You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
GBD 2019 Viewpoint Collaborators, . Five insights from the global burden of disease study 2019. Lancet. 396:1135–1159. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shah R, Patel T and Freedman JE: Circulating extracellular vesicles in human disease. N Engl J Med. 379:958–966. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Théry C, Witwer KW, Aikawa E, Alcaraz JM, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018. View Article : Google Scholar : PubMed/NCBI | |
|
Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S and Thum T: Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases. Circulation. 143:1426–1449. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Martin-Ventura JL, Roncal C, Orbe J and Blanco-Colio LM: Role of extracellular vesicles as potential diagnostic and/or therapeutic biomarkers in chronic cardiovascular diseases. Front Cell Dev Biol. 10:8138852022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P and Huang H: Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Signal Transduct Target Ther. 7:2002022. View Article : Google Scholar : PubMed/NCBI | |
|
Khan MI, Alsayed RKME, Choudhry H and Ahmad A: Exosome-mediated response to cancer therapy: Modulation of epigenetic machinery. Int J Mol Sci. 23:62222022. View Article : Google Scholar : PubMed/NCBI | |
|
Nasir A, Bullo MMH, Ahmed Z, Imtiaz A, Yaqoob E, Jadoon M, Ahmed H, Afreen A and Yaqoob S: Nutrigenomics: Epigenetics and cancer prevention: A comprehensive review. Crit Rev Food Sci Nutr. 60:1375–1387. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M and Napoli C: Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther. 210:1075142020. View Article : Google Scholar : PubMed/NCBI | |
|
Hulshoff MS, Xu X, Krenning G and Zeisberg EM: Epigenetic regulation of Endothelial-to-mesenchymal transition in chronic heart disease. Arterioscler Thromb Vasc Biol. 38:1986–1996. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chang W and Wang J: Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells. 8:8532019. View Article : Google Scholar : PubMed/NCBI | |
|
Mathieu M, Martin-Jaular L, Lavieu G and Théry C: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shao H, Im H, Castro CM, Breakefield X, Weissleder R and Lee H: New technologies for analysis of extracellular vesicles. Chem Rev. 118:1917–1950. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Raiborg C and Stenmark H: The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 458:445–452. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kalluri R: The biology and function of exosomes in cancer. J Clin Invest. 126:1208–1215. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Poddar S, Kesharwani D and Datta M: Interplay between the miRNome and the epigenetic machinery: Implications in health and disease. J Cell Physiol. 232:2938–2945. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Petrovic N and Ergun S: miRNAs as potential treatment targets and treatment options in cancer. Mol Diagn Ther. 22:157–168. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lou Z, Zhou R, Su Y, Liu C, Ruan W, Jeon CO, Han X, Lin C and Jia B: Minor and major circRNAs in virus and host genomes. J Microbiol. 59:324–331. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang T, Long T, Du T, Chen Y, Dong Y and Huang ZP: Circle the cardiac remodeling with circRNAs. Front Cardiovasc Med. 8:7025862021. View Article : Google Scholar : PubMed/NCBI | |
|
Hall IF, Climent M, Viviani Anselmi C, Papa L, Tragante V, Lambroia L, Farina FM, Kleber ME, März W, Biguori C, et al: rs41291957 controls miR-143 and miR-145 expression and impacts coronary artery disease risk. EMBO Mol Med. 13:e140602021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang F, Chen Q, Wang W, Ling Y, Yan Y and Xia P: Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol. 72:156–166. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hou Z, Qin X, Hu Y, Zhang X, Li G, Wu J, Li J, Sha J, Chen J, Xia J, et al: Longterm Exercise-derived exosomal miR-342-5p: A novel exerkine for cardioprotection. Circ Res. 124:1386–1400. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YJ, Li YS, Wu CC, Wang KC, Huang TC, Chen Z and Chien S: Extracellular MicroRNA-92a mediates endothelial Cell-macrophage communication. Arterioscler Thromb Vasc Biol. 39:2492–2504. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sindi HA, Russomanno G, Satta S, Abdul-Salam VB, Jo KB, Qazi-Chaudhry B, Ainscough AJ, Szulcek R, Jan Bogaard H, Morgan CC, et al: Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat Commun. 11:11852020. View Article : Google Scholar : PubMed/NCBI | |
|
Miao Y, Ajami NE, Huang TS, Lin FM, Lou CH, Wang YT, Li S, Kang J, Munkacsi H, Maurya MR, et al: Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun. 9:2922018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, Zhao WK, Xu S, Fan LH, Zhang XJ, et al: APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun. 6:67792015. View Article : Google Scholar : PubMed/NCBI | |
|
