|
1
|
Wang Z, Xiao Z, Sun C, Xu G and He J:
Global, regional and national burden of osteoarthritis in
1990–2021: A systematic analysis of the global burden of disease
study 2021. BMC Musculoskelet Disord. 25:10212024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Laires PA, Canhão H, Rodrigues AM, Eusébio
M, Gouveia M and Branco JC: The impact of osteoarthritis on early
exit from work: Results from a population-based study. BMC Public
Health. 18:4722018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Peng R, Shang J, Jiang N, Chi-Jen H, Gu Y,
Xing B, Hu R, Wu B, Wang D, Xu X and Lu H: Klf10 is involved in
extracellular matrix calcification of chondrocytes alleviating
chondrocyte senescence. J Transl Med. 22:522024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Akkiraju H and Nohe A: Role of
chondrocytes in cartilage formation, progression of osteoarthritis
and cartilage regeneration. J Dev Biol. 3:177–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cho Y, Jeong S, Kim H, Kang D, Lee J, Kang
SB and Kim JH: Disease-modifying therapeutic strategies in
osteoarthritis: Current status and future directions. Exp Mol Med.
53:1689–1696. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fleischmann R: Have we found a true
disease-modifying osteoarthritis drug (DMOAD) or is there still
much work to be done? Rheumatology (Oxford). 64:2345–2346. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M,
Zhong Y, He T, Chen S and Xiao G: Osteoarthritis: Pathogenic
signaling pathways and therapeutic targets. Signal Transduct Target
Ther. 8:562023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Guan M, Yu Q, Zhou G, Wang Y, Yu J, Yang W
and Li Z: Mechanisms of chondrocyte cell death in osteoarthritis:
Implications for disease progression and treatment. J Orthop Surg
Res. 19:5502024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Deng H, Xue P, Zhou X, Wang Y and Liu W:
CCL4/CCR5 regulates chondrocyte biology and OA progression.
Cytokine. 183:1567462024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hao X, Shang X, Liu J, Chi R, Zhang J and
Xu T: The gut microbiota in osteoarthritis: Where do we stand and
what can we do? Arthritis Res Ther. 23:422021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chisari E, Wouthuyzen-Bakker M, Friedrich
AW and Parvizi J: The relation between the gut microbiome and
osteoarthritis: A systematic review of literature. PLoS One.
16:e02613532021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nigam M, Devi K, Coutinho HDM and Mishra
AP: Exploration of gut microbiome and inflammation: A review on key
signalling pathways. Cell Signal. 118:1111402024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li J, Ho WTP, Liu C, Chow SK, Ip M, Yu J,
Wong HS, Cheung WH, Sung JJY and Wong RMY: The role of gut
microbiota in bone homeostasis. Bone Joint Res. 10:51–59. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lyu Z, Hu Y, Guo Y and Liu D: Modulation
of bone remodeling by the gut microbiota: A new therapy for
osteoporosis. Bone Res. 11:312023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Marchese L, Contartese D, Giavaresi G, Di
Sarno L and Salamanna F: The complex interplay between the gut
microbiome and osteoarthritis: A systematic review on potential
correlations and therapeutic approaches. Int J Mol Sci. 25:1432023.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yu F, Zhu C and Wu W: Senile
osteoarthritis regulated by the gut microbiota: From mechanisms to
treatments. Int J Mol Sci. 26:15052025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang Y, Fan X, Xing L and Tian F: Wnt
signaling: A promising target for osteoarthritis therapy. Cell
Commun Signal. 17:972019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang W and Cong Y: Gut microbiota-derived
metabolites in the regulation of host immune responses and
immune-related inflammatory diseases. Cell Mol Immunol. 18:866–877.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Grant ET, Parrish A, Boudaud M, Hunewald
O, Hirayama A, Ollert M, Fukuda S and Desai MS: Dietary fibers
boost gut microbiota-produced B vitamin pool and alter host immune
landscape. Microbiome. 12:1792024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Montalvany-Antonucci CC, Duffles LF, de
Arruda JAA, Zicker MC, de Oliveira S, Macari S, Garlet GP, Madeira
MFM, Fukada SY, Andrade I Jr, et al: Short-chain fatty acids and
FFAR2 as suppressors of bone resorption. Bone. 125:112–121. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hou Y, Li J and Ying S: Tryptophan
metabolism and gut microbiota: A novel regulatory axis integrating
the microbiome, immunity, and cancer. Metabolites. 13:11662023.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lucas S, Omata Y, Hofmann J, Böttcher M,
Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B,
Krönke G, et al: Short-chain fatty acids regulate systemic bone
mass and protect from pathological bone loss. Nat Commun. 9:552018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yan J, Herzog JW, Tsang K, Brennan CA,
Bower MA, Garrett WS, Sartor BR, Aliprantis AO and Charles JF: Gut
microbiota induce IGF-1 and promote bone formation and growth. Proc
Natl Acad Sci USA. 113:E7554–E7563. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li JY, Chassaing B, Tyagi AM, Vaccaro C,
Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, et
al: Sex steroid deficiency-associated bone loss is microbiota
dependent and prevented by probiotics. J Clin Invest.
