Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review)

  • Authors:
    • Weihua Wang
    • Yingdong Mou
    • Dunlin Lu
    • Shanshan Xu
  • View Affiliations / Copyright

    Affiliations: Emergency Department, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 27
    |
    Published online on: November 3, 2025
       https://doi.org/10.3892/mmr.2025.13737
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The thioredoxin (Trx) system comprises four core components: Trx‑interacting protein (TXNIP), Trx, Trx reductase (TrxR) and NADPH. TrxR utilizes NADPH to reduce Trx, reducing target proteins through its conserved thiol groups, thereby maintaining cellular redox balance. TXNIP inhibits Trx activity by forming a disulfide exchange reaction with Trx. Beyond its role in redox regulation, the Trx system interacts with various cellular regulators and participates in intracellular signaling networks. The Trx system exhibits dual regulatory roles in autophagy, with Trx primarily exerting an inhibitory effect on ferroptosis and apoptosis, whereas TXNIP promotes these processes. Multiple molecular mechanisms are implicated in these regulatory functions. Furthermore, the Trx system mediates cross‑regulation between autophagy and ferroptosis, as well as autophagy and apoptosis, thereby influencing cellular responses to stress conditions. The present review examines the structural components of the Trx system and the cellular translocation of TXNIP. Additionally, it explores the involvement of the Trx system in various diseases, including neurodegenerative disorders, cardiovascular diseases and cancer, highlighting its potential as a therapeutic target. By analyzing the molecular mechanisms through which the Trx system modulates cell death pathways, including ferroptosis, autophagy and apoptosis, the present review may provide novel research perspectives and theoretical foundations for developing disease treatment strategies.
View Figures

Figure 1

Trx system in the regulation of cell
death. Trx, thioredoxin; TXNIP, thioredoxin-interacting protein;
TrxR, thioredoxin reductase; NADPH, nicotinamide adenine
dinucleotide phosphate; GPX4, glutathione peroxidase 4; FoxO1,
forkhead box O1; ASK1, apoptosis signal-regulated kinase 1; JNKs,
c-Jun N-terminal kinases; mTOR, mechanistic target of
rapamycin.
View References

1 

Hasan AA, Kalinina E, Tatarskiy V and Shtil A: The thioredoxin system of mammalian cells and its modulators. Biomedicines. 10:17572022. View Article : Google Scholar : PubMed/NCBI

2 

Lee S, Kim SM and Lee RT: Thioredoxin and thioredoxin target proteins: From molecular mechanisms to functional significance. Antioxid Redox Signal. 18:1165–1207. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M and Gülow K: Exploring the thioredoxin system as a therapeutic target in cancer: Mechanisms and implications. Antioxidants (Basel). 13:10782024. View Article : Google Scholar : PubMed/NCBI

4 

Muri J and Kopf M: The thioredoxin system: Balancing redox responses in immune cells and tumors. Eur J Immunol. 53:e22499482023. View Article : Google Scholar : PubMed/NCBI

5 

Yang B, Lin Y, Huang Y, Shen YQ and Chen Q: Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol. 70:1030322024. View Article : Google Scholar : PubMed/NCBI

6 

Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, et al: Exploring immune redox modulation in bacterial infections: Insights into thioredoxin-mediated interactions and implications for understanding host-pathogen dynamics. Antioxidants (Basel). 13:5452024. View Article : Google Scholar : PubMed/NCBI

7 

Lu J and Holmgren A: Thioredoxin system in cell death progression. Antioxid Redox Signal. 17:1738–1747. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Jiang C, Krzyzanowski G, Chandel DS, Tom WA, Fernando N, Olou A and Fernando MR: Inhibition of thioredoxin reductase activity and oxidation of cellular thiols by antimicrobial agent, 2-bromo-2-nitro-1,3-propanediol, causes oxidative stress and cell death in cultured noncancer and cancer cells. Biology (Basel). 14:5092025.PubMed/NCBI

9 

Oberacker T, Kraft L, Schanz M, Latus J and Schricker S: The importance of thioredoxin-1 in health and disease. Antioxidants (Basel). 12:10782023. View Article : Google Scholar : PubMed/NCBI

10 

Yu G and Klionsky DJ: Life and death decisions-the many faces of autophagy in cell survival and cell death. Biomolecules. 12:8662022. View Article : Google Scholar : PubMed/NCBI

11 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI

13 

Yang Y, Cheng J, Lin Q and Ni Z: Autophagy-dependent ferroptosis in kidney disease. Front Med (Lausanne). 9:10718642023. View Article : Google Scholar : PubMed/NCBI

14 

Liu X, Tuerxun H and Zhao Y, Li Y, Wen S, Li X and Zhao Y: Crosstalk between ferroptosis and autophagy: Broaden horizons of cancer therapy. J Transl Med. 23:182025. View Article : Google Scholar : PubMed/NCBI

15 

Mahmood DFD, Abderrazak A, El Hadri K, Simmet T and Rouis M: The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal. 19:1266–1303. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Laurent TC, Moore EC and Reichard P: Enzymatic synthesis of deoxyribonucleotides. IV. isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem. 239:3436–3444. 1964. View Article : Google Scholar : PubMed/NCBI

17 

Xinastle-Castillo LO and Landa A: Physiological and modulatory role of thioredoxins in the cellular function. Open Med (Wars). 17:2021–2035. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Eklund H, Gleason FK and Holmgren A: Structural and functional relations among thioredoxins of different species. Proteins. 11:13–28. 1991. View Article : Google Scholar : PubMed/NCBI

19 

Hanschmann EM, Godoy JR, Berndt C, Hudemann C and Lillig CH: Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 19:1539–1605. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Forman-Kay JD, Clore GM, Wingfield PT and Gronenborn AM: High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution. Biochemistry. 30:2685–2698. 1991. View Article : Google Scholar : PubMed/NCBI