Liang H, Su X, Wu Q, Shan H, Lv L, Yu T, Zhao X, Sun J, Yang R, Zhang L, et al: LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting Mir26a. Autophagy. 16:1077–1091. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Viereck J, Bührke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K, Janssen-Peters H, Batkai S, Ramanujam D, Kraft T, et al: Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J. 41:3462–3474. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Omura J, Habbout K, Shimauchi T, Wu WH, Breuils-Bonnet S, Tremblay E, Martineau S, Nadeau V, Gagnon K, Mazoyer F, et al: Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation. 142:1464–1484. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hua X, Wang YY, Jia P, Xiong Q, Hu Y, Chang Y, Lai S, Xu Y, Zhao Z, Song J, et al: Multi-level transcriptome sequencing identifies COL1A1 as a candidate marker in human heart failure progression. BMC Med. 18:22020. View Article : Google Scholar : PubMed/NCBI | |
|
Mao YY, Wang JQ, Guo XX, Bi Y and Wang CX: Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem Biophys Res Commun. 505:119–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shen L, Hu Y, Lou J, Yin S, Wang W, Wang Y, Xia Y and Wu W: CircRNA-0044073 is upregulated in atherosclerosis and increases the proliferation and invasion of cells by targeting miR-107. Mol Med Rep. 19:3923–3932. 2019.PubMed/NCBI | |
|
Sygitowicz G and Sitkiewicz D: Involvement of circRNAs in the development of heart failure. Int J Mol Sci. 23:141292022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu N, Li C, Xu B, Xiang Y, Jia X, Yuan Z, Wu L, Zhong L and Li Y: Circular RNA mmu_circ_0005019 inhibits fibrosis of cardiac fibroblasts and reverses electrical remodeling of cardiomyocytes. BMC Cardiovasc Disord. 21:3082021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Wang Z, Cheng Q, Wang Z, Lv X, Wang Z and Li N: Circular RNA (circRNA) CDYL induces myocardial regeneration by ceRNA after myocardial infarction. Med Sci Monit. 26:e9231882020.PubMed/NCBI | |
|
Leimena C and Qiu H: Non-Coding RNA in the pathogenesis, progression and treatment of hypertension. Int J Mol Sci. 19:9272018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Yang Z, Zheng B, Zhang XH, Zhang ML, Zhao XS, Zhao HY, Suzuki T and Wen JK: A novel regulatory mechanism of smooth muscle α-Actin expression by NRG-1/circACTA2/miR-548f-5p Axis. Circ Res. 121:628–635. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Zhou Q, Qiao B, Shao B, Hu S, Wang G, Yuan W and Sun Z: Exosome-derived noncoding RNAs: Function, mechanism, and application in tumor angiogenesis. Mol Ther Nucleic Acids. 27:983–997. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Qian Z, Shen Q, Yang X, Qiu Y and Zhang W: The role of extracellular vesicles: An epigenetic view of the cancer microenvironment. Biomed Res Int. 2015:6491612015. View Article : Google Scholar : PubMed/NCBI | |
|
Radhakrishna U, Albayrak S, Zafra R, Baraa A, Vishweswaraiah S, Veerappa AM, Mahishi D, Saiyed N, Mishra NK, Guda C, et al: Placental epigenetics for evaluation of fetal congenital heart defects: Ventricular Septal Defect (VSD). PLoS One. 14:e02002292019. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Geng Q, Chen H, Zhang J, Cao C, Zhang F, Song J, Liu C and Liang W: The potential inhibitory effects of miR-19b on vulnerable plaque formation via the suppression of STAT3 transcriptional activity. Int J Mol Med. 41:859–867. 2018.PubMed/NCBI | |
|
Small EM and Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature. 469:336–342. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, Sun T, Lappalainen P, Yuan WJ, et al: Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci. 123:2444–2452. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, Ivey KN and Srivastava D: microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife. 2:e013232013. View Article : Google Scholar : PubMed/NCBI | |
|
Van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA and Olson EN: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 103:18255–18260. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Benzoni P, Nava L, Giannetti F, Guerini G, Gualdoni A, Bazzini C, Milanesi R, Bucchi A, Baruscotti M and Barbuti A: Dual role of miR-1 in the development and function of sinoatrial cells. J Mol Cell Cardiol. 157:104–112. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB and Zhang C: MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 100:1579–1588. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, et al: MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 122:4190–202. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel T, Jahantigh MN, Lutgens E, et al: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2:ra812009. View Article : Google Scholar : PubMed/NCBI | |
|
Mattei AL, Bailly N and Meissner A: DNA methylation: A historical perspective. Trends Genet. 38:676–707. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Zhu C, Wang J, Yang R and Zhao X: The association between DNA methylation of 6p21.33 and AHRR in blood and coronary heart disease in Chinese population. BMC Cardiovasc Disord. 22:3702022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yang R, Burwinkel B, Breitling LP, Holleczek B, Schöttker B and Brenner H: F2RL3 methylation in blood DNA is a strong predictor of mortality. Int J Epidemiol. 43:1215–1225. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Guarrera S, Fiorito G, Onland-Moret NC, Russo A, Agnoli C, Allione A, Di Gaetano C, Mattiello A, Ricceri F, Chiodini P, et al: Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin Epigenetics. 7:1332015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Song M, Qu J and Liu GH: Epigenetic modifications in cardiovascular aging and diseases. Circ Res. 123:773–786. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura TY, Iwata Y, Arai Y, Komamura K and Wakabayashi S: Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res. 103:891–899. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Ma J, Chi J, Zhang B, Zheng X, Chen J and Liu J: Roles and potential clinical implications of tissue transglutaminase in cardiovascular diseases. Pharmacol Res. 177:1060852022. View Article : Google Scholar : PubMed/NCBI | |