126:2049–2063. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee JY, Mannaa M, Kim Y, Kim J, Kim GT and
Seo YS: Comparative analysis of fecal microbiota composition
between rheumatoid arthritis and osteoarthritis patients. Genes
(Basel). 10:7482019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rios JL, Bomhof MR, Reimer RA, Hart DA,
Collins KH and Herzog W: Protective effect of prebiotic and
exercise intervention on knee health in a rat model of diet-induced
obesity. Sci Rep. 9:38932019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Guan Z, Jia J, Zhang C, Sun T, Zhang W,
Yuan W, Leng H and Song C: Gut microbiome dysbiosis alleviates the
progression of osteoarthritis in mice. Clin Sci (Lond).
134:3159–3174. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Collins KH, Schwartz DJ, Lenz KL, Harris
CA and Guilak F: Taxonomic changes in the gut microbiota are
associated with cartilage damage independent of adiposity, high fat
diet, and joint injury. Sci Rep. 11:145602021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Pedersini P, Turroni S and Villafañe JH:
Gut microbiota and physical activity: Is there an evidence-based
link? Sci Total Environ. 727:1386482020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cani PD and Van Hul M: Gut microbiota in
overweight and obesity: Crosstalk with adipose tissue. Nat Rev
Gastroenterol Hepatol. 21:164–183. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cani PD, Possemiers S, Van de Wiele T,
Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A,
Lambert DM, et al: Changes in gut microbiota control inflammation
in obese mice through a mechanism involving GLP-2-driven
improvement of gut permeability. Gut. 58:1091–1103. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Collins KH, Paul HA, Reimer RA, Seerattan
RA, Hart DA and Herzog W: Relationship between inflammation, the
gut microbiota, and metabolic osteoarthritis development: Studies
in a rat model. Osteoarthritis Cartilage. 23:1989–1998. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xie LL, Zhao YL, Yang J, Cheng H, Zhong
ZD, Liu YR and Pang XL: Electroacupuncture prevents osteoarthritis
of high-fat diet-induced obese rats. Biomed Res Int.
2020:93809652020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zeng XZ, Zhang YY, Yang Q, Wang S, Zou BH,
Tan YH, Zou M, Liu SW and Li XJ: Artesunate attenuates LPS-induced
osteoclastogenesis by suppressing TLR4/TRAF6 and
PLCγ1-Ca2+-NFATc1 signaling pathway. Acta Pharmacol Sin.
