|
1
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H
and Vallance BA: Pathobionts in inflammatory bowel disease:
Origins, underlying mechanisms, and implications for clinical care.
Gastroenterology. 166:44–58. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhou JL, Bao JC, Liao XY, Chen YJ, Wang
LW, Fan YY, Xu QY, Hao LX, Li KJ, Liang MX, et al: Trends and
projections of inflammatory bowel disease at the global, regional
and national levels, 1990–2050: a bayesian age-period-cohort
modeling study. BMC Public Health. 23:25072023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wyatt NJ, Watson H, Anderson CA, Kennedy
NA, Raine T, Ahmad T, Allerton D, Bardgett M, Clark E, Clewes D, et
al: Defining predictors of responsiveness to advanced therapies in
Crohn's disease and ulcerative colitis: protocol for the
IBD-RESPONSE and nested CD-metaRESPONSE prospective, multicentre,
observational cohort study in precision medicine. BMJ Open.
14:e0736392024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Heller C, Moss AC and Rubin DT: Overview
to challenges in IBD 2024–2029. Inflamm Bowel Dis. 30 (Suppl
2):S1–S4. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gasaly N, Hermoso MA and Gotteland M:
Butyrate and the fine-tuning of colonic homeostasis: Implication
for inflammatory bowel diseases. Int J Mol Sci. 22:30612021.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
van der Post S, Jabbar KS, Birchenough G,
Arike L, Akhtar N, Sjovall H, Johansson MEV and Hansson GC:
Structural weakening of the colonic mucus barrier is an early event
in ulcerative colitis pathogenesis. Gut. 68:2142–2151. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Reznik N, Gallo AD, Rush KW, Javitt G,
Fridmann-Sirkis Y, Ilani T, Nairner NA, Fishilevich S, Gokhman D,
Chacón KN, et al: Intestinal mucin is a chaperone of multivalent
copper. Cell. 185:4206–4215.e11. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tonetti FR, Eguileor A and Llorente C:
Goblet cells: Guardians of gut immunity and their role in
gastrointestinal diseases. eGastroenterology. 2:e1000982024.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Leoncini G, Cari L, Ronchetti S, Donato F,
Caruso L, Calafà C and Villanacci V: Mucin expression profiles in
ulcerative colitis: New Insights on the histological mucosal
healing. Int J Mol Sci. 25:18582024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yao D, Dai W, Dong M, Dai C and Wu S: MUC2
and related bacterial factors: Therapeutic targets for ulcerative
colitis. EBioMedicine. 74:1037512021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kang Y, Park H, Choe BH and Kang B: The
role and function of mucins and its relationship to inflammatory
bowel disease. Front Med (Lausanne). 9:8483442022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wu M, Wu Y, Li J, Bao Y, Guo Y and Yang W:
The dynamic changes of gut microbiota in Muc2 deficient mice. Int J
Mol Sci. 19:28092018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Van der Sluis M, De Koning BA, De Bruijn
AC, Velcich A, Meijerink JP, Van Goudoever JB, Büller HA, Dekker J,
Van Seuningen I, Renes IB and Einerhand AW: Muc2-deficient mice
spontaneously develop colitis, indicating that MUC2 is critical for
colonic protection. Gastroenterology. 131:117–129. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Engevik MA, Herrmann B, Ruan W, Engevik
AC, Engevik KA, Ihekweazu F, Shi Z, Luck B, Chang-Graham AL,
Esparza M, et al: Bifidobacterium dentium-derived
y-glutamylcysteine suppresses ER-mediated goblet cell stress and
reduces TNBS-driven colonic inflammation. Gut Microbes. 13:1–21.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Das I, Png CW, Oancea I, Hasnain SZ,
Lourie R, Proctor M, Eri RD, Sheng Y, Crane DI, Florin TH and
McGuckin MA: Glucocorticoids alleviate intestinal ER stress by
enhancing protein folding and degradation of misfolded proteins. J
Exp Med. 210:1201–1216. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Heazlewood CK, Cook MC, Eri R, Price GR,
Tauro SB, Taupin D, Thornton DJ, Png CW, Crockford TL, Cornall RJ,
et al: Aberrant mucin assembly in mice causes endoplasmic reticulum
stress and spontaneous inflammation resembling ulcerative colitis.