21 

Collet JF and Messens J: Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal. 13:1205–1216. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Barglow KT, Knutson CG, Wishnok JS, Tannenbaum SR and Marletta MA: Site-specific and redox-controlled S-nitrosation of thioredoxin. Proc Natl Acad Sci USA. 108:E600–E606. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Ungerstedt J, Du Y, Zhang H, Nair D and Holmgren A: In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radic Biol Med. 53:2002–2007. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Cortes-Bratti X, Bassères E, Herrera-Rodriguez F, Botero-Kleiven S, Coppotelli G, Andersen JB, Masucci MG, Holmgren A, Chaves-Olarte E, Frisan T and Avila-Cariño J: Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellular pathogens. PLoS One. 6:e169602011. View Article : Google Scholar : PubMed/NCBI

25 

King BC, Nowakowska J, Karsten CM, Köhl J, Renström E and Blom AM: Truncated and full-length thioredoxin-1 have opposing activating and inhibitory properties for human complement with relevance to endothelial surfaces. J Immunol. 188:4103–4112. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Kim MK, Zhao L, Jeong S, Zhang J, Jung JH, Seo HS, Choi JI and Lim S: Structural and biochemical characterization of thioredoxin-2 from deinococcus radiodurans. Antioxidants (Basel). 10:18432021. View Article : Google Scholar : PubMed/NCBI

27 

Gencheva R, Cheng Q and Arnér ESJ: Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med. 190:320–338. 2022. View Article : Google Scholar : PubMed/NCBI

28 

Arnér ES and Holmgren A: Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 267:6102–6109. 2000. View Article : Google Scholar : PubMed/NCBI

29 

Papp LV, Lu J, Holmgren A and Khanna KK: From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid Redox Signal. 9:775–806. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Lu J, Zhong L, Lönn ME, Burk RF, Hill KE and Holmgren A: Penultimate selenocysteine residue replaced by cysteine in thioredoxin reductase from selenium-deficient rat liver. FASEB J. 23:2394–2402. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Zeisel L, Felber JG, Scholzen KC, Poczka L, Cheff D, Maier MS, Cheng Q, Shen M, Hall MD, Arnér ESJ, et al: Selective cellular probes for mammalian thioredoxin reductase TrxR1: Rational design of RX1, a modular 1,2-thiaselenane redox probe. Chem. 8:1493–1517. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Muri J, Heer S, Matsushita M, Pohlmeier L, Tortola L, Fuhrer T, Conrad M, Zamboni N, Kisielow J and Kopf M: The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat Commun. 9:18512018. View Article : Google Scholar : PubMed/NCBI

33 

Cebula M, Moolla N, Capovilla A and Arnér ESJ: The rare TXNRD1_v3 (‘v3’) splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity. J Biol Chem. 288:10002–10011. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Zhang J, Li X, Han X, Liu R and Fang J: Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci. 38:794–808. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Pollak N, Dölle C and Ziegler M: The power to reduce: Pyridine nucleotides-small molecules with a multitude of functions. Biochem J. 402:205–218. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Holmgren A and Lu J: Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun. 396:120–124. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Gaber A, Tamoi M, Takeda T, Nakano Y and Shigeoka S: NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett. 499:32–36. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Frasier CR, Moukdar F, Patel HD, Sloan RC, Stewart LM, Alleman RJ, La Favor JD and Brown DA: Redox-dependent increases in glutathione reductase and exercise preconditioning: Role of NADPH oxidase and mitochondria. Cardiovasc Res. 98:47–55. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT, Park JW, Park DC, Song BJ, Veech RL, et al: Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem. 279:39968–39974. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Santos CXC, Raza S and Shah AM: Redox signaling in the cardiomyocyte: From physiology to failure. Int J Biochem Cell Biol. 74:145–151. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Masutani H: Thioredoxin-interacting protein in cancer and diabetes. Antioxid Redox Signal. 36:1001–1022. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Chen KS and DeLuca HF: Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta. 1219:26–32. 1994. View Article : Google Scholar : PubMed/NCBI

43 

Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y and Yodoi J: Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 274:21645–21650. 1999. View Article : Google Scholar : PubMed/NCBI

44 

Hwang J, Suh HW, Jeon YH, Hwang E, Nguyen LT, Yeom J, Lee SG, Lee C, Kim KJ, Kang BS, et al: The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun. 5:29582014. View Article : Google Scholar : PubMed/NCBI

45 

Saxena G, Chen J and Shalev A: Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem. 285:3997–4005. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Chen CL, Lin CF, Chang WT, Huang WC, Teng CF and Lin YS: Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood. 111:4365–4374. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Li Y, Deng W, Wu J, He Q, Yang G, Luo X, Jia Y, Duan Y, Zhou L and Liu D: TXNIP exacerbates the senescence and aging-related dysfunction of β cells by inducing cell cycle arrest through p38-p16/p21-CDK-Rb pathway. Antioxid Redox Signal. 38:480–495. 2023. View Article : Google Scholar : PubMed/NCBI

48 

Song S, Qiu D, Wang Y, Wei J, Wu H, Wu M, Wang S, Zhou X, Shi Y and Duan H: TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Exp Cell Res. 388:1118622020. View Article : Google Scholar : PubMed/NCBI

49 

Pan M, Zhang F, Qu K, Liu C and Zhang J: TXNIP: A double-edged sword in disease and therapeutic outlook. Oxid Med Cell Longev. 2022:78051152022. View Article : Google Scholar : PubMed/NCBI

50 

Yoshihara E: TXNIP/TBP-2: A master regulator for glucose homeostasis. Antioxidants (Basel). 9:7652020. View Article : Google Scholar : PubMed/NCBI

