Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis 

  • Authors:
    • Jingyuan Gao
    • Hao Yang
    • Qiangqiang Lian
    • Yunpeng Hu
    • Zhou Yang
    • Lei Xing
    • Ying Xue
    • Xiaoli Hou
    • Faming Tian
    • Dong Hu
  • View Affiliations / Copyright

    Affiliations: Department of General Practice Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China, School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China, Department of General Practice Medicine, Xiangshan Red Cross Taiwan Compatriot Hospital Medical and Health Group, Ningbo, Zhejiang 315600, P.R. China
    Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 13
    |
    Published online on: October 24, 2025
       https://doi.org/10.3892/mmr.2025.13723
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic osteoporosis (DOP) is on the rise globally, presenting a notable healthcare challenge due to its complex pathogenesis and high fracture risk. Currently, available treatments have limitations, highlighting an urgent need for novel therapeutic approaches. Zinc carnosine (ZnC), a compound formed by the chelation of carnosine with trace‑element zinc ions, has shown potential in inhibiting the accumulation of advanced glycation end products in the bone microenvironment, yet its effects on DOP remain under‑explored. The present study aimed to examine the effects of ZnC on bone loss in a mouse model of DOP. A total of 24 male mice, aged 6 weeks, were assigned to control, type 2 diabetes mellitus (T2DM) and ZnC intervention groups. DOP was induced using a high‑fat diet combined with streptozotocin (STZ). Following 8 weeks of treatment with ZnC at a dosage of 100 mg/kg/day, bone parameters were evaluated using micro‑computed tomography (micro‑CT), histological staining and molecular analyses. The micro‑CT analysis revealed that bone mineral density (BMD), bone volume/tissue volume (BV/TV), number of bone trabeculae (Tb.N), thickness of cortical bone (Ct.Th) and area of cortical bone (Ct.Ar) were significantly lower in the T2DM model group compared with that in the control group (P<0.05). Conversely, bone trabecular separation (Tb.Sp) structural model index (SMI) and porosity of cortical bone (Ct.Po) were significantly higher in the T2DM model group compared with those in the control group (P<0.05). The ZnC intervention group showed significant increases in BMD, BV/TV, Tb.N, Ct.Th and Ct.Ar, and significant decreases in Tb.Sp compared with the T2DM model group. Tartrate‑resistant acid phosphatase staining demonstrated a notable reduction in osteoclast numbers in the ZnC intervention group relative to the T2DM model group. Furthermore, immunohistochemical staining and reverse transcription‑quantitative PCR indicated an upregulation of osteoblastic markers, including type Ⅰ collagen, osteocalcin and osteoprotegerin, alongside a downregulation of the osteoclastic marker receptor activator of nuclear factor‑κB ligand in the ZnC group. In conclusion, ZnC supplementation was shown to mitigate bone loss in DOP by promoting bone formation and reducing bone resorption. This was evidenced by enhancements in bone microstructure, a reduction in osteoclast activity and favorable changes in bone metabolism markers. These findings underscore the potential of ZnC as a therapeutic option for bone diseases associated with diabetes.
View Figures

Figure 1

Schematic diagram of experimental
modeling. Ctrl, control; T2DM, type 2 diabetes mellitus; ZnC, zinc
carnosine; STZ, streptozotocin; FBG, fasting blood glucose; w,
week; d, day.

Figure 2

Results of random blood glucose
determination in each group of mice. ***P<0.001. Ctrl, control;
T2DM, type 2 diabetes mellitus; ZnC, zinc carnosine; FBG, fasting
blood glucose.

Figure 3

Three-dimensional image
reconstruction of mouse tibia by micro-CT. (A-C) Trabecular
reconstruction images of each group and (D-F) cortical bone
reconstruction images of each group. (A and D) Control group, (B
and E) type 2 diabetes mellitus model group (C and F) zinc
carnosine intervention group.

Figure 4

Analysis of tibial BMD and bone
microstructure parameters in mice. *P<0.05, **P<0.01 and
***P<0.001 vs. Ctrl group; #P<0.05 and
##P<0.01 vs. T2DM model group. (A) BMD, bone mineral
density; (B) BV/TV, bone volume/tissue volume; (C) SMI, structural
model index; (D) Tb.N, number of bone trabeculae; (E) Tb.Th, bone
trabecular thickness; (F) Tb.Sp, bone trabecular separation; (G)
Ct.Th, thickness of cortical bone; (H) Ct.Ar, area of cortical
bone; (I) Ct.Po, porosity of cortical bone. Ctrl, control; T2DM,
type 2 diabetes mellitus; ZnC, zinc carnosine.