PLoS Med. 5:e542008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
López-Cauce B, Puerto M, García JJ,
Ponce-Alonso M, Becerra-Aparicio F, Del Campo R, Peligros I,
Fernández-Aceñero MJ, Gómez-Navarro Y, Lara JM, et al: Akkermansia
deficiency and mucin depletion are implicated in intestinal barrier
dysfunction as earlier event in the development of inflammation in
interleukin-10-deficient mice. Front Microbiol. 13:10838842023.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wiseman RL, Mesgarzadeh JS and Hendershot
LM: Reshaping endoplasmic reticulum quality control through the
unfolded protein response. Mol Cell. 82:1477–1491. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gao H, He C, Hua R, Guo Y, Wang B, Liang
C, Gao L, Shang H and Xu JD: Endoplasmic reticulum stress of gut
enterocyte and intestinal diseases. Front Mol Biosci. 9:8173922022.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fekete E and Buret AG: The role of mucin
O-glycans in microbiota dysbiosis, intestinal homeostasis, and
host-pathogen interactions. Am J Physiol Gastrointest Liver
Physiol. 324:G452–G465. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gum JR Jr, Hicks JW, Toribara NW, Siddiki
B and Kim YS: Molecular cloning of human intestinal mucin (MUC2)
cDNA. Identification of the amino terminus and overall sequence
similarity to prepro-von Willebrand factor. J Biol Chem.
269:2440–2446. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H,
Liu Q, Chen J, Guli S and Chen X: Orchestration of MUC2-The key
regulatory target of gut barrier and homeostasis: A review. Int J
Biol Macromol. 236:1238622023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gallego P, Garcia-Bonete MJ, Trillo-Muyo
S, Recktenwald CV, Johansson MEV and Hansson GC: The intestinal
MUC2 mucin C-terminus is stabilized by an extra disulfide bond in
comparison to von Willebrand factor and other gel-forming mucins.
Nat Commun. 14:19692023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stanforth KJ, Zakhour MI, Chater PI,
Wilcox MD, Adamson B, Robson NA and Pearson JP: The MUC2 gene
product: Polymerisation and post-secretory organisation-current
models. Polymers (Basel). 16:16632024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu Y, Yu X, Zhao J, Zhang H, Zhai Q and
Chen W: The role of MUC2 mucin in intestinal homeostasis and the
impact of dietary components on MUC2 expression. Int J Biol
Macromol. 164:884–891. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pelaseyed T, Bergström JH, Gustafsson JK,
Ermund A, Birchenough GM, Schütte A, van der Post S, Svensson F,
Rodríguez-Piñeiro AM, Nyström EE, et al: The mucus and mucins of
the goblet cells and enterocytes provide the first defense line of
the gastrointestinal tract and interact with the immune system.
Immunol Rev. 260:8–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Luis AS and Hansson GC: Intestinal mucus
and their glycans: A habitat for thriving microbiota. Cell Host
Microbe. 31:1087–1100. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Arike L and Hansson GC: The densely
o-glycosylated MUC2 mucin protects the intestine and provides food
for the commensal bacteria. J Mol Biol. 428:3221–3229. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
McCool DJ, Okada Y, Forstner JF and
Forstner GG: Roles of calreticulin and calnexin during mucin
synthesis in LS180 and HT29/A1 human colonic adenocarcinoma cells.
Biochem J. 341((Pt 3)): 593–600. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Johansson ME, Larsson JM and Hansson GC:
The two mucus layers of colon are organized by the MUC2 mucin,
whereas the outer layer is a legislator of host-microbial
interactions. Proc Natl Acad Sci USA. 108 (Suppl 1):S4659–S4665.