51 

Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, Shen CH, Wen J, Asara J, McGraw TE, et al: AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell. 49:1167–1175. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Park SJ, Kim Y, Li C, Suh J, Sivapackiam J, Goncalves TM, Jarad G, Zhao G, Urano F, Sharma V and Chen YM: Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome. Proc Natl Acad Sci USA. 119:e21165051192022. View Article : Google Scholar : PubMed/NCBI

53 

Kim SK, Choe JY and Park KY: TXNIP-mediated nuclear factor-κB signaling pathway and intracellular shifting of TXNIP in uric acid-induced NLRP3 inflammasome. Biochem Biophys Res Commun. 511:725–731. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Devi TS, Somayajulu M, Kowluru RA and Singh LP: TXNIP regulates mitophagy in retinal Müller cells under high-glucose conditions: Implications for diabetic retinopathy. Cell Death Dis. 8:e27772017. View Article : Google Scholar : PubMed/NCBI

55 

Meszaros M, Yusenko M, Domonkos L, Peterfi L, Kovacs G and Banyai D: Expression of TXNIP is associated with angiogenesis and postoperative relapse of conventional renal cell carcinoma. Sci Rep. 11:172002021. View Article : Google Scholar : PubMed/NCBI

56 

Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R and Ng T: The role of TXNIP in cancer: A fine balance between redox, metabolic, and immunological tumor control. Br J Cancer. 129:1877–1892. 2023. View Article : Google Scholar : PubMed/NCBI

57 

Fearnhead HO, Vandenabeele P and Vanden Berghe T: How do we fit ferroptosis in the family of regulated cell death? Cell Death Differ. 24:1991–1998. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Tuo QZ and Lei P: Ferroptosis in ischemic stroke: Animal models and mechanisms. Zool Res. 45:1235–1248. 2024. View Article : Google Scholar : PubMed/NCBI

59 

Xie Y, Kang R, Klionsky DJ and Tang D: GPX4 in cell death, autophagy, and disease. Autophagy. 19:2621–2638. 2023. View Article : Google Scholar : PubMed/NCBI

60 

Cheng Q, Chen M, Liu M, Chen X, Zhu L, Xu J, Xue J, Wu H and Du Y: Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis. Cell Death Dis. 13:6082022. View Article : Google Scholar : PubMed/NCBI

61 

Yodoi J, Matsuo Y, Tian H, Masutani H and Inamoto T: Anti-inflammatory thioredoxin family proteins for medicare, healthcare and aging care. Nutrients. 9:10812017. View Article : Google Scholar : PubMed/NCBI

62 

Sastre J, Pérez S, Sabater L and Rius-Pérez S: Redox signaling in the pancreas in health and disease. Physiol Rev. 105:593–650. 2025. View Article : Google Scholar : PubMed/NCBI

63 

Shen K, Wang X, Wang Y, Jia Y, Zhang Y, Wang K, Luo L, Cai W, Li J, Li S, et al: miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury. Redox Biol. 62:1026552023. View Article : Google Scholar : PubMed/NCBI

64 

Wang H, Xie B, Shi S, Zhang R, Liang Q, Liu Z and Cheng Y: Curdione inhibits ferroptosis in isoprenaline-induced myocardial infarction via regulating Keap1/Trx1/GPX4 signaling pathway. Phytother Res. 37:5328–5340. 2023. View Article : Google Scholar : PubMed/NCBI

65 

Bai L, Yan F, Deng R, Gu R, Zhang X and Bai J: Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4. Mol Neurobiol. 58:3187–3197. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Bebber CM, Müller F, Prieto Clemente L, Weber J and von Karstedt S: Ferroptosis in cancer cell biology. Cancers (Basel). 12:1642020. View Article : Google Scholar : PubMed/NCBI

67 

Ye Z, Liu W, Zhuo Q, Hu Q, Liu M, Sun Q, Zhang Z, Fan G, Xu W, Ji S, et al: Ferroptosis: Final destination for cancer? Cell Prolif. 53:e127612020. View Article : Google Scholar : PubMed/NCBI

68 

Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, AlQudsy LHH and Shang P: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 483:127–136. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Lu J and Holmgren A: The thioredoxin antioxidant system. Free Radic Biol Med. 66:75–87. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Tang Z, Liu Y, He M and Bu W: Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed Engl. 58:946–956. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Mohammadi F, Soltani A, Ghahremanloo A, Javid H and Hashemy SI: The thioredoxin system and cancer therapy: A review. Cancer Chemother Pharmacol. 84:925–935. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Lei G, Mao C, Yan Y, Zhuang L and Gan B: Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 12:836–857. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Lin Y, Chen X, Yu C, Xu G, Nie X, Cheng Y, Luan Y and Song Q: Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy. Acta Biomater. 159:300–311. 2023. View Article : Google Scholar : PubMed/NCBI

75 

Sun X, Zhang C, Fan B, Liu Q, Shi X, Wang S, Chen T, Cai X, Hu C, Sun H, et al: Cotargeting of thioredoxin 1 and glutamate-cysteine ligase in both imatinib-sensitive and imatinib-resistant CML cells. Biochem Pharmacol. 233:1167632025. View Article : Google Scholar : PubMed/NCBI

76 

Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI

77 

Hassannia B, Vandenabeele P and Vanden Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Wang S, Guo Q, Zhou L and Xia X: Ferroptosis: A double-edged sword. Cell Death Discov. 10:2652024. View Article : Google Scholar : PubMed/NCBI

79 

Zhu W, Liu X, Yang L, He Q, Huang D and Tan X: Ferroptosis and tumor immunity: In perspective of the major cell components in the tumor microenvironment. Eur J Pharmacol. 961:1761242023. View Article : Google Scholar : PubMed/NCBI