Figure 5

Biomechanical indexes of mice in each
group. (A) Max-Load and (B) Max-Stress. *P<0.05 and
****P<0.0001 vs. Ctrl group; ###P<0.001 vs. T2DM
model group. Ctrl, control; T2DM, type 2 diabetes mellitus; ZnC,
zinc carnosine; Max-Load, maximum load; Max-Stress, maximum
stress.

Figure 6

Hematoxylin and eosin staining of
tibia in mice of each group (×100 magnification). (A) Control
group, (B) type 2 diabetes mellitus model group and (C) zinc
carnosine intervention group. Scale bar, 200 µm.

Figure 7

Tartrate-resistant acid phosphatase
staining of tibia of mice in each group after 8 weeks of ZnC
intervention (×100 magnification). (A) Ctrl group, (B) T2DM model
group and (C) ZnC intervention group. The osteoclasts were obtained
by counting the number of TRAP-positive cells (N. Trap+). Scale
bar, 200 µm. ***P<0.001 vs. Ctrl group; ##P<0.01
vs. T2DM model group. Ctrl, control; T2DM, type 2 diabetes
mellitus; ZnC, zinc carnosine; N.OC, osteoclast number; BS, bone
surface.

Figure 8

COL-I, OCN, OPG and RANKL protein
expression levels in each group after 8 weeks of intervention. (A)
COL-I, OCN, OPG and RANKL protein expression level of each
treatment group. Average optical density of (B) COL-I, (C) OCN, (D)
OPG and (E) RANKL in each group. *P<0.05 vs. Ctrl group;
#P<0.05 vs. T2DM model group. COL-I, type I collagen;
OCN, osteocalcin; OPG, osteoprotegerin; RANKL, receptor activator
of nuclear factor-κB ligand; Ctrl, control; T2DM, type 2 diabetes
mellitus; ZnC, zinc carnosine; AOD, average optical density
value.

Figure 9

mRNA expression levels of bone
metabolism-related factors. *P<0.05 and ***P<0.01 vs. Ctrl
group; ##P<0.01 vs. T2DM model group. (A) Ctrl,
control; (B) T2DM, type 2 diabetes mellitus; (C) ZnC, zinc
carnosine. OCN, osteocalcin; OPG, osteoprotegerin; RANKL, receptor
activator of nuclear factor-κB ligand.
View References

1 

Gao HX, Regier EE and Close KL: International diabetes federation world diabetes Congress 2015. J Diabetes. 8:300–302. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Carballido-Gamio J: Imaging techniques to study diabetic bone disease. Curr Opin Endocrinol Diabetes Obes. 29:350–360. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Liu X, Chen F, Liu L and Zhang Q: Prevalence of osteoporosis in patients with diabetes mellitus: A systematic review and meta-analysis of observational studies. BMC Endocr Disord. 23:12023. View Article : Google Scholar : PubMed/NCBI

4 

Schacter GI and Leslie WD: Diabetes and osteoporosis: Part I, epidemiology and pathophysiology. Endocrinol Metab Clin North Am. 50:275–228. 20215. View Article : Google Scholar : PubMed/NCBI

5 

Vilaca T, Schini M, Harnan S, Sutton A, Poku E, Allen IE, Cummings SR and Eastell R: The risk of hip and non-vertebral fractures in type 1 and type 2 diabetes: A systematic review and meta-analysis update. Bone. 137:1154572020. View Article : Google Scholar : PubMed/NCBI

6 

Asadipooya K and UY EM: Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: Review of the literature. J Endocr Soc. 3:1799–1818. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Yamagishi S: Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets. 12:2096–2102. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Lee HS and Hwang JS: Impact of type 2 diabetes mellitus and antidiabetic medications on bone metabolism. Curr Diab Rep. 20:782020. View Article : Google Scholar : PubMed/NCBI

9 

Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV and Ferrari SL; IOF Bone and Diabetes Working Group, : Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 13:208–219. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Jankovic J: Complications and limitations of drug therapy for Parkinson's disease. Neurology. 55 (12 Suppl 6):S2–S6. 2000.PubMed/NCBI