|
Westerman K, Sebastiani P, Jacques P, Liu S, DeMeo D and Ordovás JM: DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clin Epigenetics. 11:1422019. View Article : Google Scholar : PubMed/NCBI | |
|
GTEx Consortium; Laboratory, Data Analysis & Coordinating Center (LDACC)-Analysis Working Group; Statistical Methods groups-Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site-NDRI et al., . Genetic effects on gene expression across human tissues. Nature. 550:204–213. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Walaszczyk E, Luijten M, Spijkerman AMW, Bonder MJ, Lutgers HL, Snieder H, Wolffenbuttel BHR and van Vliet-Ostaptchouk JV: DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: A systematic review and replication in a case-control sample of the Lifelines study. Diabetol. 61:354–368. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, Irvin MR, Marioni R, Shen J, Tsai PC, et al: DNA methylation analysis identifies loci for blood pressure regulation. American. J Human Genet. 101:888–902. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kennel PJ, Liao X, Saha A, Ji R, Zhang X, Castillero E, Brunjes D, Takayama H, Naka Y, Thomas T, et al: Impairment of myocardial glutamine homeostasis induced by suppression of the amino acid carrier SLC1A5 in failing myocardium. Circ Heart Fail. 12:e0063362019. View Article : Google Scholar : PubMed/NCBI | |
|
Fernández-Sanlés A, Sayols-Baixeras S, Curcio S, Subirana I, Marrugat J and Elosua R: DNA Methylation and Age-independent cardiovascular risk, an Epigenome-wide approach: The REGICOR study (REgistre GIroní del COR). Arterioscler Thromb Vasc Biol. 38:645–652. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guarrera S, Fiorito G, Onland-Moret NC, Russo A, Agnoli C, Allione A, Di Gaetano C, Mattiello A, Ricceri F, Chiodini P, et al: Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin Epigenetics. 7:1332015. View Article : Google Scholar : PubMed/NCBI | |
|
Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, Belvisi MG, Brown R, Vineis P and Flanagan JM: Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet. 22:843–851. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, Ramírez-Ruz J, Gomez A, Gonçalves I, Moran S and Esteller M: DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 7:692–700. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T, Colicino E, Waite LL, Joehanes R, Guan W, et al: DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 17:2552016. View Article : Google Scholar : PubMed/NCBI | |
|
Navas-Acien A, Domingo-Relloso A, Subedi P, Riffo-Campos AL, Xia R, Gomez L, Haack K, Goldsmith J, Howard BV, Best LG, et al: Blood DNA methylation and incident coronary heart disease: Evidence from the strong heart study. JAMA Cardiol. 6:1237–1246. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo X, Hu Y, Shen J, Liu X, Wang T, Li L and Li J: Integrative analysis of DNA methylation and gene expression reveals key molecular signatures in acute myocardial infarction. Clin Epigenetics. 14:462022. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshioka J, Imahashi K, Gabel SA, Chutkow WA, Burds AA, Gannon J, Schulze PC, MacGillivray C, London RE, Murphy E and Lee RT: Targeted deletion of thioredoxin-interacting protein regulates cardiac dysfunction in response to pressure overload. Circ Res. 101:1328–1338. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH and Accornero F: The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 139:533–545. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yin T, Wang N, Jia F, Wu Y, Gao L, Zhang J and Hou R: Exosome-based WTAP siRNA delivery ameliorates myocardial ischemia-reperfusion injury. Eur J Pharm Biopharm. 197:1142182024. View Article : Google Scholar : PubMed/NCBI | |
|
Madsen A, Krause J, Höppner G, Hirt MN, Tan WLW, Lim I, Hansen A, Nikolaev VO, Foo RSY, Eschenhagen T and Stenzig J: Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. J Mol Cell Cardiol. 154:115–123. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Madsen A, Höppner G, Krause J, Hirt MN, Laufer SD, Schweizer M, Tan WLW, Mosqueira D, Anene-Nzelu CG, Lim I, et al: An important role for DNMT3A-Mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation. 142:1562–1578. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Schiano C, Balbi C, Burrello J, Ruocco A, Infante T, Fiorito C, Panella S, Barile L, Mauro C, Vassalli G and Napoli C: De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis. 354:41–52. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Poulsen RR, Wang-Hu J, Shi O, Calvo NS, Simmons CS, Rivkees SA and Wendler CC: Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes. FASEB J. 30:3238–3255. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Stenzig J, Schneeberger Y, Löser A, Peters BS, Schaefer A, Zhao RR, Ng SL, Höppner G, Geertz B, Hirt MN, et al: Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol. 120:53–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bomer N, Grote Beverborg N, Hoes MF, Streng KW, Vermeer M, Dokter MM, IJmker J, Anker SD, Cleland JGF, Hillege HL, et al: Selenium and outcome in heart failure. Eur J Heart Fail. 22:1415–1423. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu H, Wang X, Meng X, Kong Y, Li Y, Yang C, Guo Y, Wang X, Yang H, Liu Z and Wang F: Selenium supplementation improved cardiac functions by suppressing DNMT2-Mediated GPX1 Promoter DNA methylation in AGE-induced heart failure. Oxid Med Cell Longev. 2022:54029972022. View Article : Google Scholar : PubMed/NCBI | |
