You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Hasan AA, Kalinina E, Tatarskiy V and Shtil A: The thioredoxin system of mammalian cells and its modulators. Biomedicines. 10:17572022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee S, Kim SM and Lee RT: Thioredoxin and thioredoxin target proteins: From molecular mechanisms to functional significance. Antioxid Redox Signal. 18:1165–1207. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M and Gülow K: Exploring the thioredoxin system as a therapeutic target in cancer: Mechanisms and implications. Antioxidants (Basel). 13:10782024. View Article : Google Scholar : PubMed/NCBI | |
|
Muri J and Kopf M: The thioredoxin system: Balancing redox responses in immune cells and tumors. Eur J Immunol. 53:e22499482023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang B, Lin Y, Huang Y, Shen YQ and Chen Q: Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol. 70:1030322024. View Article : Google Scholar : PubMed/NCBI | |
|
Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, et al: Exploring immune redox modulation in bacterial infections: Insights into thioredoxin-mediated interactions and implications for understanding host-pathogen dynamics. Antioxidants (Basel). 13:5452024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J and Holmgren A: Thioredoxin system in cell death progression. Antioxid Redox Signal. 17:1738–1747. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang C, Krzyzanowski G, Chandel DS, Tom WA, Fernando N, Olou A and Fernando MR: Inhibition of thioredoxin reductase activity and oxidation of cellular thiols by antimicrobial agent, 2-bromo-2-nitro-1,3-propanediol, causes oxidative stress and cell death in cultured noncancer and cancer cells. Biology (Basel). 14:5092025.PubMed/NCBI | |
|
Oberacker T, Kraft L, Schanz M, Latus J and Schricker S: The importance of thioredoxin-1 in health and disease. Antioxidants (Basel). 12:10782023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu G and Klionsky DJ: Life and death decisions-the many faces of autophagy in cell survival and cell death. Biomolecules. 12:8662022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Cheng J, Lin Q and Ni Z: Autophagy-dependent ferroptosis in kidney disease. Front Med (Lausanne). 9:10718642023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Tuerxun H and Zhao Y, Li Y, Wen S, Li X and Zhao Y: Crosstalk between ferroptosis and autophagy: Broaden horizons of cancer therapy. J Transl Med. 23:182025. View Article : Google Scholar : PubMed/NCBI | |
|
Mahmood DFD, Abderrazak A, El Hadri K, Simmet T and Rouis M: The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal. 19:1266–1303. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Laurent TC, Moore EC and Reichard P: Enzymatic synthesis of deoxyribonucleotides. IV. isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem. 239:3436–3444. 1964. View Article : Google Scholar : PubMed/NCBI | |
|
Xinastle-Castillo LO and Landa A: Physiological and modulatory role of thioredoxins in the cellular function. Open Med (Wars). 17:2021–2035. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Eklund H, Gleason FK and Holmgren A: Structural and functional relations among thioredoxins of different species. Proteins. 11:13–28. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C and Lillig CH: Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 19:1539–1605. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Forman-Kay JD, Clore GM, Wingfield PT and Gronenborn AM: High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution. Biochemistry. 30:2685–2698. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Collet JF and Messens J: Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal. 13:1205–1216. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Barglow KT, Knutson CG, Wishnok JS, Tannenbaum SR and Marletta MA: Site-specific and redox-controlled S-nitrosation of thioredoxin. Proc Natl Acad Sci USA. 108:E600–E606. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ungerstedt J, Du Y, Zhang H, Nair D and Holmgren A: In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radic Biol Med. 53:2002–2007. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cortes-Bratti X, Bassères E, Herrera-Rodriguez F, Botero-Kleiven S, Coppotelli G, Andersen JB, Masucci MG, Holmgren A, Chaves-Olarte E, Frisan T and Avila-Cariño J: Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellular pathogens. PLoS One. 6:e169602011. View Article : Google Scholar : PubMed/NCBI | |
|
King BC, Nowakowska J, Karsten CM, Köhl J, Renström E and Blom AM: Truncated and full-length thioredoxin-1 have opposing activating and inhibitory properties for human complement with relevance to endothelial surfaces. J Immunol. 188:4103–4112. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kim MK, Zhao L, Jeong S, Zhang J, Jung JH, Seo HS, Choi JI and Lim S: Structural and biochemical characterization of thioredoxin-2 from deinococcus radiodurans. Antioxidants (Basel). 10:18432021. View Article : Google Scholar : PubMed/NCBI | |
