeng J and Tong W: Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One. 12:e01854062017. View Article : Google Scholar : PubMed/NCBI

142 

Huang C, Han J, Wu Y, Li S, Wang Q, Lin W and Zhu J: Exosomal MALAT1 derived from oxidized low-density lipoprotein-treated endothelial cells promotes M2 macrophage polarization. Mol Med Rep. 18:509–515. 2018.PubMed/NCBI

143 

Gao H, Wang X, Lin C, An Z, Yu J, Cao H, Fan Y and Liang X: Exosomal MALAT1 derived from ox-LDL-treated endothelial cells induce neutrophil extracellular traps to aggravate atherosclerosis. Biol Chem. 401:367–376. 2020. View Article : Google Scholar : PubMed/NCBI

144 

Wen Y, Chun Y, Lian ZQ, Yong ZW, Lan YM, Huan L, Xi CY, Juan LS, Qing ZW, Jia C and Ji ZH: circRNA-0006896-miR1264-DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol Med Rep. 23:3112021. View Article : Google Scholar : PubMed/NCBI

145 

Lu Z, Tang H, Li S, Zhu S, Li S and Huang Q: Role of circulating exosomes in cerebrovascular diseases: A comprehensive review. Curr Neuropharmacol. 21:1575–1593. 2023. View Article : Google Scholar : PubMed/NCBI

146 

Yu Z, Huang Q, Zhang Q, Wu H and Zhong Z: CircRNAs open a new era in the study of cardiovascular disease (review). Int J Mol Med. 47:49–64. 2021. View Article : Google Scholar : PubMed/NCBI

147 

Zhang P, Liang T, Wang X, Wu T, Xie Z, Yu Y and Yu H: Serum-derived exosomes from patients with coronary artery disease induce endothelial injury and inflammation in human umbilical vein endothelial cells. Int Heart J. 62:396–406. 2021. View Article : Google Scholar : PubMed/NCBI

148 

Zarà M, Campodonico J, Cosentino N, Biondi ML, Amadio P, Milanesi G, Assanelli E, Cerri S, Biggiogera M, Sandrini L, et al: Plasma exosome profile in ST-Elevation myocardial infarction patients with and without Out-of-Hospital cardiac arrest. Int J Mol Sci. 22:80652021. View Article : Google Scholar : PubMed/NCBI

149 

Tong X, Dang X, Liu D, Wang N, Li M, Han J, Zhao J, Wang Y, Huang M, Yang Y, et al: Exosome-derived circ_0001785 delays atherogenesis through the ceRNA network mechanism of miR-513a-5p/TGFBR3. J Nanobiotechnology. 21:3622023. View Article : Google Scholar : PubMed/NCBI

150 

Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, Claeys MJ, Dan GA, Dweck MR, Galbraith M, et al: 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J. 44:3720–382. 2023. View Article : Google Scholar : PubMed/NCBI

151 

Ong SG, Lee WH, Huang M, Dey D, Kodo K, Sanchez-Freire V, Gold JD and Wu JC: Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation. 130 (Suppl 1):S60–S69. 2014. View Article : Google Scholar : PubMed/NCBI

152 

Saparov A, Ogay V, Nurgozhin T, Chen WCW, Mansurov N, Issabekova A and Zhakupova J: Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm Res. 66:739–751. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Li Y, Yang R, Guo B, Zhang H, Zhang H, Liu S and Li Y: Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochem Biophys Res Commun. 514:323–332. 2019. View Article : Google Scholar : PubMed/NCBI

154 

De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S and Zeiher AM: Transcoronary concentration gradients of circulating microRNAs. Circulation. 124:1936–1944. 2011. View Article : Google Scholar : PubMed/NCBI

155 

Peng Y, Zhao JL, Peng ZY, Xu WF and Yu GL: Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis. 11:3172020. View Article : Google Scholar : PubMed/NCBI