41:229–236. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Luna M, Guss JD, Vasquez-Bolanos LS,
Alepuz AJ, Dornevil S, Strong J, Alabi D, Shi Q, Pannellini T,
Otero M, et al: Obesity and load-induced posttraumatic
osteoarthritis in the absence of fracture or surgical trauma. J
Orthop Res. 39:1007–1016. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hu L, Chen W, Qian A and Li YP:
Wnt/β-catenin signaling components and mechanisms in bone
formation, homeostasis, and disease. Bone Res. 12:392024.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Maurice MM and Angers S: Mechanistic
insights into Wnt-β-catenin pathway activation and signal
transduction. Nat Rev Mol Cell Biol. 26:371–388. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ren DN, Chen J, Li Z, Yan H, Yin Y, Wo D,
Zhang J, Ao L, Chen B, Ito TK, et al: LRP5/6 directly bind to
Frizzled and prevent Frizzled-regulated tumour metastasis. Nat
Commun. 6:69062015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ma B, van Blitterswijk CA and Karperien M:
A Wnt/β-catenin negative feedback loop inhibits
interleukin-1-induced matrix metalloproteinase expression in human
articular chondrocytes. Arthritis Rheum. 64:2589–2600. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Landman EB, Miclea RL, van Blitterswijk CA
and Karperien M: Small molecule inhibitors of WNT/β-catenin
signaling block IL-1β- and TNFα-induced cartilage degradation.
Arthritis Res Ther. 15:R932013. View
Article : Google Scholar : PubMed/NCBI
|
|
41
|
Takamatsu A, Ohkawara B, Ito M, Masuda A,
Sakai T, Ishiguro N and Ohno K: Verapamil protects against
cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin
signaling. PLoS One. 9:e926992014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bao Q, Chen S, Qin H, Feng J, Liu H, Liu
D, Li A, Shen Y, Zhao Y, Li J and Zong Z: An appropriate
Wnt/β-catenin expression level during the remodeling phase is
required for improved bone fracture healing in mice. Sci Rep.
7:26952017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang X, Qu Z, Zhao S, Luo L and Yan L:
Wnt/β-catenin signaling pathway: Proteins' roles in osteoporosis
and cancer diseases and the regulatory effects of natural compounds
on osteoporosis. Mol Med. 30:1932024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bao Q, Chen S, Qin H, Feng J, Liu H, Liu
D, Li A, Shen Y, Zhong X, Li J and Zong Z: Constitutive β-catenin
activation in osteoblasts impairs terminal osteoblast
differentiation and bone quality. Exp Cell Res. 350:123–131. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Salazar VS, Mbalaviele G and Civitelli R:
The pro-osteogenic action of beta-catenin requires interaction with
BMP signaling, but not Tcf/Lef transcriptional activity. J Cell
Biochem. 104:942–952. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Feng SY, Cao MN, Gao CC, Li YX, Lei J and
Fu KY: Akt2 inhibition alleviates temporomandibular joint
osteoarthritis by preventing subchondral bone loss. Arthritis Res
Ther. 27:432025. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hao J, Liu C, Gu Z, Yang X, Lan X and Guo
X: Dysregulation of Wnt/β-catenin signaling contributes to
intestinal inflammation through regulation of group 3 innate
lymphoid cells. Nat Commun. 15:28202024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ohara TE and Hsiao EY:
Microbiota-neuroepithelial signalling across the gut-brain axis.
Nat Rev Microbiol. 23:371–384. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou X, Zhang Z, Feng JQ, Dusevich VM,
Sinha K, Zhang H, Darnay BG and de Crombrugghe B: Multiple
functions of Osterix are required for bone growth and homeostasis
in postnatal mice. Proc Natl Acad Sci USA. 107:12919–12924. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Usami Y, Gunawardena AT, Iwamoto M and
Enomoto-Iwamoto M: Wnt signaling in cartilage development and
diseases: Lessons from animal studies. Lab Invest. 96:186–196.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sharvari S, Meganathan P and Vedagiri H:
Gut microbial dysbiosis induced exacerbations influence the
progression of colorectal cancer. Biol Bull Rev. 14:724–739. 2024.