|
Ramachandran B, Stabley JN, Cheng SL, Behrmann AS, Gay A, Li L, Mead M, Kozlitina J, Lemoff A, Mirzaei H, et al: A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells. J Biol Chem. 293:7942–7968. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Putra SED, Reichetzeder C, von Websky K, Neuber C, Halle H, Kleuser B, Krämer BK and Hocher B: Association between placental global DNA methylation and blood pressure during human pregnancy. J Hypertens. 40:1002–1009. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, Hochberg FH, Breakefield XO, Lee H, Weissleder R, et al: Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 6:69992015. View Article : Google Scholar : PubMed/NCBI | |
|
Yu W, Zhang L, Wei Q and Shao A: O6-Methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in glioma chemotherapy. Front Oncol. 9:15472019. View Article : Google Scholar : PubMed/NCBI | |
|
Cao YL, Zhuang T, Xing BH, Li N and Li Q: Exosomal DNMT1 mediates cisplatin resistance in ovarian cancer. Cell Biochem Funct. 35:296–303. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen M and Wong CM: The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 19:442020. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, et al: METTL3 facilitates tumor progression via an mA-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 18:1122019. View Article : Google Scholar : PubMed/NCBI | |
|
Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al: The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 23:1369–1376. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Han M, Liu Z, Xu Y, Liu X, Wang D, Li F, Wang Y and Bi J: Abnormality of m6A mRNA methylation is involved in Alzheimer's disease. Front Neurosci. 14:982020. View Article : Google Scholar : PubMed/NCBI | |
|
Fang J, Wu X, He J, Zhang H, Chen X, Zhang H, Novakovic B, Qi H and Yu X: RBM15 suppresses hepatic insulin sensitivity of offspring of gestational diabetes mellitus mice via m6A-mediated regulation of CLDN4. Mol Med. 29:232023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang X, Huang M, Luo A, Liu S, Cai M, Li W, Yuan S, Zheng Z, Liu X and Tang C: METTL3 facilitates kidney injury through promoting IRF4-mediated plasma cell infiltration via an m6A-dependent manner in systemic lupus erythematosus. BMC Med. 22:5112024. View Article : Google Scholar : PubMed/NCBI | |
|
Henning RJ: Cardiovascular exosomes and MicroRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res. 14:195–212. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Boulanger CM, Loyer X, Rautou PE and Amabile N: Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. 14:259–272. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Waldenström A and Ronquist G: Role of exosomes in myocardial remodeling. Circ Res. 114:315–324. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lao KH, Zeng L and Xu Q: Endothelial and smooth muscle cell transformation in atherosclerosis. Curr Opin Lipidol. 26:449–456. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Gao D, Wang S, Lin H, Wang Y and Xu W: Exosomal microRNA-1246 from human umbilical cord mesenchymal stem cells potentiates myocardial angiogenesis in chronic heart failure. Cell Biol Int. 45:2211–2225. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu T, Chen Y, Du Y, Tao J, Li W, Zhou Z and Yang Z: Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J Thorac Dis. 10:6211–6220. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu T, Chen Y, Du Y, Tao J, Zhou Z and Yang Z: Serum exosomal MiR-92b-5p as a potential biomarker for acute heart failure caused by dilated cardiomyopathy. Cell Physiol Biochem. 46:1939–1950. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Liu J, Xu B, Liu YL and Liu Z: Reduced exosome miR-425 and miR-744 in the plasma represents the progression of fibrosis and heart failure. Kaohsiung J Med Sci. 34:626–633. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Hang JZ, Zhang N and Liu G: Clinical significance of MiR-27a expression in serum exosomes in patients with heart failure. Cell Mol Biol (Noisy-le-grand). 67:324–331. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Natrus L, Labudzynskyi D, Muzychenko P, Chernovol P and Klys Y: Plasma-derived exosomes implement miR-126-associated regulation of cytokines secretion in PBMCs of CHF patients in vitro. Acta Biomed. 93:e20220662022.PubMed/NCBI | |
|
