|
1
|
Dewar D, Moore FA, Moore EE and Balogh Z:
Postinjury multiple organ failure. Injury. 40:912–918. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ciesla DJ, Moore EE, Johnson JL, Cothren
CC, Banerjee A, Burch JM and Sauaia A: Decreased progression of
postinjury lung dysfunction to the acute respiratory distress
syndrome and multiple organ failure. Surgery. 140:640–648. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ware LB: Pathophysiology of acute lung
injury and the acute respiratory distress syndrome. Semin Respir
Crit Care Med. 27:337–349. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
ARDS Definition Task Force, . Ranieri VM,
Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E,
Camporota L and Slutsky AS: Acute respiratory distress syndrome:
The Berlin definition. JAMA. 307:2526–2533. 2012.PubMed/NCBI
|
|
5
|
Acute Respiratory Distress Syndrome
Network, . Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson
BT and Wheeler A: Ventilation with lower tidal volumes as compared
with traditional tidal volumes for acute lung injury and the acute
respiratory distress syndrome. N Engl J Med. 342:1301–1308. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tonelli AR, Zein J, Adams J and Ioannidis
JPA: Effects of interventions on survival in acute respiratory
distress syndrome: An umbrella review of 159 published randomized
trials and 29 meta-analyses. Intensive Care Med. 40:769–787. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Adhikari N, Burns KEA and Meade MO:
Pharmacologic therapies for adults with acute lung injury and acute
respiratory distress syndrome. Cochrane Database Syst Rev.
2004:CD0044772004.PubMed/NCBI
|
|
8
|
Peter JV, John P, Graham PL, Moran JL,
George IA and Bersten A: Corticosteroids in the prevention and
treatment of acute respiratory distress syndrome (ARDS) in adults:
Meta-analysis. BMJ. 336:1006–1009. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kanagawa F, Takahashi T, Inoue K, Shimizu
H, Omori E, Morimatsu H, Maeda S, Katayama H, Nakao A and Morita K:
Protective effect of carbon monoxide inhalation on lung injury
after hemorrhagic shock/resuscitation in rats. J Trauma.
69:185–194. 2010.PubMed/NCBI
|
|
10
|
Kumada Y, Takahashi T, Shimizu H, Nakamura
R, Omori E, Inoue K and Morimatsu H: Therapeutic effect of carbon
monoxide-releasing molecule-3 on acute lung injury after
hemorrhagic shock and resuscitation. Exp Ther Med. 17:3429–3440.
2019.PubMed/NCBI
|
|
11
|
Esiobu P and Childs EW: A rat model of
hemorrhagic shock for studying vascular hyperpermeability. Methods
Mol Biol. 1717:53–60. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Peitzman AB, Billiar TR, Harbrecht BG,
Kelly E, Udekwu AO and Simmons RL: Hemorrhagic shock. Curr Probl
Surg. 32:925–1002. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Pérez-Schindler J, Philp A and
Hernandez-Cascales J: Pathophysiological relevance of the cardiac
β2-adrenergic receptor and its potential as a therapeutic target to
improve cardiac function. Eur J Pharmacol. 698:39–47. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Grisanti LA, Evanson J, Marchus E,
Jorissen H, Woster AP, DeKrey W, Sauter ER, Combs CK and Porter JE:
Pro-inflammatory responses in human monocytes are beta1-adrenergic
receptor subtype dependent. Mol Immunol. 47:1244–1254. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zaugg M, Xu W, Lucchinetti E, Shafiq SA,
Jamali NZ and Siddiqui MA: Beta-adrenergic receptor subtypes
differentially affect apoptosis in adult rat ventricular myocytes.
Circulation. 102:344–350. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Aslam M and Ladilov Y: Emerging role of
cAMP/AMPK signaling. Cells. 11:3082022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ding R, Wu W, Sun Z and Li Z:
AMP-activated protein kinase: An attractive therapeutic target for
ischemia-reperfusion injury. Eur J Pharmacol. 888:1734842020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Plosker GL: Landiolol: A review of its use
in intraoperative and postoperative tachyarrhythmias. Drugs.