|
Gencheva R, Cheng Q and Arnér ESJ: Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med. 190:320–338. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Arnér ES and Holmgren A: Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 267:6102–6109. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Papp LV, Lu J, Holmgren A and Khanna KK: From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid Redox Signal. 9:775–806. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J, Zhong L, Lönn ME, Burk RF, Hill KE and Holmgren A: Penultimate selenocysteine residue replaced by cysteine in thioredoxin reductase from selenium-deficient rat liver. FASEB J. 23:2394–2402. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zeisel L, Felber JG, Scholzen KC, Poczka L, Cheff D, Maier MS, Cheng Q, Shen M, Hall MD, Arnér ESJ, et al: Selective cellular probes for mammalian thioredoxin reductase TrxR1: Rational design of RX1, a modular 1,2-thiaselenane redox probe. Chem. 8:1493–1517. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Muri J, Heer S, Matsushita M, Pohlmeier L, Tortola L, Fuhrer T, Conrad M, Zamboni N, Kisielow J and Kopf M: The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat Commun. 9:18512018. View Article : Google Scholar : PubMed/NCBI | |
|
Cebula M, Moolla N, Capovilla A and Arnér ESJ: The rare TXNRD1_v3 (‘v3’) splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity. J Biol Chem. 288:10002–10011. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Li X, Han X, Liu R and Fang J: Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci. 38:794–808. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pollak N, Dölle C and Ziegler M: The power to reduce: Pyridine nucleotides-small molecules with a multitude of functions. Biochem J. 402:205–218. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Holmgren A and Lu J: Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun. 396:120–124. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gaber A, Tamoi M, Takeda T, Nakano Y and Shigeoka S: NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett. 499:32–36. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Frasier CR, Moukdar F, Patel HD, Sloan RC, Stewart LM, Alleman RJ, La Favor JD and Brown DA: Redox-dependent increases in glutathione reductase and exercise preconditioning: Role of NADPH oxidase and mitochondria. Cardiovasc Res. 98:47–55. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT, Park JW, Park DC, Song BJ, Veech RL, et al: Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem. 279:39968–39974. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Santos CXC, Raza S and Shah AM: Redox signaling in the cardiomyocyte: From physiology to failure. Int J Biochem Cell Biol. 74:145–151. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Masutani H: Thioredoxin-interacting protein in cancer and diabetes. Antioxid Redox Signal. 36:1001–1022. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen KS and DeLuca HF: Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta. 1219:26–32. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y and Yodoi J: Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 274:21645–21650. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Hwang J, Suh HW, Jeon YH, Hwang E, Nguyen LT, Yeom J, Lee SG, Lee C, Kim KJ, Kang BS, et al: The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun. 5:29582014. View Article : Google Scholar : PubMed/NCBI | |
|
Saxena G, Chen J and Shalev A: Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem. 285:3997–4005. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CL, Lin CF, Chang WT, Huang WC, Teng CF and Lin YS: Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood. 111:4365–4374. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Deng W, Wu J, He Q, Yang G, Luo X, Jia Y, Duan Y, Zhou L and Liu D: TXNIP exacerbates the senescence and aging-related dysfunction of β cells by inducing cell cycle arrest through p38-p16/p21-CDK-Rb pathway. Antioxid Redox Signal. 38:480–495. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Song S, Qiu D, Wang Y, Wei J, Wu H, Wu M, Wang S, Zhou X, Shi Y and Duan H: TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Exp Cell Res. 388:1118622020. View Article : Google Scholar : PubMed/NCBI | |
|