View Article : Google Scholar
|
|
52
|
Mehta A, Motavaf M, Raza D, McLure AJ,
Osei-Opare KD, Bordone LA and Gru AA: Revolutionary approaches to
hair regrowth: Follicle neogenesis, Wnt/ß-catenin signaling, and
emerging therapies. Cells. 14:7792025. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kwack MH, Sung YK, Chung EJ, Im SU, Ahn
JS, Kim MK and Kim JC: Dihydrotestosterone-inducible dickkopf 1
from balding dermal papilla cells causes apoptosis in follicular
keratinocytes. J Invest Dermatol. 128:262–269. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ulici V, Kelley KL, Azcarate-Peril MA,
Cleveland RJ, Sartor RB, Schwartz TA and Loeser RF: Osteoarthritis
induced by destabilization of the medial meniscus is reduced in
germ-free mice. Osteoarthritis Cartilage. 26:1098–1109. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chen J, Wang A and Wang Q: Dysbiosis of
the gut microbiome is a risk factor for osteoarthritis in older
female adults: A case control study. BMC Bioinformatics.
22:2992021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Fortuna R, Hart DA, Sharkey KA, Schachar
RA, Johnston K and Reimer RA: Effect of a prebiotic supplement on
knee joint function, gut microbiota, and inflammation in adults
with co-morbid obesity and knee osteoarthritis: Study protocol for
a randomized controlled trial. Trials. 22:2552021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hahn AK, Wallace CW, Welhaven HD, Brooks
E, McAlpine M, Christiansen BA, Walk ST and June RK: The microbiome
mediates epiphyseal bone loss and metabolomic changes after acute
joint trauma in mice. Osteoarthritis Cartilage. 29:882–893. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ilesanmi-Oyelere BL, Roy NC and Kruger MC:
Modulation of bone and joint biomarkers, gut microbiota, and
inflammation status by synbiotic supplementation and weight-bearing
exercise: Human study protocol for a randomized controlled trial.
JMIR Res Protoc. 10:e301312021. View
Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lan H, Hong W, Qian D, Peng F, Li H, Liang
C, Du M, Gu J, Mai J, Bai B and Peng G: Quercetin modulates the gut
microbiota as well as the metabolome in a rat model of
osteoarthritis. Bioengineered. 12:6240–6250. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pedersini P, Savoldi M, Berjano P and
Villafañe JH: A probiotic intervention on pain hypersensitivity and
microbiota composition in patients with osteoarthritis pain: Study
protocol for a randomized controlled trial. Arch Rheumatol.
36:296–301. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mi Y, Yi N, Xu X, Zeng F, Li N, Tan X,
Gong Z, Yan K, Kuang G and Lu M: Prebiotics alleviate cartilage
degradation and inflammation in post-traumatic osteoarthritic mice
by modulating the gut barrier and fecal metabolomics. Food Funct.
14:4065–4077. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Piva F, Gervois P, Karrout Y, Sané F and
Romond MB: Gut-joint axis: Impact of bifidobacterial cell wall
lipoproteins on arthritis development. Nutrients. 15:48612023.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang X, Wu Y, Liu Y, Chen F, Chen S, Zhang
F, Li S, Wang C, Gong Y, Huang R, et al: Altered gut microbiome
profile in patients with knee osteoarthritis. Front Microbiol.
14:11534242023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Meffre D, Grenier J, Bernard S, Courtin F,
Dudev T, Shackleford G, Jafarian-Tehrani M and Massaad C: Wnt and
lithium: A common destiny in the therapy of nervous system
pathologies? Cell Mol Life Sci. 71:1123–1148. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao L, Lai Y, Jiao H, Li J, Lu K and
Huang J: CRISPR-mediated Sox9 activation and RelA inhibition
enhance cell therapy for osteoarthritis. Mol Ther. 32:2549–2562.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Naeem M, Majeed S, Hoque MZ and Ahmad I:
Latest developed strategies to minimize the off-target effects in
CRISPR-cas-mediated genome editing. Cells. 9:16082020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Klermund J, Rhiel M, Kocher T, Chmielewski
KO, Bischof J, Andrieux G, El Gaz M, Hainzl S, Boerries M, Cornu
TI, et al: On- and off-target effects of paired CRISPR-Cas nickase
in primary human cells. Mol Ther. 32:1298–1310. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hitch TCA, Hall LJ, Walsh SK, Leventhal
GE, Slack E, de Wouters T, Walter J and Clavel T: Microbiome-based
interventions to modulate gut ecology and the immune system.