73:959–977. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bennett M, Chang CL, Tatley M, Savage R
and Hancox RJ: The safety of cardioselective β1-blockers
in asthma: Literature review and search of global pharmacovigilance
safety reports. ERJ Open Res. 7:00801–2020. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hagiwara S, Iwasaka H, Maeda H and Noguchi
T: Landiolol, an ultrashort-acting beta1-adrenoceptor antagonist,
has protective effects in an LPS-induced systemic inflammation
model. Shock. 31:515–520. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kiyonaga N, Moriyama T and Kanmura Y:
Effects of landiolol in lipopolysaccharide-induced acute kidney
injury in rats and in vitro. Shock. 52:e117–e123. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Goyagi T, Kimura T, Nishikawa T, Tobe Y
and Masaki Y: Beta-adrenoreceptor antagonists attenuate brain
injury after transient focal ischemia in rats. Anesth Analg.
103:658–663. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Iwata M, Inoue S, Kawaguchi M, Nakamura M,
Konishi N and Furuya H: Posttreatment but not pretreatment with
selective beta-adrenoreceptor 1 antagonists provides
neuroprotection in the hippocampus in rats subjected to transient
forebrain ischemia. Anesth Analg. 110:1126–1132. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yoshino Y, Jesmin S, Islam M, Shimojo N,
Sakuramoto H, Oki M, Khatun T, Suda M, Kawano S and Mizutani T:
Landiolol hydrochloride ameliorates liver injury in a rat sepsis
model by down regulating hepatic TNF-A. J Vasc Med Surg.
3:10001942015.
|
|
25
|
Matsuishi Y, Jesmin S, Kawano S, Hideaki
S, Shimojo N, Mowa CN, Akhtar S, Zaedi S, Khatun T, Tsunoda Y, et
al: Landiolol hydrochloride ameliorates acute lung injury in a rat
model of early sepsis through the suppression of elevated levels of
pulmonary endothelin-1. Life Sci. 166:27–33. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Percie du Sert N, Hurst V, Ahluwalia A,
Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl
U, et al: The ARRIVE guidelines 2.0: Updated guidelines for
reporting animal research. J Cereb Blood Flow Metab. 40:1769–1777.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Leary S, Underwood W, Anthony R, Cartner
S, Grandin T, Greenacre C, Gwaltney-Brant S, McCrackin MA, Meyer R,
et al: AVMA Guidelines for the Euthanasia of Animals: 2020 Edition.
American Veterinary Medical Association; Schaumburg, IL, USA: pp.
1–121. 2020, https://www.avma.org/resources-tools/avma-policies/avma-guidelines-euthanasia-animalsMarch
1–2021
|
|
28
|
Kosaka J, Morimatsu H, Takahashi T,
Shimizu H, Kawanishi S, Omori E, Endo Y, Tamaki N, Morita M and
Morita K: Effects of biliverdin administration on acute lung injury
induced by hemorrhagic shock and resuscitation in rats. PLoS One.
8:e636062013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li Y, Shimizu H, Nakamura R, Lu Y,
Sakamoto R, Omori E, Takahashi T and Morimatsu H: The protective
effect of carbamazepine on acute lung injury induced by hemorrhagic
shock and resuscitation in rats. PLoS One. 19:e03096222024.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Umeda K, Takahashi T, Inoue K, Shimizu H,
Maeda S, Morimatsu H, Omori E, Akagi R, Katayama H and Morita K:
Prevention of hemorrhagic shock-induced intestinal tissue injury by
glutamine via heme oxygenase-1 induction. Shock. 31:40–49. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Maeshima K, Takahashi T, Uehara K, Shimizu
H, Omori E, Yokoyama M, Tani T, Akagi R and Morita K: Prevention of
hemorrhagic shock-induced lung injury by heme arginate treatment in
rats. Biochem Pharmacol. 69:1667–1680. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yang Z, Zhang XR, Zhao Q, Wang SL, Xiong
LL, Zhang P, Yuan B, Zhang ZB, Fan SY, Wang TH and Zhang YH:
Knockdown of TNF-α alleviates acute lung injury in rats with
intestinal ischemia and reperfusion injury by upregulating IL-10
expression. Int J Mol Med. 42:926–934. 2018.PubMed/NCBI
|
|
33
|
Hassoun HT, Lie ML, Grigoryev DN, Liu M,
Tuder RM and Rabb H: Kidney ischemia-reperfusion injury induces
caspase-dependent pulmonary apoptosis. Am J Physiol Renal Physiol.
297:F125–F137. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Murakami K, McGuire R, Cox RA, Jodoin JM,
Bjertnaes LJ, Katahira J, Traber LD, Schmalstieg FC, Hawkins HK,
Herndon DN and Traber DL: Heparin nebulization attenuates acute
lung injury in sepsis following smoke inhalation in sheep. Shock.