Pan M, Zhang F, Qu K, Liu C and Zhang J: TXNIP: A double-edged sword in disease and therapeutic outlook. Oxid Med Cell Longev. 2022:78051152022. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshihara E: TXNIP/TBP-2: A master regulator for glucose homeostasis. Antioxidants (Basel). 9:7652020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, Shen CH, Wen J, Asara J, McGraw TE, et al: AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell. 49:1167–1175. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Park SJ, Kim Y, Li C, Suh J, Sivapackiam J, Goncalves TM, Jarad G, Zhao G, Urano F, Sharma V and Chen YM: Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome. Proc Natl Acad Sci USA. 119:e21165051192022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SK, Choe JY and Park KY: TXNIP-mediated nuclear factor-κB signaling pathway and intracellular shifting of TXNIP in uric acid-induced NLRP3 inflammasome. Biochem Biophys Res Commun. 511:725–731. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Devi TS, Somayajulu M, Kowluru RA and Singh LP: TXNIP regulates mitophagy in retinal Müller cells under high-glucose conditions: Implications for diabetic retinopathy. Cell Death Dis. 8:e27772017. View Article : Google Scholar : PubMed/NCBI | |
|
Meszaros M, Yusenko M, Domonkos L, Peterfi L, Kovacs G and Banyai D: Expression of TXNIP is associated with angiogenesis and postoperative relapse of conventional renal cell carcinoma. Sci Rep. 11:172002021. View Article : Google Scholar : PubMed/NCBI | |
|
Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R and Ng T: The role of TXNIP in cancer: A fine balance between redox, metabolic, and immunological tumor control. Br J Cancer. 129:1877–1892. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fearnhead HO, Vandenabeele P and Vanden Berghe T: How do we fit ferroptosis in the family of regulated cell death? Cell Death Differ. 24:1991–1998. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tuo QZ and Lei P: Ferroptosis in ischemic stroke: Animal models and mechanisms. Zool Res. 45:1235–1248. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Kang R, Klionsky DJ and Tang D: GPX4 in cell death, autophagy, and disease. Autophagy. 19:2621–2638. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Q, Chen M, Liu M, Chen X, Zhu L, Xu J, Xue J, Wu H and Du Y: Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis. Cell Death Dis. 13:6082022. View Article : Google Scholar : PubMed/NCBI | |
|
Yodoi J, Matsuo Y, Tian H, Masutani H and Inamoto T: Anti-inflammatory thioredoxin family proteins for medicare, healthcare and aging care. Nutrients. 9:10812017. View Article : Google Scholar : PubMed/NCBI | |
|
Sastre J, Pérez S, Sabater L and Rius-Pérez S: Redox signaling in the pancreas in health and disease. Physiol Rev. 105:593–650. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Shen K, Wang X, Wang Y, Jia Y, Zhang Y, Wang K, Luo L, Cai W, Li J, Li S, et al: miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury. Redox Biol. 62:1026552023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Xie B, Shi S, Zhang R, Liang Q, Liu Z and Cheng Y: Curdione inhibits ferroptosis in isoprenaline-induced myocardial infarction via regulating Keap1/Trx1/GPX4 signaling pathway. Phytother Res. 37:5328–5340. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bai L, Yan F, Deng R, Gu R, Zhang X and Bai J: Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4. Mol Neurobiol. 58:3187–3197. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bebber CM, Müller F, Prieto Clemente L, Weber J and von Karstedt S: Ferroptosis in cancer cell biology. Cancers (Basel). 12:1642020. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Z, Liu W, Zhuo Q, Hu Q, Liu M, Sun Q, Zhang Z, Fan G, Xu W, Ji S, et al: Ferroptosis: Final destination for cancer? Cell Prolif. 53:e127612020. View Article : Google Scholar : PubMed/NCBI | |
|
Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, AlQudsy LHH and Shang P: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 483:127–136. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J and Holmgren A: The thioredoxin antioxidant system. Free Radic Biol Med. 66:75–87. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Z, Liu Y, He M and Bu W: Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed Engl. 58:946–956. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammadi F, Soltani A, Ghahremanloo A, Javid H and Hashemy SI: The thioredoxin system and cancer therapy: A review. Cancer Chemother Pharmacol. 84:925–935. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lei G, Mao C, Yan Y, Zhuang L and Gan B: Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 12:836–857. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Chen X, Yu C, Xu G, Nie X, Cheng Y, Luan Y and Song Q: Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy. Acta Biomater. 159:300–311. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Zhang C, Fan B, Liu Q, Shi X, Wang S, Chen T, Cai X, Hu C, Sun H, et al: Cotargeting of thioredoxin 1 and glutamate-cysteine ligase in both imatinib-sensitive and imatinib-resistant CML cells. Biochem Pharmacol. 233:1167632025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hassannia B, Vandenabeele P and Vanden Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Guo Q, Zhou L and Xia X: Ferroptosis: A double-edged sword. Cell Death Discov. 10:2652024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu W, Liu X, Yang L, He Q, Huang D and Tan X: Ferroptosis and tumor immunity: In perspective of the major cell components in the tumor microenvironment. Eur J Pharmacol. 961:1761242023. View Article : Google Scholar : PubMed/NCBI | |