11 

Pietschmann P, Patsch JM and Schernthaner G: Diabetes and bone. Horm Metab Res. 42:763–768. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Holstege A: Long-term drug treatments to improve prognosis of patients with liver cirrhosis and to prevent complications due to portal hypertension. Z Gastroenterol. 57:983–996. 2019.(In German). PubMed/NCBI

13 

Huang KC, Chuang PY, Yang TY, Tsai YH, Li YY and Chang SF: Diabetic rats induced using a high-fat diet and low-dose streptozotocin treatment exhibit gut microbiota dysbiosis and osteoporotic bone pathologies. Nutrients. 16:12202024. View Article : Google Scholar : PubMed/NCBI

14 

Boyar H, Turan B and Severcan F: FTIR spectroscopic investigation of mineral structure of streptozotocin induced diabetic rat femur and tibia. Spectroscopy. 17:627–633. 2003. View Article : Google Scholar

15 

Lu R, Zheng Z, Yin Y and Jiang Z: Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin. Food Nutr Res. 64:10.29219/fnr.v64.3666. 2020. View Article : Google Scholar

16 

Wu X, Gong H, Hu X, Shi P, Cen H and Li C: Effect of verapamil on bone mass, microstructure and mechanical properties in type 2 diabetes mellitus rats. BMC Musculoskelet Disord. 23:3632022. View Article : Google Scholar : PubMed/NCBI

17 

Ghodsi R and Kheirouri S: Carnosine and advanced glycation end products: A systematic review. Amino Acids. 50:1177–1186. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Corona C, Frazzini V, Silvestri E, Lattanzio R, La Sorda R, Piantelli M, Canzoniero LM, Ciavardelli D, Rizzarelli E and Sensi SL: Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3×Tg-AD mice. PLoS One. 6:e179712011. View Article : Google Scholar : PubMed/NCBI

19 

Jukić I, Kolobarić N, Stupin A, Matić A, Kozina N, Mihaljević Z, Mihalj M, Šušnjara P, Stupin M, Ćurić ŽB, et al: Carnosine, small but mighty-prospect of use as functional ingredient for functional food formulation. Antioxidants (Basel). 10:10372021. View Article : Google Scholar : PubMed/NCBI

20 

Ko EA, Park YJ, Yoon DS, Lee KM, Kim J, Jung S, Lee JW and Park KH: Drug repositioning of polaprezinc for bone fracture healing. Commun Biol. 5:4622022. View Article : Google Scholar : PubMed/NCBI

21 

Busa P, Lee SO, Huang N, Kuthati Y and Wong CS: Carnosine alleviates knee osteoarthritis and promotes synoviocyte protection via activating the Nrf2/HO-1 signaling pathway: An in-vivo and in-vitro study. Antioxidants (Basel). 11:12092022. View Article : Google Scholar : PubMed/NCBI

22 

Huang T, Yan G and Guan M: Zinc homeostasis in bone: Zinc transporters and bone diseases. Int J Mol Sci. 21:12362020. View Article : Google Scholar : PubMed/NCBI

23 

Kheirouri S, Alizadeh M and Maleki V: Zinc against advanced glycation end products. Clin Exp Pharmacol Physiol. 45:491–498. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS and de Oliveira AR: Zinc and oxidative stress: Current mechanisms. Antioxidants (Basel). 6:242017. View Article : Google Scholar : PubMed/NCBI

25 

Brzóska MM and Rogalska J: Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats. Toxicol Appl Pharmacol. 272:208–220. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Bartmański M, Pawłowski Ł, Knabe A, Mania S, Banach-Kopeć A, Sakowicz-Burkiewicz M and Ronowska A: The effect of marginal Zn(2+) excess released from titanium coating on differentiation of human osteoblastic cells. ACS Appl Mater Interfaces. 16:48412–48427. 2024. View Article : Google Scholar : PubMed/NCBI

27 

Shiota J, Tagawa H, Izumi N, Higashikawa S and Kasahara H: Effect of zinc supplementation on bone formation in hemodialysis patients with normal or low turnover bone. Ren Fail. 37:57–60. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Saito M and Marumo K: Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 21:195–214. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Yudhani RD, Pakha DN, Wiyono N and Wasita B: Molecular mechanisms of zinc in alleviating obesity: Recent updates (Review). World Acad Sci J. 6:702024. View Article : Google Scholar

30 

Gao X, Al-Baadani MA, Wu M, Tong N, Shen X, Ding X and Liu J: Study on the local anti-osteoporosis effect of polaprezinc-loaded antioxidant electrospun membrane. Int J Nanomedicine. 17:17–29. 2022. View Article : Google Scholar : PubMed/NCBI