156 

Wang W, Zheng Y, Wang M, Yan M, Jiang J and Li Z: Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1. Gene. 690:75–80. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Pan J, Alimujiang M, Chen Q, Shi H and Luo X: Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem. 120:4433–4443. 2019. View Article : Google Scholar : PubMed/NCBI

158 

Li H, Ding J, Liu W, Wang X, Feng Y, Guan H and Chen Z: Plasma exosomes from patients with acute myocardial infarction alleviate myocardial injury by inhibiting ferroptosis through miR-26b-5p/SLC7A11 axis. Life Sci. 322:1216492023. View Article : Google Scholar : PubMed/NCBI

159 

Feng Y, Huang W, Wani M, Yu X and Ashraf M: Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 9:e886852014. View Article : Google Scholar : PubMed/NCBI

160 

Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, Xu X, Hu S and Zheng Z: MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med. 16:2150–2160. 2012. View Article : Google Scholar : PubMed/NCBI

161 

Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, Zhao J, Wang L, Wang Y, Zhong Z, et al: Enhanced Cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl Med. 6:209–222. 2017. View Article : Google Scholar : PubMed/NCBI

162 

Liao B, Dong S, Xu Z, Gao F, Zhang S and Liang R: MiR-19b-3p regulated by BC002059/ABHD10 axis promotes cell apoptosis in myocardial infarction. Biol Direct. 17:202022. View Article : Google Scholar : PubMed/NCBI

163 

Shyu KG, Wang BW, Fang WJ, Pan CM and Lin CM: Hyperbaric oxygen-induced long non-coding RNA MALAT1 exosomes suppress MicroRNA-92a expression in a rat model of acute myocardial infarction. J Cell Mol Med. 24:12945–12954. 2020. View Article : Google Scholar : PubMed/NCBI

164 

Huang P, Wang L, Li Q, Tian X, Xu J, Xu J, Xiong Y, Chen G, Qian H, Jin C, et al: Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res. 116:353–367. 2020. View Article : Google Scholar : PubMed/NCBI

165 

Wang L and Zhang J: Exosomal lncRNA AK139128 Derived from hypoxic cardiomyocytes promotes apoptosis and inhibits cell proliferation in cardiac fibroblasts. Int J Nanomedicine. 15:3363–3376. 2020. View Article : Google Scholar : PubMed/NCBI

166 

Cheng M, Yang J, Zhao X, Zhang E, Zeng Q, Yu Y, Yang L, Wu B, Yi G, Mao X, et al: Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 10:9592019. View Article : Google Scholar : PubMed/NCBI

167 

Huang P, Wang L, Li Q, Tian X, Xu J, Xu J, Xiong Y, Chen G, Qian H, Jin C, et al: Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res. 116:353–367. 2020. View Article : Google Scholar : PubMed/NCBI

168 

Zhang Y, Liu Y, Liu H and Tang WH: Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 9:192019. View Article : Google Scholar : PubMed/NCBI

169 

Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, Wang X, Ma M, Du W, Liu Y, et al: Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 18:e30006032020. View Article : Google Scholar : PubMed/NCBI

170 

Fu Q, Jiang H, Wang Z, Wang X, Chen H, Shen Z, Xiao L, Guo X and Yang T: Injury factors alter miRNAs profiles of exosomes derived from islets and circulation. Aging (Albany NY). 10:3986–3999. 2018. View Article : Google Scholar : PubMed/NCBI

171 

da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, Molkentin JD and De Windt LJ: Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 118:1567–1576. 2008. View Article : Google Scholar : PubMed/NCBI

172 

Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD and Selzman CH: Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA. 105:2111–2116. 2008. View Article : Google Scholar : PubMed/NCBI

173 

Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI

174 

Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI

175 

Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI

176 

Vader P, Mol EA, Pasterkamp G and Schiffelers RM: Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 106:148–156. 2016. View Article : Google Scholar : PubMed/NCBI

177 

O'Brien K, Breyne K, Ughetto S, Laurent LC and Breakefield XO: RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 21:585–606. 2020. View Article : Google Scholar : PubMed/NCBI

178 

Liu Y, Wang M, Yu Y, Li C and Zhang C: Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun Signal. 21:2022023. View Article : Google Scholar : PubMed/NCBI