18:236–241. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zegdi R, Fabre O, Cambillau M, Fornès P,
Tazi KA, Shen M, Hervé P, Carpentier A and Fabiani JN: Exhaled
nitric oxide and acute lung injury in a rat model of extracorporeal
circulation. Shock. 20:569–574. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jiang H, Meng F, Li W, Tong L, Qiao H and
Sun X: Splenectomy ameliorates acute multiple organ damage induced
by liver warm ischemia reperfusion in rats. Surgery. 141:32–40.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Stephens KE, Ishizaka A, Larrick JW and
Raffin TA: Tumor necrosis factor causes increased pulmonary
permeability and edema. Comparison to septic acute lung injury. Am
Rev Respir Dis. 137:1364–1370. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nakatsuka K, Matsuoka Y, Kurita M, Wang R,
Tsuboi C, Sue N, Kaku R and Morimatsu H: Intrathecal administration
of the α1 adrenergic antagonist phentolamine upregulates spinal
GLT-1 and improves mirror image pain in SNI model rats. Acta Med
Okayama. 76:255–263. 2022.PubMed/NCBI
|
|
40
|
McMillen MA, Huribal M and Sumpio B:
Common pathway of endothelial-leukocyte interaction in shock,
ischemia, and reperfusion. Am J Surg. 166:557–562. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cinelli MA, Do HT, Miley GP and Silverman
RB: Inducible nitric oxide synthase: Regulation, structure, and
inhibition. Med Res Rev. 40:158–189. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ackland GL, Yao ST, Rudiger A, Dyson A,
Stidwill R, Poputnikov D, Singer M and Gourine AV:
Cardioprotection, attenuated systemic inflammation, and survival
benefit of beta1-adrenoceptor blockade in severe sepsis in rats.
Crit Care Med. 38:388–394. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hashemi S, Salma J, Wales S and McDermott
JC: Pro-survival function of MEF2 in cardiomyocytes is enhanced by
β-blockers. Cell Death Discov. 1:150192015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Taha MO, Silva TDMAE, Ota KS, Vilela WJ,
Simões RS, Starzewski A and Fagundes DJ: The role of atenolol in
the modulation of the expression of genes encoding pro-(caspase-1)
and anti-(Bcl2L1) apoptotic proteins in endothelial cells exposed
to intestinal ischemia and reperfusion in rats. Acta Cir Bras.
33:1061–1066. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang Q, Ren YX, Yuan P, Huang M, Liu G,
Shi Y, Jia G and Chen M: Targeting the AMPK/Nrf2 pathway: A novel
therapeutic approach for acute lung injury. J Inflamm Res.
17:4683–4700. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Matsumoto S, Tokumaru O, Ogata K,
Kuribayashi Y, Oyama Y, Shingu C, Yokoi I and Kitano T:
Dose-dependent scavenging activity of the ultra-short-acting
β1-blocker landiolol against specific free radicals. J Clin Biochem
Nutr. 71:185–190. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ferguson ND, Fan E, Camporota L, Antonelli
M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni
L, et al: The Berlin definition of ARDS: An expanded rationale,
justification, and supplementary material. Intensive Care Med.
38:1573–1582. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Matute-Bello G, Downey G, Moore BB,
Groshong SD, Matthay MA, Slutsky AS and Kuebler WM; Acute Lung
Injury in Animals Study Group, : An official American Thoracic
Society workshop report: Features and measurements of experimental
acute lung injury in animals. Am J Respir Cell Mol Biol.
44:725–738. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Escobar DA, Botero-Quintero AM, Kautza BC,
Luciano J, Loughran P, Darwiche S, Rosengart MR, Zuckerbraun BS and
Gomez H: Adenosine monophosphate-activated protein kinase
activation protects against sepsis-induced organ injury and
inflammation. J Surg Res. 194:262–272. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jiang WL, Zhao KC, Yuan W, Zhou F, Song
HY, Liu GL, Huang J, Zou JJ, Zhao B and Xie SP: MicroRNA-31-5p
exacerbates lipopolysaccharide-induced acute lung injury via
inactivating Cab39/AMPKα pathway. Oxid Med Cell Longev.
2020:88223612020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen R, Cao C, Liu H, Jiang W, Pan R, He
H, Ding K and Meng Q: Macrophage Sprouty4 deficiency diminishes
sepsis-induced acute lung injury in mice. Redox Biol.
58:1025132022. View Article : Google Scholar : PubMed/NCBI
|