31 

An Y, Zhang H, Wang C, Jiao F, Xu H, Wang X, Luan W, Ma F, Ni L, Tang X, et al: Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 33:12515–201927. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Li M, Sun Z, Zhang H and Liu Z: Recent advances on polaprezinc for medical use (Review). Exp Ther Med. 22:14452021. View Article : Google Scholar : PubMed/NCBI

33 

Furman BL: Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 70:5.47.1–5.20. 2015.PubMed/NCBI

34 

Furman BL: Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. 1:e782021. View Article : Google Scholar : PubMed/NCBI

35 

Islam MS and Loots DT: Experimental rodent models of type 2 diabetes: A review. Methods Find Exp Clin Pharmacol. 31:249–261. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Amri J, Alaee M, Babaei R, Salemi Z, Meshkani R, Ghazavi A, Akbari A and Salehi M: Biochanin-A has antidiabetic, antihyperlipidemic, antioxidant, and protective effects on diabetic nephropathy via suppression of TGF-β1 and PAR-2 genes expression in kidney tissues of STZ-induced diabetic rats. Biotechnol Appl Biochem. 69:2112–2121. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Muhammad HJ, Shimada T, Fujita A and Sai Y: Sodium citrate buffer improves pazopanib solubility and absorption in gastric acid-suppressed rat model. Drug Metab Pharmacokinet. 55:1009952024. View Article : Google Scholar : PubMed/NCBI

38 

Krebs H: Citric acid cycle: A chemical reaction for life. Nurs Mirror. 149:30–32. 1979.PubMed/NCBI

39 

Sun Q, Tian FM, Liu F, Fang JK, Hu YP, Lian QQ, Zhou Z and Zhang L: Denosumab alleviates intervertebral disc degeneration adjacent to lumbar fusion by inhibiting endplate osteochondral remodeling and vertebral osteoporosis in ovariectomized rats. Arthritis Res Ther. 23:1522021. View Article : Google Scholar : PubMed/NCBI

40 

Livák F and Petrie HT: Somatic generation of antigen-receptor diversity: A reprise. Trends Immunol. 22:608–612. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Tsuji-Naito K: Aldehydic components of cinnamon bark extract suppresses RANKL-induced osteoclastogenesis through NFATc1 downregulation. Bioorg Med Chem. 16:9176–9183. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Matsui S, Hiraishi C, Sato R, Kojima T, Matoba K, Fujimoto K and Yoshida H: Association of metformin administration with the serum levels of zinc and homocysteine in patients with type 2 diabetes: A cross-sectional study. Diabetol Int. 16:394–402. 2025. View Article : Google Scholar : PubMed/NCBI

43 

Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR and Agrawal YO: Challenges and issues with streptozotocin-induced diabetes-A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact. 244:49–63. 2016. View Article : Google Scholar : PubMed/NCBI

44 

El Dib R, Gameiro OL, Ogata MS, Módolo NS, Braz LG, Jorge EC, do Nascimento P Jr and Beletate V: Zinc supplementation for the prevention of type 2 diabetes mellitus in adults with insulin resistance. Cochrane Database Syst Rev. 2015:CD0055252015.PubMed/NCBI

45 

Sureshkumar K, Durairaj M, Srinivasan K, Goh2 KW, Undela K, Mahalingam VT, Ardianto C, Ming LC and Ganesan RM: Effect of L-carnosine in patients with age-related diseases: A systematic review and meta-analysis. Front Biosci (Landmark Ed). 28:182023. View Article : Google Scholar : PubMed/NCBI

46 

Cararo JH, Streck EL, Schuck PF and Ferreira Gda C: Carnosine and related peptides: Therapeutic potential in age-related disorders. Aging Dis. 6:369–379. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Yamaguchi M and Ehara Y: Zinc decrease and bone metabolism in the femoral-metaphyseal tissues of rats with skeletal unloading. Calcif Tissue Int. 57:218–223. 1995. View Article : Google Scholar : PubMed/NCBI

48 

Sugiyama T, Tanaka H and Kawai S: Improvement of periarticular osteoporosis in postmenopausal women with rheumatoid arthritis by beta-alanyl-L-histidinato zinc: A pilot study. J Bone Miner Metab. 18:335–338. 2000. View Article : Google Scholar : PubMed/NCBI