179 

Das D, Jothimani G, Banerjee A, Dey A, Duttaroy AK and Pathak S: A brief review on recent advances in diagnostic and therapeutic applications of extracellular vesicles in cardiovascular disease. Int J Biochem Cell Biol. 173:1066162024. View Article : Google Scholar : PubMed/NCBI

180 

Li Z, Zhao P, Zhang Y, Wang J, Wang C, Liu Y, Yang G and Yuan L: Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Theranostics. 11:2953–2965. 2021. View Article : Google Scholar : PubMed/NCBI

181 

Huang L, Yang L, Ding Y, Jiang X, Xia Z and You Z: Human umbilical cord mesenchymal stem cells-derived exosomes transfers microRNA-19a to protect cardiomyocytes from acute myocardial infarction by targeting SOX6. Cell Cycle. 19:339–353. 2020. View Article : Google Scholar : PubMed/NCBI

182 

Li Y, Zhou J, Zhang O, Wu X, Guan X, Xue Y, Li S, Zhuang X, Zhou B, Miao G and Zhang L: Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. Int Immunopharmacol. 80:1061562020. View Article : Google Scholar : PubMed/NCBI

183 

Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J and Xu B: Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 115:1205–1216. 2019. View Article : Google Scholar : PubMed/NCBI

184 

Liu Y, Li C, Wu H, Xie X, Sun Y and Dai M: Paeonol attenuated inflammatory response of endothelial cells via stimulating Monocytes-Derived exosomal MicroRNA-223. Front Pharmacol. 9:11052018. View Article : Google Scholar : PubMed/NCBI

185 

Schena GJ, Murray EK, Hildebrand AN, Headrick AL, Yang Y, Koch KA, Kubo H, Eaton D, Johnson J, Berretta R, et al: Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. Am J Physiol Heart Circ Physiol. 321:H1014–H1029. 2021. View Article : Google Scholar : PubMed/NCBI

186 

Lin CM, Wang BW, Pan CM, Fang WJ, Chua SK, Cheng WP and Shyu KG: Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection. Eur J Nutr. 60:4345–4355. 2021. View Article : Google Scholar : PubMed/NCBI

187 

Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L and Wang Y: Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 9:6901–6919. 2019. View Article : Google Scholar : PubMed/NCBI

188 

Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, et al: Evidence for cardiomyocyte renewal in humans. Science. 324:98–102. 2009. View Article : Google Scholar : PubMed/NCBI

189 

Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR and Marbán E: Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 115:896–908. 2007. View Article : Google Scholar : PubMed/NCBI

190 

Teerlink JR, Metra M, Filippatos GS, Davison BA, Bartunek J, Terzic A, Gersh BJ, Povsic TJ, Henry TD, Alexandre B, et al: Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: Results from the congestive heart failure cardiopoietic regenerative therapy (CHART-1) study. Eur J Heart Fail. 19:1520–1529. 2017. View Article : Google Scholar : PubMed/NCBI

191 

Bartunek J, Terzic A, Behfar A and Wijns W: Clinical experience with regenerative therapy in heart failure: Advancing care with cardiopoietic stem cell interventions. Circ Res. 122:1344–1346. 2018. View Article : Google Scholar : PubMed/NCBI

192 

Wang Y, Zhao M, Liu S, Guo J, Lu Y, Cheng J and Liu J: Macrophage-derived extracellular vesicles: Diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 11:9242020. View Article : Google Scholar : PubMed/NCBI

193 

EL Andaloussi S, Mäger I, Breakefield XO and Wood MJ: Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 12:347–357. 2013. View Article : Google Scholar : PubMed/NCBI

194 

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

195 

Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D and Zhang HG: A Novel nanoparticle drug delivery system: The Anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 18:1606–1614. 2010. View Article : Google Scholar : PubMed/NCBI

196 

Sherman LS, Shaker M, Mariotti V and Rameshwar P: Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy. 19:19–27. 2017. View Article : Google Scholar : PubMed/NCBI