2011. View Article : Google Scholar
|
|
31
|
Larsson JM, Karlsson H, Crespo JG,
Johansson ME, Eklund L, Sjövall H and Hansson GC: Altered
O-glycosylation profile of MUC2 mucin occurs in active ulcerative
colitis and is associated with increased inflammation. Inflamm
Bowel Dis. 17:2299–2307. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Javitt G, Khmelnitsky L, Albert L, Bigman
LS, Elad N, Morgenstern D, Ilani T, Levy Y, Diskin R and Fass D:
Assembly mechanism of mucin and von willebrand factor polymers.
Cell. 183:717–729.e16. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bergstrom KS and Xia L: Mucin-type
O-glycans and their roles in intestinal homeostasis. Glycobiology.
23:1026–1037. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Paone P and Cani PD: Mucus barrier, mucins
and gut microbiota: The expected slimy partners? Gut. 69:2232–2243.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kouka T, Akase S, Sogabe I, Jin C,
Karlsson NG and Aoki-Kinoshita KF: Computational modeling of
o-linked glycan biosynthesis in CHO Cells. Molecules. 27:17662022.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nielsen MI, de Haan N, Kightlinger W, Ye
Z, Dabelsteen S, Li M, Jewett MC, Bagdonaite I, Vakhrushev SY and
Wandall HH: Global mapping of GalNAc-T isoform-specificities and
O-glycosylation site-occupancy in a tissue-forming human cell line.
Nat Commun. 13:62572022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bennett EP, Mandel U, Clausen H, Gerken
TA, Fritz TA and Tabak LA: Control of mucin-type O-glycosylation: A
classification of the polypeptide GalNAc-transferase gene family.
Glycobiology. 22:736–756. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Brockhausen I, Wandall HH, Hagen KGT and
Stanley P: O-GalNAc Glycans. Essentials of Glycobiology. Varki A,
Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Mohnen D,
Kinoshita T, Packer NH, Prestegard JH, Schnaar RL and Seeberger PH:
Cold Spring Harbor Laboratory Press; New York, USA: pp. 117–128.
2022
|
|
39
|
Xia L, Ju T, Westmuckett A, An G, Ivanciu
L, McDaniel JM, Lupu F, Cummings RD and McEver RP: Defective
angiogenesis and fatal embryonic hemorrhage in mice lacking core
1-derived O-glycans. J Cell Biol. 164:451–459. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bergstrom K, Fu J, Johansson ME, Liu X,
Gao N, Wu Q, Song J, McDaniel JM, McGee S, Chen W, et al: Core 1-
and 3-derived O-glycans collectively maintain the colonic mucus
barrier and protect against spontaneous colitis in mice. Mucosal
Immunol. 10:91–103. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Schwientek T, Yeh JC, Levery SB, Keck B,
Merkx G, van Kessel AG, Fukuda M and Clausen H: Control of O-glycan
branch formation. Molecular cloning and characterization of a novel
thymus-associated core 2 beta1, 6-n-acetylglucosaminyltransferase.
J Biol Chem. 275:11106–11113. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hansson GC: Mucins and the Microbiome.
Annu Rev Biochem. 89:769–793. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Song C, Chai Z, Chen S, Zhang H, Zhang X
and Zhou Y: Intestinal mucus components and secretion mechanisms:
what we do and do not know. Exp Mol Med. 55:681–691. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang Z and Shen J: The role of goblet
cells in Crohn's disease. Cell Biosci. 14:432024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Birchenough GM, Johansson ME, Gustafsson
JK, Bergström JH and Hansson GC: New developments in goblet cell
mucus secretion and function. Mucosal Immunol. 8:712–719. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ambort D, Johansson ME, Gustafsson JK,
Nilsson HE, Ermund A, Johansson BR, Koeck PJ, Hebert H and Hansson
GC: Calcium and pH-dependent packing and release of the gel-forming
MUC2 mucin. Proc Natl Acad Sci USA. 109:5645–5650. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Harrison CA, Laubitz D, Ohland CL,
Midura-Kiela MT, Patil K, Besselsen DG, Jamwal DR, Jobin C, Ghishan
FK and Kiela PR: Microbial dysbiosis associated with impaired
intestinal Na(+)/H(+) exchange accelerates and exacerbates colitis
in ex-germ free mice. Mucosal Immunol. 11:1329–1341. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ridley C, Kouvatsos N, Raynal BD, Howard
M, Collins RF, Desseyn JL, Jowitt TA, Baldock C, Davis CW,
Hardingham TE and Thornton DJ: Assembly of the respiratory mucin
MUC5B: A new model for a gel-forming mucin. J Biol Chem.