|
Islam MI, Sultana S, Padmanabhan N, Rashid MU, Siddiqui TJ, Coombs KM, Vitiello PF, Karimi-Abdolrezaee S and Eftekharpour E: Thioredoxin-1 protein interactions in neuronal survival and neurodegeneration. Biochim Biophys Acta Mol Basis Dis. 1871:1675482025. View Article : Google Scholar : PubMed/NCBI | |
|
Oka SI, Hirata T, Suzuki W, Naito D, Chen Y, Chin A, Yaginuma H, Saito T, Nagarajan N, Zhai P, et al: Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes. J Biol Chem. 292:18988–19000. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Oka SI, Chin A, Park JY, Ikeda S, Mizushima W, Ralda G, Zhai P, Tong M, Byun J, Tang F, et al: Thioredoxin-1 maintains mitochondrial function via mechanistic target of rapamycin signalling in the heart. Cardiovasc Res. 116:1742–1755. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Oka SI, Mizushima W, Huan C and Sadoshima J: Abstract 877: Thioredoxin-1 maintains cardiac function and metabolic gene expression via mTOR signaling. Circ Res. 125 (Suppl 1):2019. View Article : Google Scholar | |
|
Yu Y, Wu T, Lu Y, Zhao W, Zhang J, Chen Q, Ge G, Hua Y, Chen K, Ullah I and Zhang F: Exosomal thioredoxin-1 from hypoxic human umbilical cord mesenchymal stem cells inhibits ferroptosis in doxorubicin-induced cardiotoxicity via mTORC1 signaling. Free Radic Biol Med. 193:108–121. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Huang S, Liu Y, Chang X, Liang Y, Li X, Xu Z, Wang S, Lu Y, Liu Y and Liu W: Biotin-targeted Au(I) radiosensitizer for cancer synergistic therapy by intervening with redox homeostasis and inducing ferroptosis. J Med Chem. 65:8401–8415. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xi J, Tian LL, Xi J, Girimpuhwe D, Huang C, Ma R, Yao X, Shi D, Bai Z, Wu QX and Fang J: Alterperylenol as a novel thioredoxin reductase inhibitor induces liver cancer cell apoptosis and ferroptosis. J Agric Food Chem. 70:15763–15775. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Han Y, Zhang J, Zhou Y, Wei M and Yu L: Identification and experimental validation of prognostic miRNA signature and ferroptosis-related key genes in cervical squamous cell carcinoma. Cancer Med. 13:e704152024. View Article : Google Scholar : PubMed/NCBI | |
|
Jin W, Liu J, Yang J, Feng Z, Feng Z, Huang N, Yang T and Yu L: Identification of a key ceRNA network associated with ferroptosis in gastric cancer. Sci Rep. 12:200882022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen N, Meng Y, Zhan H and Li G: Identification and validation of potential ferroptosis-related genes in glucocorticoid-induced osteonecrosis of the femoral head. Medicina (Kaunas). 59:2972023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Song J, Qian Q and Wang H: Silver nanoparticles induce liver inflammation through ferroptosis in zebrafish. Chemosphere. 362:1426732024. View Article : Google Scholar : PubMed/NCBI | |
|
Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS, Lee YH, Song KS, Hwang HM, Na YS, et al: VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene. 22:4035–4046. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Nasoohi S, Ismael S and Ishrat T: Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: Regulation and implication. Mol Neurobiol. 55:7900–7920. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Morrison JA, Pike LA, Sams SB, Sharma V, Zhou Q, Severson JJ, Tan AC, Wood WM and Haugen BR: Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer. 13:622014. View Article : Google Scholar : PubMed/NCBI | |
|
Bao W, Wang J, Fan K, Gao Y and Chen J: PIAS3 promotes ferroptosis by regulating TXNIP via TGF-β signaling pathway in hepatocellular carcinoma. Pharmacol Res. 196:1069152023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Yang W, Wu W, Jin F, Lu D, Gao J and Wang S: Diagnostic and predictive significance of the ferroptosis-related gene TXNIP in lung adenocarcinoma stem cells based on multi-omics. Transl Oncol. 45:1019262024. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Fang T, Cheng Y, Li T, Qu JR, Xu CF, Deng XQ, Sun B and Chen LM: ChREBP-β/TXNIP aggravates frucose-induced renal injury through triggering ferroptosis of renal tubular epithelial cells. Free Radic Biol Med. 199:154–165. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Gan S, Fu L, Xu Y, Wang S, Zhang G, Pan D, Tao L and Shen X: 1,8-Cineole ameliorates diabetic retinopathy by inhibiting retinal pigment epithelium ferroptosis via PPAR-γ/TXNIP pathways. Biomed Pharmacother. 164:1149782023. View Article : Google Scholar : PubMed/NCBI | |
|