197 

Ubanako P, Mirza S, Ruff P and Penny C: Exosome-mediated delivery of siRNA molecules in cancer therapy: Triumphs and challenges. Front Mol Biosci. 11:14479532024. View Article : Google Scholar : PubMed/NCBI

198 

Sun L, Xu R, Sun X, Duan Y, Han Y, Zhao Y, Qian H, Zhu W and Xu W: Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy. 18:413–422. 2016. View Article : Google Scholar : PubMed/NCBI

199 

Fu W, Li T, Chen H, Zhu S and Zhou C: Research progress in Exosome-based nanoscale drug carriers in tumor therapies. Front Oncol. 12:9192792022. View Article : Google Scholar : PubMed/NCBI

200 

Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW and Anchordoquy TJ: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release. 199:145–155. 2015. View Article : Google Scholar : PubMed/NCBI

201 

Frolova L and Li ITS: Targeting capabilities of native and bioengineered extracellular vesicles for drug delivery. Bioengineering (Basel). 9:4962022. View Article : Google Scholar : PubMed/NCBI

202 

Jeyaram A, Lamichhane TN, Wang S, Zou L, Dahal E, Kronstadt SM, Levy D, Parajuli B, Knudsen DR, Chao W and Jay SM: Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles. Mol Ther. 28:975–985. 2020. View Article : Google Scholar : PubMed/NCBI

203 

Perocheau D, Touramanidou L, Gurung S, Gissen P and Baruteau J: Clinical applications for exosomes: Are we there yet? Br J Pharmacol. 178:2375–2392. 2021. View Article : Google Scholar : PubMed/NCBI

204 

Lamparski HG, Methadamani A, Yao JY, Patel S, Hsu DH, Ruegg C and Le PJ: Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 270:211–226. 2002. View Article : Google Scholar : PubMed/NCBI

205 

Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, Jiang X, Hou D, Chen X and Chen Y: Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep. 5:175432015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Zhang S, Li Y, Jin W, Zhou L and Lu J: Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of&nbsp;<br />cardiovascular diseases (Review). Mol Med Rep 33: 5, 2026.
APA
Zhang, Y., Zhang, S., Li, Y., Jin, W., Zhou, L., & Lu, J. (2026). Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of&nbsp;<br />cardiovascular diseases (Review). Molecular Medicine Reports, 33, 5. https://doi.org/10.3892/mmr.2025.13715
MLA
Zhang, Y., Zhang, S., Li, Y., Jin, W., Zhou, L., Lu, J."Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of&nbsp;<br />cardiovascular diseases (Review)". Molecular Medicine Reports 33.1 (2026): 5.
Chicago
Zhang, Y., Zhang, S., Li, Y., Jin, W., Zhou, L., Lu, J."Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of&nbsp;<br />cardiovascular diseases (Review)". Molecular Medicine Reports 33, no. 1 (2026): 5. https://doi.org/10.3892/mmr.2025.13715
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Zhang S, Li Y, Jin W, Zhou L and Lu J: Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of&nbsp;<br />cardiovascular diseases (Review). Mol Med Rep 33: 5, 2026.
APA
Zhang, Y., Zhang, S., Li, Y., Jin, W., Zhou, L., & Lu, J. (2026). Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of&nbsp;<br />cardiovascular diseases (Review). Molecular Medicine Reports, 33, 5. https://doi.org/10.3892/mmr.2025.13715
MLA
Zhang, Y., Zhang, S., Li, Y., Jin, W., Zhou, L., Lu, J."Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of&nbsp;<br />cardiovascular diseases (Review)". Molecular Medicine Reports 33.1 (2026): 5.
Chicago
Zhang, Y., Zhang, S., Li, Y., Jin, W., Zhou, L., Lu, J."Role and relevance of exosome-mediated epigenetic regulation in the pathogenesis, diagnosis and treatment of&nbsp;<br />cardiovascular diseases (Review)". Molecular Medicine Reports 33, no. 1 (2026): 5. https://doi.org/10.3892/mmr.2025.13715
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team