289:16409–16420. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Johansson ME, Phillipson M, Petersson J,
Velcich A, Holm L and Hansson GC: The inner of the two Muc2
mucin-dependent mucus layers in colon is devoid of bacteria. Proc
Natl Acad Sci USA. 105:15064–15069. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nyström EEL, Birchenough GMH, van der Post
S, Arike L, Gruber AD, Hansson GC and Johansson MEV:
Calcium-activated chloride channel regulator 1 (CLCA1) controls
mucus expansion in colon by proteolytic activity. EBioMedicine.
33:134–143. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nyström EEL, Arike L, Ehrencrona E,
Hansson GC and Johansson MEV: Calcium-activated chloride channel
regulator 1 (CLCA1) forms non-covalent oligomers in colonic mucus
and has mucin 2-processing properties. J Biol Chem.
294:17075–17089. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sharpen JDA, Dolan B, Nyström EEL,
Birchenough GMH, Arike L, Martinez-Abad B, Johansson MEV, Hansson
GC and Recktenwald CV: Transglutaminase 3 crosslinks the secreted
gel-forming mucus component Mucin-2 and stabilizes the colonic
mucus layer. Nat Commun. 13:452022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang
Y, Tso P, Wu G and Wu Z: Intestinal epithelial cell endoplasmic
reticulum stress and inflammatory bowel disease pathogenesis: An
update review. Front Immunol. 8:12712017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Verjan Garcia N, Hong KU and Matoba N: The
unfolded protein response and its implications for novel
therapeutic strategies in inflammatory bowel disease. Biomedicines.
11:20662023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chieppa M, De Santis S and Verna G: Winnie
mice: A chronic and progressive model of ulcerative colitis.
Inflamm Bowel Dis. 31:1158–1167. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liso M, De Santis S, Verna G, Dicarlo M,
Calasso M, Santino A, Gigante I, Eri R, Raveenthiraraj S,
Sobolewski A, et al: A specific mutation in muc2 determines early
dysbiosis in colitis-prone winnie mice. Inflamm Bowel Dis.
26:546–556. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kaser A and Blumberg RS: Endoplasmic
reticulum stress in the intestinal epithelium and inflammatory
bowel disease. Semin Immunol. 21:156–163. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Al-Shaibi AA, Abdel-Motal UM, Hubrack SZ,
Bullock AN, Al-Marri AA, Agrebi N, Al-Subaiey AA, Ibrahim NA,
Charles AK; COLORS in IBD-Qatar Study Group, ; et al: Human AGR2
deficiency causes mucus barrier dysfunction and infantile
inflammatory bowel disease. Cell Mol Gastroenterol Hepatol.
12:1809–1830. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kudelka MR, Stowell SR, Cummings RD and
Neish AS: Intestinal epithelial glycosylation in homeostasis and
gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol.
17:597–617. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Grondin JA, Kwon YH, Far PM, Haq S and
Khan WI: Mucins in intestinal mucosal defense and inflammation:
Learning from clinical and experimental studies. Front Immunol.