Fuchs FD and Whelton PK: High blood pressure and cardiovascular disease. Hypertension. 75:285–292. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bress AP, Colantonio LD, Cooper RS, Kramer H, Booth JN III, Odden MC, Bibbins-Domingo K, Shimbo D, Whelton PK, Levitan EB, et al: Potential cardiovascular disease events prevented with adoption of the 2017 American college of Cardiology/American heart association blood pressure guideline. Circulation. 139:24–36. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gan L, Guo X, Dong S and Sun C: The biology of exosomes and exosomal non-coding RNAs in cardiovascular diseases. Front Pharmacol. 16:15293752025. View Article : Google Scholar : PubMed/NCBI | |
|
Bhaskara M, Anjorin O and Wang M: Mesenchymal stem Cell-derived exosomal microRNAs in cardiac regeneration. Cells. 12:28152023. View Article : Google Scholar : PubMed/NCBI | |
|
Jayaseelan VP and Arumugam P: Exosomal microRNAs as a promising theragnostic tool for essential hypertension. Hypertens Res. 43:74–75. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ren XS, Tong Y, Qiu Y, Ye C, Wu N, Xiong XQ, Wang JJ, Han Y, Zhou YB, Zhang F, et al: MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles. 9:16987952019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu N, Ye C, Zheng F, Wan GW, Wu LL, Chen Q, Li YH, Kang YM and Zhu GQ: MiR155-5p inhibits cell migration and oxidative stress in vascular smooth muscle cells of spontaneously hypertensive rats. Antioxidants (Basel). 9:2042020. View Article : Google Scholar : PubMed/NCBI | |
|
Zou X, Wang J, Chen C, Tan X, Huang Y, Jose PA, Yang J and Zeng C: Secreted monocyte miR-27a, via mesenteric arterial Mas receptor-eNOS pathway, causes hypertension. Am J Hypertens. 33:31–42. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, Sakurai E, Miura K and Iwao H: Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res. 40:353–360. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Oh J, Matkovich SJ, Riek AE, Bindom SM, Shao JS, Head RD, Barve RA, Sands MS, Carmeliet G, Osei-Owusu P, et al: Macrophage secretion of miR-106b-5p causes renin-dependent hypertension. Nat Commun. 11:47982020. View Article : Google Scholar : PubMed/NCBI | |
|
Rodosthenous RS, Kloog I, Colicino E, Zhong J, Herrera LA, Vokonas P, Schwartz J, Baccarelli AA and Prada D: Extracellular vesicle-enriched microRNAs interact in the association between long-term particulate matter and blood pressure in elderly men. Environ Res. 167:640–649. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ren Y and Zhang H: Emerging role of exosomes in vascular diseases. Front Cardiovasc Med. 10:10909092023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Hu L, Li Q, Ma J and Li H: Exosome-encapsulated miR-505 from ox-LDL-treated vascular endothelial cells aggravates atherosclerosis by inducing NET formation. Acta Biochim Biophys Sin (Shanghai). 51:1233–1241. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shaheen N, Shaheen A, Diab RA and Desouki MT: MicroRNAs (miRNAs) role in hypertension: Pathogenesis and promising therapeutics. Ann Med Surg (Lond). 86:319–328. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Kang X, Su Y, Wang J, Cui X, Bian Y and Wu C: Plasma exosomes from patients with coronary artery disease promote atherosclerosis via impairing vascular endothelial junctions. Sci Rep. 14:298132024. View Article : Google Scholar : PubMed/NCBI | |
|
Guo B, Zhuang TT, Li CC, Li F, Shan SK, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, et al: MiRNA-132/212 encapsulated by adipose tissue-derived exosomes Worsen atherosclerosis progression. Cardiovasc Diabetol. 23:3312024. View Article : Google Scholar : PubMed/NCBI | |
|
Wehbe Z, Wehbe M, Al Khatib A, Dakroub AH, Pintus G, Kobeissy F and Eid AH: Emerging understandings of the role of exosomes in atherosclerosis. J Cell Physiol. 240:e314542025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Alidadi M, Hjazi A, Ahmad I, Mahmoudi R, Sarrafha M, Reza Hosseini-Fard S and Ebrahimzade M: Exosomal non-coding RNAs: Emerging therapeutic targets in atherosclerosis. Biochem Pharmacol. 212:1155722023. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Wang Z, Hu X, Wan T, Wu H, Jiang W and Hu R: Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 479:343–350. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Tan M, Xiang Q, Zhou Z and Yan H: Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb Res. 154:96–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong X, Gao W, Wu R, Liu H and Ge J: Dendritic cell exosome-shuttled miRNA146a regulates exosome-induced endothelial cell inflammation by inhibiting IRAK-1: A feedback control mechanism. Mol Med Rep. 20:5315–5323. 2019.PubMed/NCBI | |
|
Liu P, Wang S, Wang G, Zhao M, Du F, Li K, Wang L, Wu H, Chen J, Yang Y and Su G: Macrophage-derived exosomal miR-4532 promotes endothelial cells injury by targeting SP1 and NF-κB P65 signalling activation. J Cell Mol Med. 26:5165–5180. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y, Song LL, Jin LS, Zhan H, Zhang H, Li JS and Wen JK: Exosome-Mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther. 25:1279–1294. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Loyer X, Potteaux S, Vion AC, Guérin CL, Boulkroun S, Rautou PE, Ramkhelawon B, Esposito B, Dalloz M, Paul JL, et al: Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 114:434–443. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Masson JJR, Cherry CL, Murphy NM, Sada-Ovalle I, Hussain T, Palchaudhuri R, Martinson J, Landay AL, Billah B, Crowe SM and Palmer CS: Polymorphism rs1385129 Within Glut1 Gene SLC2A1 is linked to poor CD4+ T cell recovery in Antiretroviral-Treated HIV+ individuals. Front Immunol. 