80 

Islam MI, Sultana S, Padmanabhan N, Rashid MU, Siddiqui TJ, Coombs KM, Vitiello PF, Karimi-Abdolrezaee S and Eftekharpour E: Thioredoxin-1 protein interactions in neuronal survival and neurodegeneration. Biochim Biophys Acta Mol Basis Dis. 1871:1675482025. View Article : Google Scholar : PubMed/NCBI

81 

Oka SI, Hirata T, Suzuki W, Naito D, Chen Y, Chin A, Yaginuma H, Saito T, Nagarajan N, Zhai P, et al: Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes. J Biol Chem. 292:18988–19000. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Oka SI, Chin A, Park JY, Ikeda S, Mizushima W, Ralda G, Zhai P, Tong M, Byun J, Tang F, et al: Thioredoxin-1 maintains mitochondrial function via mechanistic target of rapamycin signalling in the heart. Cardiovasc Res. 116:1742–1755. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Oka SI, Mizushima W, Huan C and Sadoshima J: Abstract 877: Thioredoxin-1 maintains cardiac function and metabolic gene expression via mTOR signaling. Circ Res. 125 (Suppl 1):2019. View Article : Google Scholar

84 

Yu Y, Wu T, Lu Y, Zhao W, Zhang J, Chen Q, Ge G, Hua Y, Chen K, Ullah I and Zhang F: Exosomal thioredoxin-1 from hypoxic human umbilical cord mesenchymal stem cells inhibits ferroptosis in doxorubicin-induced cardiotoxicity via mTORC1 signaling. Free Radic Biol Med. 193:108–121. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Yang Z, Huang S, Liu Y, Chang X, Liang Y, Li X, Xu Z, Wang S, Lu Y, Liu Y and Liu W: Biotin-targeted Au(I) radiosensitizer for cancer synergistic therapy by intervening with redox homeostasis and inducing ferroptosis. J Med Chem. 65:8401–8415. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Xi J, Tian LL, Xi J, Girimpuhwe D, Huang C, Ma R, Yao X, Shi D, Bai Z, Wu QX and Fang J: Alterperylenol as a novel thioredoxin reductase inhibitor induces liver cancer cell apoptosis and ferroptosis. J Agric Food Chem. 70:15763–15775. 2022. View Article : Google Scholar : PubMed/NCBI

87 

Guo Y, Han Y, Zhang J, Zhou Y, Wei M and Yu L: Identification and experimental validation of prognostic miRNA signature and ferroptosis-related key genes in cervical squamous cell carcinoma. Cancer Med. 13:e704152024. View Article : Google Scholar : PubMed/NCBI

88 

Jin W, Liu J, Yang J, Feng Z, Feng Z, Huang N, Yang T and Yu L: Identification of a key ceRNA network associated with ferroptosis in gastric cancer. Sci Rep. 12:200882022. View Article : Google Scholar : PubMed/NCBI

89 

Chen N, Meng Y, Zhan H and Li G: Identification and validation of potential ferroptosis-related genes in glucocorticoid-induced osteonecrosis of the femoral head. Medicina (Kaunas). 59:2972023. View Article : Google Scholar : PubMed/NCBI

90 

Zheng Y, Song J, Qian Q and Wang H: Silver nanoparticles induce liver inflammation through ferroptosis in zebrafish. Chemosphere. 362:1426732024. View Article : Google Scholar : PubMed/NCBI

91 

Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS, Lee YH, Song KS, Hwang HM, Na YS, et al: VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene. 22:4035–4046. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Nasoohi S, Ismael S and Ishrat T: Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: Regulation and implication. Mol Neurobiol. 55:7900–7920. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Morrison JA, Pike LA, Sams SB, Sharma V, Zhou Q, Severson JJ, Tan AC, Wood WM and Haugen BR: Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer. 13:622014. View Article : Google Scholar : PubMed/NCBI

94 

Bao W, Wang J, Fan K, Gao Y and Chen J: PIAS3 promotes ferroptosis by regulating TXNIP via TGF-β signaling pathway in hepatocellular carcinoma. Pharmacol Res. 196:1069152023. View Article : Google Scholar : PubMed/NCBI

95 

Zheng Y, Yang W, Wu W, Jin F, Lu D, Gao J and Wang S: Diagnostic and predictive significance of the ferroptosis-related gene TXNIP in lung adenocarcinoma stem cells based on multi-omics. Transl Oncol. 45:1019262024. View Article : Google Scholar : PubMed/NCBI

96 

Guo H, Fang T, Cheng Y, Li T, Qu JR, Xu CF, Deng XQ, Sun B and Chen LM: ChREBP-β/TXNIP aggravates frucose-induced renal injury through triggering ferroptosis of renal tubular epithelial cells. Free Radic Biol Med. 199:154–165. 2023. View Article : Google Scholar : PubMed/NCBI

97 

Liu Z, Gan S, Fu L, Xu Y, Wang S, Zhang G, Pan D, Tao L and Shen X: 1,8-Cineole ameliorates diabetic retinopathy by inhibiting retinal pigment epithelium ferroptosis via PPAR-γ/TXNIP pathways. Biomed Pharmacother. 164:1149782023. View Article : Google Scholar : PubMed/NCBI

98 

Maimaiti Y, Abulitifu M, Ajimu Z, Su T, Zhang Z, Yu Z and Xu H: FOXO regulation of TXNIP induces ferroptosis in satellite cells by inhibiting glutathione metabolism, promoting sarcopenia. Cell Mol Life Sci. 82:812025. View Article : Google Scholar : PubMed/NCBI

99 

Chen Q, Sun J, Liu X, Qin Z, Li J, Ma J, Xue Z, Li Y, Yang Z, Sun Q, et al: Dexmedetomidine and argon in combination against ferroptosis through tackling TXNIP-mediated oxidative stress in DCD porcine livers. Cell Death Discov. 10:3192024. View Article : Google Scholar : PubMed/NCBI