49 

Kato H, Ochiai-Shino H, Onoder S, Saito A, Shibahara T and Azuma T: Promoting effect of 1,25(OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biol. 5:1402012015. View Article : Google Scholar : PubMed/NCBI

50 

Seo HJ, Cho YE, Kim T, Shin H and Kwun IS: Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract. 4:356–361. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Yamaguchi M, Goto M, Uchiyama S and Nakagawa T: Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: Enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem. 312:157–166. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Yang Y, Wang Y, Kong Y, Zhang X, Zhang H, Gang Y and Bai L: Carnosine prevents type 2 diabetes-induced osteoarthritis through the ROS/NF-κB pathway. Front Pharmacol. 9:5982018. View Article : Google Scholar : PubMed/NCBI

53 

Yamaguchi M and Uchiyama S: Receptor activator of NF-kappaB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med. 14:81–85. 2004.PubMed/NCBI

54 

Thomas S and Jaganathan BG: Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal. 16:47–61. 2022. View Article : Google Scholar : PubMed/NCBI

55 

Amarasekara DS, Kim S and Rho J: Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci. 22:28512021. View Article : Google Scholar : PubMed/NCBI

56 

Lin W, Hu S, Li K, Shi Y, Pan C, Xu Z, Li D, Wang H, Li B and Chen H: Breaking osteoclast-acid vicious cycle to rescue osteoporosis via an acid responsive organic framework-based neutralizing and gene editing platform. Small. 20:e23075952024. View Article : Google Scholar : PubMed/NCBI

57 

Amin N, Clark CCT, Taghizadeh M and Djafarnejad S: Zinc supplements and bone health: The role of the RANKL-RANK axis as a therapeutic target. J Trace Elem Med Biol. 57:1264172020. View Article : Google Scholar : PubMed/NCBI

58 

Molenda M and Kolmas J: The role of zinc in bone tissue health and regeneration-a review. Biol Trace Elem Res. 201:5640–5651. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Ono T, Hayashi M, Sasaki F and Nakashima T: RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm Regen. 40:22020. View Article : Google Scholar : PubMed/NCBI

60 

Boyce BF and Xing L: Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 473:139–146. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao J, Yang H, Lian Q, Hu Y, Yang Z, Xing L, Xue Y, Hou X, Tian F, Hu D, Hu D, et al: Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis&nbsp;. Mol Med Rep 33: 13, 2026.
APA
Gao, J., Yang, H., Lian, Q., Hu, Y., Yang, Z., Xing, L. ... Hu, D. (2026). Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis&nbsp;. Molecular Medicine Reports, 33, 13. https://doi.org/10.3892/mmr.2025.13723
MLA
Gao, J., Yang, H., Lian, Q., Hu, Y., Yang, Z., Xing, L., Xue, Y., Hou, X., Tian, F., Hu, D."Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis&nbsp;". Molecular Medicine Reports 33.1 (2026): 13.
Chicago
Gao, J., Yang, H., Lian, Q., Hu, Y., Yang, Z., Xing, L., Xue, Y., Hou, X., Tian, F., Hu, D."Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis&nbsp;". Molecular Medicine Reports 33, no. 1 (2026): 13. https://doi.org/10.3892/mmr.2025.13723
Copy and paste a formatted citation
x
Spandidos Publications style
Gao J, Yang H, Lian Q, Hu Y, Yang Z, Xing L, Xue Y, Hou X, Tian F, Hu D, Hu D, et al: Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis&nbsp;. Mol Med Rep 33: 13, 2026.
APA
Gao, J., Yang, H., Lian, Q., Hu, Y., Yang, Z., Xing, L. ... Hu, D. (2026). Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis&nbsp;. Molecular Medicine Reports, 33, 13. https://doi.org/10.3892/mmr.2025.13723
MLA
Gao, J., Yang, H., Lian, Q., Hu, Y., Yang, Z., Xing, L., Xue, Y., Hou, X., Tian, F., Hu, D."Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis&nbsp;". Molecular Medicine Reports 33.1 (2026): 13.
Chicago
Gao, J., Yang, H., Lian, Q., Hu, Y., Yang, Z., Xing, L., Xue, Y., Hou, X., Tian, F., Hu, D."Effects of zinc carnosine on bone loss in mice with diabetic osteoporosis&nbsp;". Molecular Medicine Reports 33, no. 1 (2026): 13. https://doi.org/10.3892/mmr.2025.13723
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team