9:9002018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee MA, Raad N, Song MH, Yoo J, Lee M, Jang SP, Kwak TH, Kook H, Choi EK, Cha TJ, et al: The matricellular protein CCN5 prevents adverse atrial structural and electrical remodelling. J Cell Mol Med. 24:11768–11778. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stamatikos A, Knight E, Vojtech L, Bi L, Wacker BK, Tang C and Dichek DA: Exosome-mediated transfer of Anti-miR-33a-5p from transduced endothelial cells enhances macrophage and vascular smooth muscle cell cholesterol efflux. Hum Gene Ther. 31:219–232. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen F, Li J, She J, Chen T and Yuan Z: Exosomal microRNA-16-5p from macrophage exacerbates atherosclerosis via modulating mothers against decapentaplegic homolog 7. Microvasc Res. 142:1043682022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Li Y, Liu Z, Ma X, Li M, Lu Q, Li Y, Lu Z, Niu L, Fan Z and Lei Z: Circular RNA circ_0124644 exacerbates the ox-LDL-induced endothelial injury in human vascular endothelial cells through regulating PAPP-A by acting as a sponge of miR-149-5p. Mol Cell Biochem. 471:51–61. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin B, Xie W, Zeng C, Wu X, Chen A, Li H, Jiang R and Li P: Transfer of exosomal microRNA-203-3p from dendritic cells to bone marrow-derived macrophages reduces development of atherosclerosis by downregulating Ctss in mice. Aging (Albany NY). 13:15638–15658. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Adamidis PS, Pantazi D, Moschonas IC, Liberopoulos E and Tselepis AD: Neutrophil extracellular traps (NETs) and atherosclerosis: Does hypolipidemic treatment have an effect? J Cardiovasc Dev Dis. 11:722024.PubMed/NCBI | |
|
Sano M, Maejima Y, Nakagama S, Shiheido-Watanabe Y, Tamura N, Hirao K, Isobe M and Sasano T: Neutrophil extracellular traps-mediated Beclin-1 suppression aggravates atherosclerosis by inhibiting macrophage autophagy. Front Cell Dev Biol. 10:8761472022. View Article : Google Scholar : PubMed/NCBI | |
|
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A: Neutrophil extracellular traps kill bacteria. Science. 303:1532–1535. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang YG, Song Y, Guo XL, Miao RY, Fu YQ, Miao CF and Zhang C: Exosomes derived from oxLDL-stimulated macrophages induce neutrophil extracellular traps to drive atherosclerosis. Cell Cycle. 18:2674–268. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Li D, Chen H, Wei X and Xu X: Expression of Long Noncoding RNA LIPCAR promotes cell proliferation, cell migration, and change in phenotype of vascular smooth muscle cells. Med Sci Monit. 25:7645–7651. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hu N, Zeng X, Tang F and Xiong S: Exosomal long non-coding RNA LIPCAR derived from oxLDL-treated THP-1 cells regulates the proliferation of human umbilical vein endothelial cells and human vascular smooth muscle cells. Biochem Biophys Res Commun. 575:65–72. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Zhang WL, Gu JJ, Sun YQ, Cui HZ, Bu JQ and Chen ZY: Exosome-mediated miR-106a-3p derived from ox-LDL exposed macrophages accelerated cell proliferation and repressed cell apoptosis of human vascular smooth muscle cells. Eur Rev Med Pharmacol Sci. 24:7039–7050. 2020.PubMed/NCBI | |
|
Zhang Z, Yi D, Zhou J, Zheng Y, Gao Z, Hu X, Ying G, Peng X and Wen T: Exosomal LINC01005 derived from oxidized low-density lipoprotein-treated endothelial cells regulates vascular smooth muscle cell phenotypic switch. Biofactors. 46:743–753. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Yang W, Guo Y, Chen W, Zheng P, Zeng J and Tong W: Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One. 12:e01854062017. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Han J, Wu Y, Li S, Wang Q, Lin W and Zhu J: Exosomal MALAT1 derived from oxidized low-density lipoprotein-treated endothelial cells promotes M2 macrophage polarization. Mol Med Rep. 18:509–515. 2018.PubMed/NCBI | |
|
Gao H, Wang X, Lin C, An Z, Yu J, Cao H, Fan Y and Liang X: Exosomal MALAT1 derived from ox-LDL-treated endothelial cells induce neutrophil extracellular traps to aggravate atherosclerosis. Biol Chem. 401:367–376. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wen Y, Chun Y, Lian ZQ, Yong ZW, Lan YM, Huan L, Xi CY, Juan LS, Qing ZW, Jia C and Ji ZH: circRNA-0006896-miR1264-DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol Med Rep. 23:3112021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Z, Tang H, Li S, Zhu S, Li S and Huang Q: Role of circulating exosomes in cerebrovascular diseases: A comprehensive review. Curr Neuropharmacol. 21:1575–1593. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Z, Huang Q, Zhang Q, Wu H and Zhong Z: CircRNAs open a new era in the study of cardiovascular disease (review). Int J Mol Med. 47:49–64. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang P, Liang T, Wang X, Wu T, Xie Z, Yu Y and Yu H: Serum-derived exosomes from patients with coronary artery disease induce endothelial injury and inflammation in human umbilical vein endothelial cells. Int Heart J. 62:396–406. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zarà M, Campodonico J, Cosentino N, Biondi ML, Amadio P, Milanesi G, Assanelli E, Cerri S, Biggiogera M, Sandrini L, et al: Plasma exosome profile in ST-Elevation myocardial infarction patients with and without Out-of-Hospital cardiac arrest. Int J Mol Sci. 22:80652021. View Article : Google Scholar : PubMed/NCBI | |