100 

Li J, Yue Z, Xiong W, Sun P, You K and Wang J: TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation. Oncol Rep. 37:3369–3376. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Yi K, Liu J, Rong Y, Wang C, Tang X, Zhang X, Xiong Y and Wang F: Biological functions and prognostic value of ferroptosis-related genes in bladder cancer. Front Mol Biosci. 8:6311522021. View Article : Google Scholar : PubMed/NCBI

102 

He L, He T, Farrar S, Ji L, Liu T and Ma X: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 44:532–553. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Mohamed IN, Li L, Ismael S, Ishrat T and El-Remessy AB: Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. World J Diabetes. 12:1979–1999. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Zhang XY, Liu CM, Ma YH, Meng N, Jiang JY, Yu XH and Wang XL: The TXNIP/Trx-1/GPX4 pathway promotes ferroptosis in hippocampal neurons after hypoxia-ischemia in neonatal rats. Zhongguo Dang Dai Er Ke Za Zhi. 24:1053–1060. 2022.(In Chinese). PubMed/NCBI

105 

Chen K, Meng Z, Min J, Wang J, Li Z, Gao Q and Hu J: Curcumin alleviates septic lung injury in mice by inhibiting TXNIP/TRX-1/GPX4-mediated ferroptosis. Nan Fang Yi Ke Da Xue Xue Bao. 44:1805–1813. 2024.(In Chinese). PubMed/NCBI

106 

Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM and Rubinsztein DC: Mammalian autophagy: How does it work? Annu Rev Biochem. 85:685–713. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Yoshimori T: Autophagy: A regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 313:453–458. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Chueh KS, Lu JH, Juan TJ, Chuang SM and Juan YS: The molecular mechanism and therapeutic application of autophagy for urological disease. Int J Mol Sci. 24:148872023. View Article : Google Scholar : PubMed/NCBI

109 

Jiang P and Mizushima N: LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods. 75:13–18. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Esteban-Martínez L and Boya P: Autophagic flux determination in vivo and ex vivo. Methods. 75:79–86. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G and Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 282:24131–24145. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Kumar AV, Mills J and Lapierre LR: Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front Cell Dev Biol. 10:7933282022. View Article : Google Scholar : PubMed/NCBI

113 

Chaudhry N, Sica M, Surabhi S, Hernandez DS, Mesquita A, Selimovic A, Riaz A, Lescat L, Bai H, MacIntosh GC and Jenny A: Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy. 18:2443–2458. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Zhang J, Zeng W, Han Y, Lee WR, Liou J and Jiang Y: Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol Cell. 83:2524–2539.e7. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Yadin D, Petrover Z, Shainberg A, Alcalai R, Waldman M, Seidman J, Seidman CE, Abraham NG, Hochhauser E and Arad M: Autophagy guided interventions to modify the cardiac phenotype of Danon disease. Biochem Pharmacol. 204:1152292022. View Article : Google Scholar : PubMed/NCBI

116 

Abokyi S, Shan SW, Lam CH, Catral KP, Pan F, Chan HHL, To CH and Tse DYY: Targeting lysosomes to reverse hydroquinone-induced autophagy defects and oxidative damage in human retinal pigment epithelial cells. Int J Mol Sci. 22:90422021. View Article : Google Scholar : PubMed/NCBI

117 

Bunk J, Prieto Huarcaya S, Drobny A, Dobert JP, Walther L, Rose-John S, Arnold P and Zunke F: Cathepsin D variants associated with neurodegenerative diseases show dysregulated functionality and modified α-synuclein degradation properties. Front Cell Dev Biol. 9:5818052021. View Article : Google Scholar : PubMed/NCBI

118 

Mary A, Eysert F, Checler F and Chami M: Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Mol Psychiatry. 28:202–216. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Wang H, Luo W, Chen H, Cai Z and Xu G: Mitochondrial dynamics and mitochondrial autophagy: Molecular structure, orchestrating mechanism and related disorders. Mitochondrion. 75:1018472024. View Article : Google Scholar : PubMed/NCBI

120 

Shang C, Liu Z, Zhu Y, Lu J, Ge C, Zhang C, Li N, Jin N, Li Y, Tian M and Li X: SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front Microbiol. 12:7807682022. View Article : Google Scholar : PubMed/NCBI

121 

Bitar S, Baumann T, Weber C, Abusaada M, Rojas-Charry L, Ziegler P, Schettgen T, Randerath IE, Venkataramani V, Michalke B, et al: Iron-sulfur cluster loss in mitochondrial CISD1 mediates PINK1 loss-of-function phenotypes. Elife. 13:e970272024. View Article : Google Scholar : PubMed/NCBI

122 

Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, et al: Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis. 196:1065052024. View Article : Google Scholar : PubMed/NCBI

123 

Lamonaca G and Volta M: Alpha-synuclein and LRRK2 in synaptic autophagy: Linking early dysfunction to late-stage pathology in Parkinson's disease. Cells. 9:11152020. View Article : Google Scholar : PubMed/NCBI

124 

Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G and Ghiglieri V: Alpha-synuclein in Parkinson's disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14:1762023. View Article : Google Scholar : PubMed/NCBI

125 

Gu R, Bai L, Yan F, Zhang S, Zhang X, Deng R, Zeng X, Sun B, Hu X, Li Y and Bai J: Thioredoxin-1 decreases alpha-synuclein induced by MPTP through promoting autophagy-lysosome pathway. Cell Death Discov. 10:932024. View Article : Google Scholar : PubMed/NCBI

126 

Ren X, Lv J, Wang N, Liu J, Gao C, Wu X, Yu Y, Teng Q, Dong W, Kong H and Kong L: Thioredoxin upregulation delays diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Diabetes Res Clin Pract. 185:1097882022. View Article : Google Scholar : PubMed/NCBI