Maimaiti Y, Abulitifu M, Ajimu Z, Su T, Zhang Z, Yu Z and Xu H: FOXO regulation of TXNIP induces ferroptosis in satellite cells by inhibiting glutathione metabolism, promoting sarcopenia. Cell Mol Life Sci. 82:812025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Sun J, Liu X, Qin Z, Li J, Ma J, Xue Z, Li Y, Yang Z, Sun Q, et al: Dexmedetomidine and argon in combination against ferroptosis through tackling TXNIP-mediated oxidative stress in DCD porcine livers. Cell Death Discov. 10:3192024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Yue Z, Xiong W, Sun P, You K and Wang J: TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation. Oncol Rep. 37:3369–3376. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yi K, Liu J, Rong Y, Wang C, Tang X, Zhang X, Xiong Y and Wang F: Biological functions and prognostic value of ferroptosis-related genes in bladder cancer. Front Mol Biosci. 8:6311522021. View Article : Google Scholar : PubMed/NCBI | |
|
He L, He T, Farrar S, Ji L, Liu T and Ma X: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 44:532–553. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mohamed IN, Li L, Ismael S, Ishrat T and El-Remessy AB: Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. World J Diabetes. 12:1979–1999. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XY, Liu CM, Ma YH, Meng N, Jiang JY, Yu XH and Wang XL: The TXNIP/Trx-1/GPX4 pathway promotes ferroptosis in hippocampal neurons after hypoxia-ischemia in neonatal rats. Zhongguo Dang Dai Er Ke Za Zhi. 24:1053–1060. 2022.(In Chinese). PubMed/NCBI | |
|
Chen K, Meng Z, Min J, Wang J, Li Z, Gao Q and Hu J: Curcumin alleviates septic lung injury in mice by inhibiting TXNIP/TRX-1/GPX4-mediated ferroptosis. Nan Fang Yi Ke Da Xue Xue Bao. 44:1805–1813. 2024.(In Chinese). PubMed/NCBI | |
|
Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM and Rubinsztein DC: Mammalian autophagy: How does it work? Annu Rev Biochem. 85:685–713. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimori T: Autophagy: A regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 313:453–458. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Chueh KS, Lu JH, Juan TJ, Chuang SM and Juan YS: The molecular mechanism and therapeutic application of autophagy for urological disease. Int J Mol Sci. 24:148872023. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang P and Mizushima N: LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods. 75:13–18. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Esteban-Martínez L and Boya P: Autophagic flux determination in vivo and ex vivo. Methods. 75:79–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G and Johansen T: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 282:24131–24145. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar AV, Mills J and Lapierre LR: Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front Cell Dev Biol. 10:7933282022. View Article : Google Scholar : PubMed/NCBI | |
|
Chaudhry N, Sica M, Surabhi S, Hernandez DS, Mesquita A, Selimovic A, Riaz A, Lescat L, Bai H, MacIntosh GC and Jenny A: Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy. 18:2443–2458. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zeng W, Han Y, Lee WR, Liou J and Jiang Y: Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol Cell. 83:2524–2539.e7. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yadin D, Petrover Z, Shainberg A, Alcalai R, Waldman M, Seidman J, Seidman CE, Abraham NG, Hochhauser E and Arad M: Autophagy guided interventions to modify the cardiac phenotype of Danon disease. Biochem Pharmacol. 204:1152292022. View Article : Google Scholar : PubMed/NCBI | |
|
Abokyi S, Shan SW, Lam CH, Catral KP, Pan F, Chan HHL, To CH and Tse DYY: Targeting lysosomes to reverse hydroquinone-induced autophagy defects and oxidative damage in human retinal pigment epithelial cells. Int J Mol Sci. 22:90422021. View Article : Google Scholar : PubMed/NCBI | |
|
Bunk J, Prieto Huarcaya S, Drobny A, Dobert JP, Walther L, Rose-John S, Arnold P and Zunke F: Cathepsin D variants associated with neurodegenerative diseases show dysregulated functionality and modified α-synuclein degradation properties. Front Cell Dev Biol. 9:5818052021. View Article : Google Scholar : PubMed/NCBI | |
|
Mary A, Eysert F, Checler F and Chami M: Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Mol Psychiatry. 28:202–216. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Luo W, Chen H, Cai Z and Xu G: Mitochondrial dynamics and mitochondrial autophagy: Molecular structure, orchestrating mechanism and related disorders. Mitochondrion. 75:1018472024. View Article : Google Scholar : PubMed/NCBI | |
|
Shang C, Liu Z, Zhu Y, Lu J, Ge C, Zhang C, Li N, Jin N, Li Y, Tian M and Li X: SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front Microbiol. 12:7807682022. View Article : Google Scholar : PubMed/NCBI | |
|
Bitar S, Baumann T, Weber C, Abusaada M, Rojas-Charry L, Ziegler P, Schettgen T, Randerath IE, Venkataramani V, Michalke B, et al: Iron-sulfur cluster loss in mitochondrial CISD1 mediates PINK1 loss-of-function phenotypes. Elife. 13:e970272024. View Article : Google Scholar : PubMed/NCBI | |