|
Tong X, Dang X, Liu D, Wang N, Li M, Han J, Zhao J, Wang Y, Huang M, Yang Y, et al: Exosome-derived circ_0001785 delays atherogenesis through the ceRNA network mechanism of miR-513a-5p/TGFBR3. J Nanobiotechnology. 21:3622023. View Article : Google Scholar : PubMed/NCBI | |
|
Byrne RA, Rossello X, Coughlan JJ, Barbato E, Berry C, Chieffo A, Claeys MJ, Dan GA, Dweck MR, Galbraith M, et al: 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J. 44:3720–382. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ong SG, Lee WH, Huang M, Dey D, Kodo K, Sanchez-Freire V, Gold JD and Wu JC: Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation. 130 (Suppl 1):S60–S69. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Saparov A, Ogay V, Nurgozhin T, Chen WCW, Mansurov N, Issabekova A and Zhakupova J: Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm Res. 66:739–751. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Yang R, Guo B, Zhang H, Zhang H, Liu S and Li Y: Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochem Biophys Res Commun. 514:323–332. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S and Zeiher AM: Transcoronary concentration gradients of circulating microRNAs. Circulation. 124:1936–1944. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Peng Y, Zhao JL, Peng ZY, Xu WF and Yu GL: Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis. 11:3172020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Zheng Y, Wang M, Yan M, Jiang J and Li Z: Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1. Gene. 690:75–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Pan J, Alimujiang M, Chen Q, Shi H and Luo X: Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem. 120:4433–4443. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Ding J, Liu W, Wang X, Feng Y, Guan H and Chen Z: Plasma exosomes from patients with acute myocardial infarction alleviate myocardial injury by inhibiting ferroptosis through miR-26b-5p/SLC7A11 axis. Life Sci. 322:1216492023. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Huang W, Wani M, Yu X and Ashraf M: Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 9:e886852014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, Xu X, Hu S and Zheng Z: MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med. 16:2150–2160. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, Zhao J, Wang L, Wang Y, Zhong Z, et al: Enhanced Cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl Med. 6:209–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liao B, Dong S, Xu Z, Gao F, Zhang S and Liang R: MiR-19b-3p regulated by BC002059/ABHD10 axis promotes cell apoptosis in myocardial infarction. Biol Direct. 17:202022. View Article : Google Scholar : PubMed/NCBI | |
|
Shyu KG, Wang BW, Fang WJ, Pan CM and Lin CM: Hyperbaric oxygen-induced long non-coding RNA MALAT1 exosomes suppress MicroRNA-92a expression in a rat model of acute myocardial infarction. J Cell Mol Med. 24:12945–12954. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang P, Wang L, Li Q, Tian X, Xu J, Xu J, Xiong Y, Chen G, Qian H, Jin C, et al: Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res. 116:353–367. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L and Zhang J: Exosomal lncRNA AK139128 Derived from hypoxic cardiomyocytes promotes apoptosis and inhibits cell proliferation in cardiac fibroblasts. Int J Nanomedicine. 15:3363–3376. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng M, Yang J, Zhao X, Zhang E, Zeng Q, Yu Y, Yang L, Wu B, Yi G, Mao X, et al: Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 10:9592019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang P, Wang L, Li Q, Tian X, Xu J, Xu J, Xiong Y, Chen G, Qian H, Jin C, et al: Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res. 116:353–367. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liu Y, Liu H and Tang WH: Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 9:192019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, Wang X, Ma M, Du W, Liu Y, et al: Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 18:e30006032020. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Q, Jiang H, Wang Z, Wang X, Chen H, Shen Z, Xiao L, Guo X and Yang T: Injury factors alter miRNAs profiles of exosomes derived from islets and circulation. Aging (Albany NY). 10:3986–3999. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, Molkentin JD and De Windt LJ: Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 118:1567–1576. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD and Selzman CH: Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA. 105:2111–2116. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Vader P, Mol EA, Pasterkamp G and Schiffelers RM: Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 106:148–156. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
O'Brien K, Breyne K, Ughetto S, Laurent LC and Breakefield XO: RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 21:585–606. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang M, Yu Y, Li C and Zhang C: Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun Signal. 21:2022023. View Article : Google Scholar : PubMed/NCBI | |