127 

Hu J, Liu J, Chen S, Zhang C, Shen L, Yao K and Yu Y: Thioredoxin-1 regulates the autophagy induced by oxidative stress through LC3-II in human lens epithelial cells. Clin Exp Pharmacol Physiol. 50:476–485. 2023. View Article : Google Scholar : PubMed/NCBI

128 

Ren X, Lv J, Fu Y, Zhang N, Zhang C, Dong Z, Chudhary M, Zhong S, Kong L and Kong H: Upregulation of thioredoxin contributes to inhibiting diabetic hearing impairment. Diabetes Res Clin Pract. 179:1090252021. View Article : Google Scholar : PubMed/NCBI

129 

Sánchez-Villamil JP, D'Annunzio V, Finocchietto P, Holod S, Rebagliati I, Pérez H, Peralta JG, Gelpi RJ, Poderoso JJ and Carreras MC: Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. Int J Biochem Cell Biol. 81:323–334. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Shojaei S, Barzegar Behrooz A, Cordani M, Aghaei M, Azarpira N, Klionsky DJ and Ghavami S: A non-fluorescent immunohistochemistry method for measuring autophagy flux using MAP1LC3/LC3 and SQSTM1 as core markers. FEBS Open Bio. 15:898–905. 2025. View Article : Google Scholar : PubMed/NCBI

131 

Zhou J, Yao K, Zhang Y, Chen G, Lai K, Yin H and Yu Y: Thioredoxin binding protein-2 regulates autophagy of human lens epithelial cells under oxidative stress via inhibition of Akt phosphorylation. Oxid Med Cell Longev. 2016:48564312016. View Article : Google Scholar : PubMed/NCBI

132 

Wang W, Huang L, Thomas ER, Hu Y, Zeng F and Li X: Notoginsenoside R1 protects against the acrylamide-induced neurotoxicity via upregulating Trx-1-mediated ITGAV expression: Involvement of autophagy. Front Pharmacol. 11:5590462020. View Article : Google Scholar : PubMed/NCBI

133 

Ren X, Wang NN, Qi H, Qiu YY, Zhang CH, Brown E, Kong H and Kong L: Up-regulation thioredoxin inhibits advanced glycation end products-induced neurodegeneration. Cell Physiol Biochem. 50:1673–1686. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Ji C, Pan Y, Liu B, Liu J, Zhao C, Nie Z, Liao S, Kuang G, Wu X, Liu Q, et al: Thioredoxin C of streptococcus suis serotype 2 contributes to virulence by inducing antioxidative stress and inhibiting autophagy via the MSR1/PI3K-Akt-mTOR pathway in macrophages. Vet Microbiol. 298:1102632024. View Article : Google Scholar : PubMed/NCBI

135 

Vötsch D, Willenborg M, Weldearegay YB and Valentin-Weigand P: Streptococcus suis-the ‘two faces’ of a pathobiont in the porcine respiratory tract. Front Microbiol. 9:4802018. View Article : Google Scholar : PubMed/NCBI

136 

Dafre AL, Schmitz AE and Maher P: Methylglyoxal-induced AMPK activation leads to autophagic degradation of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Free Radic Biol Med. 108:270–279. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Dafre AL, Schmitz AE and Maher P: Hyperosmotic stress initiates AMPK-independent autophagy and AMPK- and autophagy-independent depletion of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Oxid Med Cell Longev. 2019:27158102019. View Article : Google Scholar : PubMed/NCBI

138 

Nakatogawa H: Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 55:39–50. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Arakawa S, Honda S, Yamaguchi H and Shimizu S: Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad Ser B Phys Biol Sci. 93:378–385. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Pérez-Pérez ME, Zaffagnini M, Marchand CH, Crespo JL and Lemaire SD: The yeast autophagy protease Atg4 is regulated by thioredoxin. Autophagy. 10:1953–1964. 2014. View Article : Google Scholar : PubMed/NCBI

141 

Nagarajan N, Oka SI, Nah J, Wu C, Zhai P, Mukai R, Xu X, Kashyap S, Huang CY, Sung EA, et al: Thioredoxin 1 promotes autophagy through transnitrosylation of Atg7 during myocardial ischemia. J Clin Invest. 133:e1623262023. View Article : Google Scholar : PubMed/NCBI

142 

Huang Q, Zhou HJ, Zhang H, Huang Y, Hinojosa-Kirschenbaum F, Fan P, Yao L, Belardinelli L, Tellides G, Giordano FJ, et al: Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation. 131:1082–1097. 2015. View Article : Google Scholar : PubMed/NCBI

143 

He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI and Min W: Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. J Exp Med. 218:e202014162021. View Article : Google Scholar : PubMed/NCBI

144 

Li YY, Xiang Y, Zhang S, Wang Y, Yang J, Liu W and Xue FT: Thioredoxin-2 protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy and apoptosis in H9c2 cardiomyocytes. Am J Transl Res. 9:1471–1482. 2017.PubMed/NCBI

145 

Li Y, Xiang Y, Zhang S, Wang Y, Yang J, Liu W and Xue F: Intramyocardial injection of thioredoxin 2-expressing lentivirus alleviates myocardial ischemia-reperfusion injury in rats. Am J Transl Res. 9:4428–4439. 2017.PubMed/NCBI

146 

Bjørklund G, Zou L, Wang J, Chasapis CT and Peana M: Thioredoxin reductase as a pharmacological target. Pharmacol Res. 174:1058542021. View Article : Google Scholar : PubMed/NCBI

147 

Lei H, Wang G, Zhang J and Han Q: Inhibiting TrxR suppresses liver cancer by inducing apoptosis and eliciting potent antitumor immunity. Oncol Rep. 40:3447–3457. 2018.PubMed/NCBI