11:20542020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pelaseyed T and Hansson GC: Membrane
mucins of the intestine at a glance. J Cell Sci. 133:jcs2409292020.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hosomi S, Kaser A and Blumberg RS: Role of
endoplasmic reticulum stress and autophagy as interlinking pathways
in the pathogenesis of inflammatory bowel disease. Curr Opin
Gastroenterol. 31:81–88. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li H, Wen W and Luo J: Targeting
endoplasmic reticulum stress as an effective treatment for
alcoholic pancreatitis. Biomedicines. 10:1082022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Oikawa D, Kimata Y, Kohno K and Iwawaki T:
Activation of mammalian IRE1alpha upon ER stress depends on
dissociation of BiP rather than on direct interaction with unfolded
proteins. Exp Cell Res. 315:2496–2504. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Deka D, D'Incà R, Sturniolo GC, Das A,
Pathak S and Banerjee A: Role of ER stress mediated unfolded
protein responses and ER stress inhibitors in the pathogenesis of
inflammatory bowel disease. Dig Dis Sci. 67:5392–5406. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Le Goupil S, Laprade H, Aubry M and Chevet
E: Exploring the IRE1 interactome: From canonical signaling
functions to unexpected roles. J Biol Chem. 300:1071692024.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ferri E, Le Thomas A, Wallweber HA, Day
ES, Walters BT, Kaufman SE, Braun MG, Clark KR, Beresini MH,
Mortara K, et al: Activation of the IRE1 RNase through remodeling
of the kinase front pocket by ATP-competitive ligands. Nat Commun.
11:63872020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hetz C, Zhang K and Kaufman RJ:
Mechanisms, regulation and functions of the unfolded protein
response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lu Y, Liang FX and Wang X: A synthetic
biology approach identifies the mammalian UPR RNA ligase RtcB. Mol
Cell. 55:758–770. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yamamoto K, Yoshida H, Kokame K, Kaufman
RJ and Mori K: Differential contributions of ATF6 and XBP1 to the
activation of endoplasmic reticulum stress-responsive cis-acting
elements ERSE, UPRE and ERSE-II. J Biochem. 136:343–350. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ong G and Logue SE: Unfolding the
interactions between endoplasmic reticulum stress and oxidative
stress. Antioxidants (Basel). 12:9812023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lu M, Lawrence DA, Marsters S,
Acosta-Alvear D, Kimmig P, Mendez AS, Paton AW, Paton JC, Walter P
and Ashkenazi A: Opposing unfolded-protein-response signals
converge on death receptor 5 to control apoptosis. Science.
345:98–101. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wek RC, Anthony TG and Staschke KA:
Surviving and adapting to stress: Translational control and the
integrated stress response. Antioxid Redox Signal. 39:351–373.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Urra H and Hetz C: Fine-tuning PERK
signaling to control cell fate under stress. Nat Struct Mol Biol.
24:789–790. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kopp MC, Larburu N, Durairaj V, Adams CJ
and Ali MMU: UPR proteins IRE1 and PERK switch BiP from chaperone
to ER stress sensor. Nat Struct Mol Biol. 26:1053–1062. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Elvira R, Cha SJ, Noh GM, Kim K and Han J:
PERK-Mediated eIF2α phosphorylation contributes to the protection
of dopaminergic neurons from chronic heat stress in drosophila. Int
J Mol Sci. 21:8452020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gorbatyuk MS, Starr CR and Gorbatyuk OS:
Endoplasmic reticulum stress: New insights into the pathogenesis
and treatment of retinal degenerative diseases. Prog Retin Eye Res.
79:1008602020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ajoolabady A, Lindholm D, Ren J and
Pratico D: ER stress and UPR in Alzheimer's disease: Mechanisms,
pathogenesis, treatments. Cell Death Dis. 13:7062022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Saito A, Ochiai K, Kondo S, Tsumagari K,
Murakami T, Cavener DR and Imaizumi K: Endoplasmic reticulum stress
response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved
in osteoblast differentiation induced by BMP2. J Biol Chem.
286:4809–4818. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Vattem KM and Wek RC: Reinitiation
involving upstream ORFs regulates ATF4 mRNA translation in
mammalian cells. Proc Natl Acad Sci USA. 101:11269–11274. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hooper KM, Barlow PG, Henderson P and
Stevens C: Interactions between autophagy and the unfolded protein
response: Implications for inflammatory bowel disease. Inflamm
Bowel Dis. 25:661–671. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yin S, Li L, Tao Y, Yu J, Wei S, Liu M and
Li J: The inhibitory effect of artesunate on excessive endoplasmic
reticulum stress alleviates experimental colitis in mice. Front
Pharmacol. 12:6297982021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lei Y, Yu H, Ding S, Liu H, Liu C and Fu
R: Molecular mechanism of ATF6 in unfolded protein response and its
role in disease. Heliyon. 10:e259372024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ye J, Rawson RB, Komuro R, Chen X, Davé
UP, Prywes R, Brown MS and Goldstein JL: ER stress induces cleavage
of membrane-bound ATF6 by the same proteases that process SREBPs.