|
Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, et al: Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis. 196:1065052024. View Article : Google Scholar : PubMed/NCBI | |
|
Lamonaca G and Volta M: Alpha-synuclein and LRRK2 in synaptic autophagy: Linking early dysfunction to late-stage pathology in Parkinson's disease. Cells. 9:11152020. View Article : Google Scholar : PubMed/NCBI | |
|
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G and Ghiglieri V: Alpha-synuclein in Parkinson's disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14:1762023. View Article : Google Scholar : PubMed/NCBI | |
|
Gu R, Bai L, Yan F, Zhang S, Zhang X, Deng R, Zeng X, Sun B, Hu X, Li Y and Bai J: Thioredoxin-1 decreases alpha-synuclein induced by MPTP through promoting autophagy-lysosome pathway. Cell Death Discov. 10:932024. View Article : Google Scholar : PubMed/NCBI | |
|
Ren X, Lv J, Wang N, Liu J, Gao C, Wu X, Yu Y, Teng Q, Dong W, Kong H and Kong L: Thioredoxin upregulation delays diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Diabetes Res Clin Pract. 185:1097882022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, Liu J, Chen S, Zhang C, Shen L, Yao K and Yu Y: Thioredoxin-1 regulates the autophagy induced by oxidative stress through LC3-II in human lens epithelial cells. Clin Exp Pharmacol Physiol. 50:476–485. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ren X, Lv J, Fu Y, Zhang N, Zhang C, Dong Z, Chudhary M, Zhong S, Kong L and Kong H: Upregulation of thioredoxin contributes to inhibiting diabetic hearing impairment. Diabetes Res Clin Pract. 179:1090252021. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Villamil JP, D'Annunzio V, Finocchietto P, Holod S, Rebagliati I, Pérez H, Peralta JG, Gelpi RJ, Poderoso JJ and Carreras MC: Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. Int J Biochem Cell Biol. 81:323–334. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shojaei S, Barzegar Behrooz A, Cordani M, Aghaei M, Azarpira N, Klionsky DJ and Ghavami S: A non-fluorescent immunohistochemistry method for measuring autophagy flux using MAP1LC3/LC3 and SQSTM1 as core markers. FEBS Open Bio. 15:898–905. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Yao K, Zhang Y, Chen G, Lai K, Yin H and Yu Y: Thioredoxin binding protein-2 regulates autophagy of human lens epithelial cells under oxidative stress via inhibition of Akt phosphorylation. Oxid Med Cell Longev. 2016:48564312016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Huang L, Thomas ER, Hu Y, Zeng F and Li X: Notoginsenoside R1 protects against the acrylamide-induced neurotoxicity via upregulating Trx-1-mediated ITGAV expression: Involvement of autophagy. Front Pharmacol. 11:5590462020. View Article : Google Scholar : PubMed/NCBI | |
|
Ren X, Wang NN, Qi H, Qiu YY, Zhang CH, Brown E, Kong H and Kong L: Up-regulation thioredoxin inhibits advanced glycation end products-induced neurodegeneration. Cell Physiol Biochem. 50:1673–1686. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ji C, Pan Y, Liu B, Liu J, Zhao C, Nie Z, Liao S, Kuang G, Wu X, Liu Q, et al: Thioredoxin C of streptococcus suis serotype 2 contributes to virulence by inducing antioxidative stress and inhibiting autophagy via the MSR1/PI3K-Akt-mTOR pathway in macrophages. Vet Microbiol. 298:1102632024. View Article : Google Scholar : PubMed/NCBI | |
|
Vötsch D, Willenborg M, Weldearegay YB and Valentin-Weigand P: Streptococcus suis-the ‘two faces’ of a pathobiont in the porcine respiratory tract. Front Microbiol. 9:4802018. View Article : Google Scholar : PubMed/NCBI | |
|
Dafre AL, Schmitz AE and Maher P: Methylglyoxal-induced AMPK activation leads to autophagic degradation of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Free Radic Biol Med. 108:270–279. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dafre AL, Schmitz AE and Maher P: Hyperosmotic stress initiates AMPK-independent autophagy and AMPK- and autophagy-independent depletion of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Oxid Med Cell Longev. 2019:27158102019. View Article : Google Scholar : PubMed/NCBI | |
|
Nakatogawa H: Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 55:39–50. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Arakawa S, Honda S, Yamaguchi H and Shimizu S: Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad Ser B Phys Biol Sci. 93:378–385. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez-Pérez ME, Zaffagnini M, Marchand CH, Crespo JL and Lemaire SD: The yeast autophagy protease Atg4 is regulated by thioredoxin. Autophagy. 10:1953–1964. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nagarajan N, Oka SI, Nah J, Wu C, Zhai P, Mukai R, Xu X, Kashyap S, Huang CY, Sung EA, et al: Thioredoxin 1 promotes autophagy through transnitrosylation of Atg7 during myocardial ischemia. J Clin Invest. 133:e1623262023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Q, Zhou HJ, Zhang H, Huang Y, Hinojosa-Kirschenbaum F, Fan P, Yao L, Belardinelli L, Tellides G, Giordano FJ, et al: Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation. 131:1082–1097. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI and Min W: Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. J Exp Med. 218:e202014162021. View Article : Google Scholar : PubMed/NCBI | |