148 

Nagakannan P, Iqbal MA, Yeung A, Thliveris JA, Rastegar M, Ghavami S and Eftekharpour E: Perturbation of redox balance after thioredoxin reductase deficiency interrupts autophagy-lysosomal degradation pathway and enhances cell death in nutritionally stressed SH-SY5Y cells. Free Radic Biol Med. 101:53–70. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Huang C, Zhang Y, Kelly DJ, Tan CYR, Gill A, Cheng D, Braet F, Park JS, Sue CM, Pollock CA and Chen XM: Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci Rep. 6:291962016. View Article : Google Scholar : PubMed/NCBI

150 

Huang C, Lin MZ, Cheng D, Braet F, Pollock CA and Chen XM: Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux. Lab Invest. 94:309–320. 2014. View Article : Google Scholar : PubMed/NCBI

151 

Tang H, Hou H, Song L, Tian Z, Liu W, Xia T and Wang A: The role of mTORC1/TFEB axis mediated lysosomal biogenesis and autophagy impairment in fluoride neurotoxicity and the intervention effects of resveratrol. J Hazard Mater. 467:1336342024. View Article : Google Scholar : PubMed/NCBI

152 

Martina JA, Chen Y, Gucek M and Puertollano R: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 8:903–914. 2012. View Article : Google Scholar : PubMed/NCBI

153 

Du Y, Wu M, Song S, Bian Y and Shi Y: TXNIP deficiency attenuates renal fibrosis by modulating mTORC1/TFEB-mediated autophagy in diabetic kidney disease. Ren Fail. 46:23389332024. View Article : Google Scholar : PubMed/NCBI

154 

Gao C, Wang R, Li B, Guo Y, Yin T, Xia Y, Zhang F, Lian K, Liu Y, Wang H, et al: TXNIP/Redd1 signalling and excessive autophagy: A novel mechanism of myocardial ischaemia/reperfusion injury in mice. Cardiovasc Res. 116:645–657. 2020. View Article : Google Scholar : PubMed/NCBI

155 

Ao H, Li H, Zhao X, Liu B and Lu L: TXNIP positively regulates the autophagy and apoptosis in the rat müller cell of diabetic retinopathy. Life Sci. 267:1189882021. View Article : Google Scholar : PubMed/NCBI

156 

Park HS, Song JW, Park JH, Lim BK, Moon OS, Son HY, Lee JH, Gao B, Won YS and Kwon HJ: TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation. Autophagy. 17:2549–2564. 2021. View Article : Google Scholar : PubMed/NCBI

157 

Gordy C and He YW: The crosstalk between autophagy and apoptosis: Where does this lead? Protein Cell. 3:17–27. 2012. View Article : Google Scholar : PubMed/NCBI

158 

Song S, Tan J, Miao Y, Li M and Zhang Q: Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol. 232:2977–2984. 2017. View Article : Google Scholar : PubMed/NCBI

159 

Wang J, Wang J, Wang JJ, Zhang WF and Jiao XY: Role of autophagy in TXNIP overexpression-induced apoptosis of INS-1 islet cells. Sheng Li Xue Bao. 69:445–451. 2017.(In Chinese). PubMed/NCBI

160 

Wang W, Lu D, Shi Y and Wang Y: Exploring the neuroprotective effects of lithium in ischemic stroke: A literature review. Int J Med Sci. 21:284–298. 2024. View Article : Google Scholar : PubMed/NCBI

161 

Lin Q, Li S, Jin H, Cai H, Zhu X, Yang Y, Wu J, Qi C, Shao X, Li J, et al: Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. Int J Biol Sci. 19:1192–1210. 2023. View Article : Google Scholar : PubMed/NCBI

162 

Ji H, Zhao Y, Ma X, Wu L, Guo F, Huang F, Song Y, Wang J and Qin G: Upregulation of UHRF1 promotes PINK1-mediated mitophagy to alleviate ferroptosis in diabetic nephropathy. Inflammation. 47:718–732. 2024. View Article : Google Scholar : PubMed/NCBI

163 

Li C, Fang Y and Chen YM: Beyond redox regulation: Novel roles of TXNIP in the pathogenesis and therapeutic targeting of kidney disease. Am J Pathol. 195:615–625. 2025. View Article : Google Scholar : PubMed/NCBI

164 

Zhang Y, Li B, Fu Y, Cai H and Zheng Y: Txnip promotes autophagic apoptosis in diabetic cardiomyopathy by upregulating FoxO1 and its acetylation. Cell Signal. 124:1114692024. View Article : Google Scholar : PubMed/NCBI

165 

Zhao Q, Liu Y, Zhong J, Bi Y, Liu Y, Ren Z, Li X, Jia J, Yu M and Yu X: Pristimerin induces apoptosis and autophagy via activation of ROS/ASK1/JNK pathway in human breast cancer in vitro and in vivo. Cell Death Discov. 5:1252019. View Article : Google Scholar : PubMed/NCBI

166 

Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF and Ribeiro-Dos-Santos Â: A cell's fate: An overview of the molecular biology and genetics of apoptosis. Int J Mol Sci. 20:41332019. View Article : Google Scholar : PubMed/NCBI

167 

Liu Y and Min W: Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res. 90:1259–1266. 2002. View Article : Google Scholar : PubMed/NCBI

168 

Bao N, Wang J, Yue Q, Cao F, Gu X, Wen K, Kong W and Gu M: Chrysophanol-mediated trx-1 activation attenuates renal fibrosis through inhibition of the JNK/Cx43 signaling pathway. Ren Fail. 46:23987102024. View Article : Google Scholar : PubMed/NCBI

169 

D'Annunzio V, Perez V, Boveris A, Gelpi RJ and Poderoso JJ: Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts. Pharmacol Res. 109:24–31. 2016. View Article : Google Scholar : PubMed/NCBI