Mol Cell. 6:1355–1364. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jin JK, Blackwood EA, Azizi K, Thuerauf
DJ, Fahem AG, Hofmann C, Kaufman RJ, Doroudgar S and Glembotski CC:
ATF6 decreases myocardial ischemia/reperfusion damage and links ER
stress and oxidative stress signaling pathways in the heart. Circ
Res. 120:862–875. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Grey MJ, Cloots E, Simpson MS, LeDuc N,
Serebrenik YV, De Luca H, De Sutter D, Luong P, Thiagarajah JR,
Paton AW, et al: IRE1β negatively regulates IRE1α signaling in
response to endoplasmic reticulum stress. J Cell Biol.
219:e2019040482020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Luo H, Gong WY, Zhang YY, Liu YY, Chen Z,
Feng XL, Jiao QB and Zhang XW: IRE1β evolves to be a guardian of
respiratory and gastrointestinal mucosa. Heliyon. 10:e390112024.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Haber AL, Biton M, Rogel N, Herbst RH,
Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, et
al: A single-cell survey of the small intestinal epithelium.
Nature. 551:333–339. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cloots E, Simpson MS, De Nolf C, Lencer
WI, Janssens S and Grey MJ: Evolution and function of the
epithelial cell-specific ER stress sensor IRE1β. Mucosal Immunol.
14:1235–1246. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Johansson ME and Hansson GC: Goblet cells
need some stress. J Clin Invest. 132:e1620302022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Grey MJ, De Luca H, Ward DV, Kreulen IA,
Bugda Gwilt K, Foley SE, Thiagarajah JR, McCormick BA, Turner JR
and Lencer WI: The epithelial-specific ER stress sensor ERN2/IRE1β
enables host-microbiota crosstalk to affect colon goblet cell
development. J Clin Invest. 132:e1535192022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Dai F, Dong S, Rong Z, Xuan Q, Chen P,
Chen M, Fan Y and Gao Q: Expression of inositol-requiring enzyme 1β
is downregulated in azoxymethane/dextran sulfate sodium-induced
mouse colonic tumors. Exp Ther Med. 17:3181–3188. 2019.PubMed/NCBI
|
|
93
|
Deng R, Wang M, Promlek T, Druelle-Cedano
C, Murad R, Davidson NO and Kaufman RJ: IRE1α and IRE1β protect
intestinal epithelium and suppress colorectal tumorigenesis through
distinct mechanisms. Preprint. bioRxiv [Preprint].
2025.05.01.651751. 2025.
|
|
94
|
Ye X, Wu J, Li J and Wang H: anterior
gradient protein 2 promotes mucosal repair in pediatric ulcerative
colitis. Biomed Res Int. 2021:64838602021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wu D, Su S, Zha X, Wei Y, Yang G, Huang Q,
Yang Y, Xia L, Fan S and Peng X: Glutamine promotes O-GlcNAcylation
of G6PD and inhibits AGR2 S-glutathionylation to maintain the
intestinal mucus barrier in burned septic mice. Redox Biol.
59:1025812023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Neidhardt L, Cloots E, Friemel N, Weiss
CAM, Harding HP, McLaughlin SH, Janssens S and Ron D: The
IRE1β-mediated unfolded protein response is repressed by the
chaperone AGR2 in mucin producing cells. EMBO J. 43:719–753. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Cloots E, Guilbert P, Provost M, Neidhardt
L, Van de Velde E, Fayazpour F, De Sutter D, Savvides SN, Eyckerman
S and Janssens S: Activation of goblet-cell stress sensor IRE1β is
controlled by the mucin chaperone AGR2. EMBO J. 43:695–718. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bertolotti A: Keeping goblet cells
unstressed: new insights into a general principle. EMBO J.