Mucosal Immunol. 15:1095–1113. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Porcari S, Fusco W, Spivak I, Fiorani M,
Gasbarrini A, Elinav E, Cammarota G and Ianiro G: Fine-tuning the
gut ecosystem: The current landscape and outlook of artificial
microbiome therapeutics. Lancet Gastroenterol Hepatol. 9:460–475.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yu M, Yang Y, Sykes M and Wang S:
Small-molecule inhibitors of tankyrases as prospective therapeutics
for cancer. J Med Chem. 65:5244–5273. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhong X, Zhang F, Yin X, Cao H, Wang X,
Liu D, Chen J and Chen X: Bone homeostasis and gut
microbial-dependent signaling pathways. J Microbiol Biotechnol.
31:765–774. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ticinesi A, Siniscalchi C, Meschi T and
Nouvenne A: Gut microbiome and bone health: Update on mechanisms,
clinical correlations, and possible treatment strategies.
Osteoporos Int. 36:167–191. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu Y, Da W, Xu MJ, Xiao CX, Deng T, Zhou
SL, Chen XT, Zhou YJ, Tang L, Nie Y, et al: Single-cell
transcriptomics reveals novel chondrocyte and osteoblast subtypes
and their role in knee osteoarthritis pathogenesis. Signal
Transduct Target Ther. 10:402025. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li J, Yang X, Chu Q, Xie L, Ding Y, Xu X,
Timko MP and Fan L: Multi-omics molecular biomarkers and database
of osteoarthritis. Database (Oxford). 2022:baac0522022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang Y, Zeng T, Tang D, Cui H, Wan Y and
Tang H: Integrated multi-omics analyses reveal lipid metabolic
signature in osteoarthritis. J Mol Biol. 437:1688882025. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou
Y, Wen L, Li L, Xu Y, Wang Y and Tang F: Single-cell RNA-seq
analysis reveals the progression of human osteoarthritis. Ann Rheum
Dis. 78:100–110. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Feng B, Lu J, Han Y, Han Y, Qiu X and Zeng
Z: The role of short-chain fatty acids in the regulation of
osteoporosis: new perspectives from gut microbiota to bone health:
A review. Medicine (Baltimore). 103:e394712024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kumar SS, Fathima A, Srihari P and Jamma
T: Host-gut microbiota derived secondary metabolite mediated
regulation of Wnt/β-catenin pathway: A potential therapeutic axis
in IBD and CRC. Front Oncol. 14:13925652024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Choi YR, Collins KH, Lee JW, Kang HJ and
Guilak F: Genome engineering for osteoarthritis: From designer
cells to disease-modifying drugs. Tissue Eng Regen Med. 16:335–343.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tyagi AM, Yu M, Darby TM, Vaccaro C, Li
JY, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM and Pacifici
R: The microbial metabolite butyrate stimulates bone formation via
T regulatory cell-mediated regulation of WNT10B expression.
Immunity. 49:1116–1131.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chaudhry N, Muhammad H, Seidl C, Downes D,
Young DA, Hao Y, Zhu L and Vincent TL: Highly efficient
CRISPR-Cas9-mediated editing identifies novel mechanosensitive
microRNA-140 targets in primary human articular chondrocytes.
Osteoarthritis Cartilage. 30:596–604. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Seidl CI, Fulga TA and Murphy CL:
CRISPR-Cas9 targeting of MMP13 in human chondrocytes leads to
significantly reduced levels of the metalloproteinase and enhanced
type II collagen accumulation. Osteoarthritis Cartilage.
27:140–147. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ortinski PI, O'Donovan B, Dong X and
Kantor B: Integrase-deficient lentiviral vector as an all-in-one
platform for highly efficient CRISPR/Cas9-mediated gene editing.
Mol Ther Methods Clin Dev. 5:153–164. 2017. View Article : Google Scholar : PubMed/NCBI
|