170 

Yang L, Guo N, Fan W, Ni C, Huang M, Bai L, Zhang L, Zhang X, Wen Y, Li Y, et al: Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology. 78:163–169. 2020. View Article : Google Scholar : PubMed/NCBI

171 

Liu H, Dai L, Wang M, Feng F and Xiao Y: Tunicamycin induces hepatic stellate cell apoptosis through calpain-2/Ca2 +-dependent endoplasmic reticulum stress pathway. Front Cell Dev Biol. 9:6848572021. View Article : Google Scholar : PubMed/NCBI

172 

Tian C, Gao P, Zheng Y, Yue W, Wang X, Jin H and Chen Q: Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death. Cell Res. 18:458–471. 2008. View Article : Google Scholar : PubMed/NCBI

173 

Pérez VI, Lew CM, Cortez LA, Webb CR, Rodriguez M, Liu Y, Qi W, Li Y, Chaudhuri A, Van Remmen H, et al: Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic Biol Med. 44:882–892. 2008. View Article : Google Scholar : PubMed/NCBI

174 

Kundumani-Sridharan V, Subramani J, Owens C and Das KC: Nrg1β released in remote ischemic preconditioning improves myocardial perfusion and decreases ischemia/reperfusion injury via ErbB2-mediated rescue of endothelial nitric oxide synthase and abrogation of Trx2 autophagy. Arterioscler Thromb Vasc Biol. 41:2293–2314. 2021. View Article : Google Scholar : PubMed/NCBI

175 

Xu Q, Zhang J, Zhao Z, Chu Y and Fang J: Revealing PACMA 31 as a new chemical type TrxR inhibitor to promote cancer cell apoptosis. Biochim Biophys Acta Mol Cell Res. 1869:1193232022. View Article : Google Scholar : PubMed/NCBI

176 

Qian J, Xu Z, Meng C, Liu J, Hsu PL, Li Y, Zhu W, Yang Y, Morris-Natschke SL and Lee KH: Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy. Eur J Med Chem. 204:1126102020. View Article : Google Scholar : PubMed/NCBI

177 

Lin JH, Liu CC, Liu CY, Hsu TW, Yeh YC, How CK, Hsu HS and Hung SC: Selenite selectively kills lung fibroblasts to treat bleomycin-induced pulmonary fibrosis. Redox Biol. 72:1031482024. View Article : Google Scholar : PubMed/NCBI

178 

Jia Y, Cui R, Wang C, Feng Y, Li Z, Tong Y, Qu K, Liu C and Zhang J: Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol. 32:1015342020. View Article : Google Scholar : PubMed/NCBI

179 

Yang C, Mo J, Liu Q, Li W, Chen Y, Feng J, Jia J, Liu L, Bai Y and Zhou J: TXNIP/NLRP3 aggravates global cerebral ischemia-reperfusion injury-induced cognitive decline in mice. Heliyon. 10:e274232024. View Article : Google Scholar : PubMed/NCBI

180 

Huang L, Zhang S, Bian M, Xiang X, Xiao L, Wang J, Lu S, Chen W, Zhang C, Mo G, et al: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect. Acta Biomater. 180:82–103. 2024. View Article : Google Scholar : PubMed/NCBI

181 

Hashimoto K, Nishimura S and Goto K: PD1/PDL1 immune checkpoint in bone and soft tissue tumors (Review). Mol Clin Oncol. 29:312025. View Article : Google Scholar : PubMed/NCBI

182 

Dubuisson A, Mangelinck A, Knockaert S, Zichi A, Becht E, Philippon W, Dromaint-Catesson S, Fasquel M, Melchiore F, Provost N, et al: Glucose deprivation and identification of TXNIP as an immunometabolic modulator of T cell activation in cancer. Front Immunol. 16:15485092025. View Article : Google Scholar : PubMed/NCBI

183 

Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J and Maes M: The role of the thioredoxin system in brain diseases. Antioxidants (Basel). 11:21612022. View Article : Google Scholar : PubMed/NCBI

184 

Choi EH and Park SJ: TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target. Exp Mol Med. 55:1348–1356. 2023. View Article : Google Scholar : PubMed/NCBI

185 

Jia JJ, Geng WS, Wang ZQ, Chen L and Zeng XS: The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol. 84:453–470. 2019. View Article : Google Scholar : PubMed/NCBI

186 

Tsubaki H, Tooyama I and Walker DG: Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases. Int J Mol Sci. 21:93572020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang W, Mou Y, Lu D and Xu S: Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review). Mol Med Rep 33: 27, 2026.
APA
Wang, W., Mou, Y., Lu, D., & Xu, S. (2026). Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review). Molecular Medicine Reports, 33, 27. https://doi.org/10.3892/mmr.2025.13737
MLA
Wang, W., Mou, Y., Lu, D., Xu, S."Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review)". Molecular Medicine Reports 33.1 (2026): 27.
Chicago
Wang, W., Mou, Y., Lu, D., Xu, S."Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review)". Molecular Medicine Reports 33, no. 1 (2026): 27. https://doi.org/10.3892/mmr.2025.13737
Copy and paste a formatted citation
x
Spandidos Publications style
Wang W, Mou Y, Lu D and Xu S: Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review). Mol Med Rep 33: 27, 2026.
APA
Wang, W., Mou, Y., Lu, D., & Xu, S. (2026). Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review). Molecular Medicine Reports, 33, 27. https://doi.org/10.3892/mmr.2025.13737
MLA
Wang, W., Mou, Y., Lu, D., Xu, S."Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review)". Molecular Medicine Reports 33.1 (2026): 27.
Chicago
Wang, W., Mou, Y., Lu, D., Xu, S."Involvement of the thioredoxin system in multiple diseases: A focus on mechanisms of action in autophagy and ferroptosis (Review)". Molecular Medicine Reports 33, no. 1 (2026): 27. https://doi.org/10.3892/mmr.2025.13737
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team