|
Das D, Jothimani G, Banerjee A, Dey A, Duttaroy AK and Pathak S: A brief review on recent advances in diagnostic and therapeutic applications of extracellular vesicles in cardiovascular disease. Int J Biochem Cell Biol. 173:1066162024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Zhao P, Zhang Y, Wang J, Wang C, Liu Y, Yang G and Yuan L: Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Theranostics. 11:2953–2965. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Yang L, Ding Y, Jiang X, Xia Z and You Z: Human umbilical cord mesenchymal stem cells-derived exosomes transfers microRNA-19a to protect cardiomyocytes from acute myocardial infarction by targeting SOX6. Cell Cycle. 19:339–353. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhou J, Zhang O, Wu X, Guan X, Xue Y, Li S, Zhuang X, Zhou B, Miao G and Zhang L: Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. Int Immunopharmacol. 80:1061562020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J and Xu B: Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 115:1205–1216. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Li C, Wu H, Xie X, Sun Y and Dai M: Paeonol attenuated inflammatory response of endothelial cells via stimulating Monocytes-Derived exosomal MicroRNA-223. Front Pharmacol. 9:11052018. View Article : Google Scholar : PubMed/NCBI | |
|
Schena GJ, Murray EK, Hildebrand AN, Headrick AL, Yang Y, Koch KA, Kubo H, Eaton D, Johnson J, Berretta R, et al: Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. Am J Physiol Heart Circ Physiol. 321:H1014–H1029. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin CM, Wang BW, Pan CM, Fang WJ, Chua SK, Cheng WP and Shyu KG: Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection. Eur J Nutr. 60:4345–4355. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L and Wang Y: Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 9:6901–6919. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, et al: Evidence for cardiomyocyte renewal in humans. Science. 324:98–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR and Marbán E: Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 115:896–908. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Teerlink JR, Metra M, Filippatos GS, Davison BA, Bartunek J, Terzic A, Gersh BJ, Povsic TJ, Henry TD, Alexandre B, et al: Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: Results from the congestive heart failure cardiopoietic regenerative therapy (CHART-1) study. Eur J Heart Fail. 19:1520–1529. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bartunek J, Terzic A, Behfar A and Wijns W: Clinical experience with regenerative therapy in heart failure: Advancing care with cardiopoietic stem cell interventions. Circ Res. 122:1344–1346. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhao M, Liu S, Guo J, Lu Y, Cheng J and Liu J: Macrophage-derived extracellular vesicles: Diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 11:9242020. View Article : Google Scholar : PubMed/NCBI | |
|
EL Andaloussi S, Mäger I, Breakefield XO and Wood MJ: Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 12:347–357. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D and Zhang HG: A Novel nanoparticle drug delivery system: The Anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 18:1606–1614. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sherman LS, Shaker M, Mariotti V and Rameshwar P: Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy. 19:19–27. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ubanako P, Mirza S, Ruff P and Penny C: Exosome-mediated delivery of siRNA molecules in cancer therapy: Triumphs and challenges. Front Mol Biosci. 11:14479532024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Xu R, Sun X, Duan Y, Han Y, Zhao Y, Qian H, Zhu W and Xu W: Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy. 18:413–422. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fu W, Li T, Chen H, Zhu S and Zhou C: Research progress in Exosome-based nanoscale drug carriers in tumor therapies. Front Oncol. 12:9192792022. View Article : Google Scholar : PubMed/NCBI | |
|
Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW and Anchordoquy TJ: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release. 199:145–155. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Frolova L and Li ITS: Targeting capabilities of native and bioengineered extracellular vesicles for drug delivery. Bioengineering (Basel). 9:4962022. View Article : Google Scholar : PubMed/NCBI | |
|
Jeyaram A, Lamichhane TN, Wang S, Zou L, Dahal E, Kronstadt SM, Levy D, Parajuli B, Knudsen DR, Chao W and Jay SM: Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles. Mol Ther. 28:975–985. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Perocheau D, Touramanidou L, Gurung S, Gissen P and Baruteau J: Clinical applications for exosomes: Are we there yet? Br J Pharmacol. 178:2375–2392. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lamparski HG, Methadamani A, Yao JY, Patel S, Hsu DH, Ruegg C and Le PJ: Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 270:211–226. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, Jiang X, Hou D, Chen X and Chen Y: Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep. 5:175432015. View Article : Google Scholar : PubMed/NCBI |