|
Li YY, Xiang Y, Zhang S, Wang Y, Yang J, Liu W and Xue FT: Thioredoxin-2 protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy and apoptosis in H9c2 cardiomyocytes. Am J Transl Res. 9:1471–1482. 2017.PubMed/NCBI | |
|
Li Y, Xiang Y, Zhang S, Wang Y, Yang J, Liu W and Xue F: Intramyocardial injection of thioredoxin 2-expressing lentivirus alleviates myocardial ischemia-reperfusion injury in rats. Am J Transl Res. 9:4428–4439. 2017.PubMed/NCBI | |
|
Bjørklund G, Zou L, Wang J, Chasapis CT and Peana M: Thioredoxin reductase as a pharmacological target. Pharmacol Res. 174:1058542021. View Article : Google Scholar : PubMed/NCBI | |
|
Lei H, Wang G, Zhang J and Han Q: Inhibiting TrxR suppresses liver cancer by inducing apoptosis and eliciting potent antitumor immunity. Oncol Rep. 40:3447–3457. 2018.PubMed/NCBI | |
|
Nagakannan P, Iqbal MA, Yeung A, Thliveris JA, Rastegar M, Ghavami S and Eftekharpour E: Perturbation of redox balance after thioredoxin reductase deficiency interrupts autophagy-lysosomal degradation pathway and enhances cell death in nutritionally stressed SH-SY5Y cells. Free Radic Biol Med. 101:53–70. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Zhang Y, Kelly DJ, Tan CYR, Gill A, Cheng D, Braet F, Park JS, Sue CM, Pollock CA and Chen XM: Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Sci Rep. 6:291962016. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Lin MZ, Cheng D, Braet F, Pollock CA and Chen XM: Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux. Lab Invest. 94:309–320. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tang H, Hou H, Song L, Tian Z, Liu W, Xia T and Wang A: The role of mTORC1/TFEB axis mediated lysosomal biogenesis and autophagy impairment in fluoride neurotoxicity and the intervention effects of resveratrol. J Hazard Mater. 467:1336342024. View Article : Google Scholar : PubMed/NCBI | |
|
Martina JA, Chen Y, Gucek M and Puertollano R: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 8:903–914. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Du Y, Wu M, Song S, Bian Y and Shi Y: TXNIP deficiency attenuates renal fibrosis by modulating mTORC1/TFEB-mediated autophagy in diabetic kidney disease. Ren Fail. 46:23389332024. View Article : Google Scholar : PubMed/NCBI | |
|
Gao C, Wang R, Li B, Guo Y, Yin T, Xia Y, Zhang F, Lian K, Liu Y, Wang H, et al: TXNIP/Redd1 signalling and excessive autophagy: A novel mechanism of myocardial ischaemia/reperfusion injury in mice. Cardiovasc Res. 116:645–657. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ao H, Li H, Zhao X, Liu B and Lu L: TXNIP positively regulates the autophagy and apoptosis in the rat müller cell of diabetic retinopathy. Life Sci. 267:1189882021. View Article : Google Scholar : PubMed/NCBI | |
|
Park HS, Song JW, Park JH, Lim BK, Moon OS, Son HY, Lee JH, Gao B, Won YS and Kwon HJ: TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation. Autophagy. 17:2549–2564. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gordy C and He YW: The crosstalk between autophagy and apoptosis: Where does this lead? Protein Cell. 3:17–27. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Song S, Tan J, Miao Y, Li M and Zhang Q: Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol. 232:2977–2984. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Wang J, Wang JJ, Zhang WF and Jiao XY: Role of autophagy in TXNIP overexpression-induced apoptosis of INS-1 islet cells. Sheng Li Xue Bao. 69:445–451. 2017.(In Chinese). PubMed/NCBI | |
|
Wang W, Lu D, Shi Y and Wang Y: Exploring the neuroprotective effects of lithium in ischemic stroke: A literature review. Int J Med Sci. 21:284–298. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q, Li S, Jin H, Cai H, Zhu X, Yang Y, Wu J, Qi C, Shao X, Li J, et al: Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. Int J Biol Sci. 19:1192–1210. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ji H, Zhao Y, Ma X, Wu L, Guo F, Huang F, Song Y, Wang J and Qin G: Upregulation of UHRF1 promotes PINK1-mediated mitophagy to alleviate ferroptosis in diabetic nephropathy. Inflammation. 47:718–732. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Fang Y and Chen YM: Beyond redox regulation: Novel roles of TXNIP in the pathogenesis and therapeutic targeting of kidney disease. Am J Pathol. 195:615–625. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li B, Fu Y, Cai H and Zheng Y: Txnip promotes autophagic apoptosis in diabetic cardiomyopathy by upregulating FoxO1 and its acetylation. Cell Signal. 124:1114692024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Liu Y, Zhong J, Bi Y, Liu Y, Ren Z, Li X, Jia J, Yu M and Yu X: Pristimerin induces apoptosis and autophagy via activation of ROS/ASK1/JNK pathway in human breast cancer in vitro and in vivo. Cell Death Discov. 5:1252019. View Article : Google Scholar : PubMed/NCBI | |