43:663–665. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Cadwell K and Loke P: Gene-environment
interactions shape the host-microbial interface in inflammatory
bowel disease. Nat Immunol. 26:1023–1035. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Valle Arevalo A and Nobile CJ:
Interactions of microorganisms with host mucins: A focus on Candida
albicans. FEMS Microbiol Rev. 44:645–654. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhu X, Li Y, Tian X, Jing Y, Wang Z, Yue
L, Li J, Wu L, Zhou X, Yu Z, et al: REGγ mitigates
radiation-induced enteritis by preserving mucin secretion and
sustaining microbiome homeostasis. Am J Pathol. 194:975–988. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yao Y, Kim G, Shafer S, Chen Z, Kubo S, Ji
Y, Luo J, Yang W, Perner SP, Kanellopoulou C, et al: Mucus
sialylation determines intestinal host-commensal homeostasis. Cell.
185:1172–1188.e28. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Vilardi A, Przyborski S, Mobbs C, Rufini A
and Tufarelli C: Current understanding of the interplay between
extracellular matrix remodelling and gut permeability in health and
disease. Cell Death Discov. 10:2582024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhu Y, Huang Y, Ji Q, Fu S, Gu J, Tai N
and Wang X: Interplay between extracellular matrix and neutrophils
in diseases. J Immunol Res. 2021:82433782021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Porras AM, Zhou H, Shi Q, Xiao X; JRI Live
Cell Bank, ; Longman R and Brito IL: Inflammatory bowel
disease-associated gut commensals degrade components of the
extracellular matrix. mBio. 13:e02201222022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhao Y, Qiao D, Skibba M and Brasier AR:
The IRE1α-XBP1s Arm of the unfolded protein response activates
N-glycosylation to remodel the subepithelial basement membrane in
paramyxovirus infection. Int J Mol Sci. 23:90002022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Onfroy-Roy L, Hamel D, Foncy J, Malaquin L
and Ferrand A: Extracellular matrix mechanical properties and
regulation of the intestinal stem cells: When mechanics control
fate. Cells. 9:26292020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Gjorevski N, Sachs N, Manfrin A, Giger S,
Bragina ME, Ordóñez-Morán P, Clevers H and Lutolf MP: Designer
matrices for intestinal stem cell and organoid culture. Nature.
539:560–564. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Fionda C and Sciumè G: A little ER stress
isn't bad: The IRE1α/XBP1 pathway shapes ILC3 functions during
intestinal inflammation. J Clin Invest. 134:e1822042024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ren C, Dokter-Fokkens J, Figueroa Lozano
S, Zhang Q, de Haan BJ, Zhang H, Faas MM and de Vos P: Fibroblasts
impact goblet cell responses to lactic acid bacteria after exposure
to inflammatory cytokines and mucus disruptors. Mol Nutr Food Res.
63:e18014272019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhang G, Song D, Ma R, Li M, Liu B, He Z
and Fu Q: Artificial mucus layer formed in response to ROS for the
oral treatment of inflammatory bowel disease. Sci Adv.
10:eado82222024. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Royal JM, Oh YJ, Grey MJ, Lencer WI,
Ronquillo N, Galandiuk S and Matoba N: A modified cholera toxin B
subunit containing an ER retention motif enhances colon epithelial
repair via an unfolded protein response. FASEB J. 33:13527–13545.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kittle WM, Reeves MA, Fulkerson AE,
Hamorsky KT, Morris DA, Kitterman KT, Merchant ML and Matoba N:
Preclinical long-term stability and forced degradation assessment
of EPICERTIN, a mucosal healing biotherapeutic for inflammatory
bowel disease. Pharmaceutics. 17:2592025. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zheng T, Huang KY, Tang XD, Wang FY and Lv
L: Endoplasmic reticulum stress in gut inflammation: Implications
for ulcerative colitis and Crohn's disease. World J Gastroenterol.
31:1046712025. View Article : Google Scholar : PubMed/NCBI
|