|
Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF and Ribeiro-Dos-Santos Â: A cell's fate: An overview of the molecular biology and genetics of apoptosis. Int J Mol Sci. 20:41332019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y and Min W: Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res. 90:1259–1266. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Bao N, Wang J, Yue Q, Cao F, Gu X, Wen K, Kong W and Gu M: Chrysophanol-mediated trx-1 activation attenuates renal fibrosis through inhibition of the JNK/Cx43 signaling pathway. Ren Fail. 46:23987102024. View Article : Google Scholar : PubMed/NCBI | |
|
D'Annunzio V, Perez V, Boveris A, Gelpi RJ and Poderoso JJ: Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts. Pharmacol Res. 109:24–31. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Guo N, Fan W, Ni C, Huang M, Bai L, Zhang L, Zhang X, Wen Y, Li Y, et al: Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology. 78:163–169. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Dai L, Wang M, Feng F and Xiao Y: Tunicamycin induces hepatic stellate cell apoptosis through calpain-2/Ca2 +-dependent endoplasmic reticulum stress pathway. Front Cell Dev Biol. 9:6848572021. View Article : Google Scholar : PubMed/NCBI | |
|
Tian C, Gao P, Zheng Y, Yue W, Wang X, Jin H and Chen Q: Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death. Cell Res. 18:458–471. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez VI, Lew CM, Cortez LA, Webb CR, Rodriguez M, Liu Y, Qi W, Li Y, Chaudhuri A, Van Remmen H, et al: Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic Biol Med. 44:882–892. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kundumani-Sridharan V, Subramani J, Owens C and Das KC: Nrg1β released in remote ischemic preconditioning improves myocardial perfusion and decreases ischemia/reperfusion injury via ErbB2-mediated rescue of endothelial nitric oxide synthase and abrogation of Trx2 autophagy. Arterioscler Thromb Vasc Biol. 41:2293–2314. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Q, Zhang J, Zhao Z, Chu Y and Fang J: Revealing PACMA 31 as a new chemical type TrxR inhibitor to promote cancer cell apoptosis. Biochim Biophys Acta Mol Cell Res. 1869:1193232022. View Article : Google Scholar : PubMed/NCBI | |
|
Qian J, Xu Z, Meng C, Liu J, Hsu PL, Li Y, Zhu W, Yang Y, Morris-Natschke SL and Lee KH: Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy. Eur J Med Chem. 204:1126102020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JH, Liu CC, Liu CY, Hsu TW, Yeh YC, How CK, Hsu HS and Hung SC: Selenite selectively kills lung fibroblasts to treat bleomycin-induced pulmonary fibrosis. Redox Biol. 72:1031482024. View Article : Google Scholar : PubMed/NCBI | |
|
Jia Y, Cui R, Wang C, Feng Y, Li Z, Tong Y, Qu K, Liu C and Zhang J: Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol. 32:1015342020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Mo J, Liu Q, Li W, Chen Y, Feng J, Jia J, Liu L, Bai Y and Zhou J: TXNIP/NLRP3 aggravates global cerebral ischemia-reperfusion injury-induced cognitive decline in mice. Heliyon. 10:e274232024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Zhang S, Bian M, Xiang X, Xiao L, Wang J, Lu S, Chen W, Zhang C, Mo G, et al: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect. Acta Biomater. 180:82–103. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto K, Nishimura S and Goto K: PD1/PDL1 immune checkpoint in bone and soft tissue tumors (Review). Mol Clin Oncol. 29:312025. View Article : Google Scholar : PubMed/NCBI | |
|
Dubuisson A, Mangelinck A, Knockaert S, Zichi A, Becht E, Philippon W, Dromaint-Catesson S, Fasquel M, Melchiore F, Provost N, et al: Glucose deprivation and identification of TXNIP as an immunometabolic modulator of T cell activation in cancer. Front Immunol. 16:15485092025. View Article : Google Scholar : PubMed/NCBI | |
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J and Maes M: The role of the thioredoxin system in brain diseases. Antioxidants (Basel). 11:21612022. View Article : Google Scholar : PubMed/NCBI | |
|
Choi EH and Park SJ: TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target. Exp Mol Med. 55:1348–1356. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jia JJ, Geng WS, Wang ZQ, Chen L and Zeng XS: The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol. 84:453–470. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tsubaki H, Tooyama I and Walker DG: Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases. Int J Mol Sci. 21:93572020. View Article : Google Scholar : PubMed/NCBI |