Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review)

  • Authors:
    • Shuai Li
    • Chen Wang
    • Ling Zhang
    • Shan Chen
    • Ying Zhou
    • Dehua Yang
    • Kang Li
    • Yuan Liu
    • Shuiqing Chi
    • Yong Wang
    • Lizhi Li
    • Shao-Tao Tang
  • View Affiliations / Copyright

    Affiliations: Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China, Department of Pediatric Surgery, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China, Department of Laboratory, Fuzhou Second General Hospital, Fuzhou, Fujian 350012, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 28
    |
    Published online on: November 3, 2025
       https://doi.org/10.3892/mmr.2025.13738
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hirschsprung‑associated enterocolitis (HAEC) represents a severe complication of Hirschsprung disease, characterized by intestinal barrier dysfunction and life‑threatening inflammation. The present study systematically reviews the updated molecular mechanisms underlying HAEC pathogenesis, with particular focus on the tight junction (TJ) proteins claudin, occludin and zonula occludens protein 1 (ZO‑1) and their interactions with the actin cytoskeleton. The present review demonstrates that dysregulation of claudin family members, particularly upregulation of pore‑forming claudin‑2 and downregulation of barrier‑forming claudin‑4, disrupts intestinal homeostasis. Occludin undergoes cytokine‑mediated endocytosis through myosin light chain kinase (MLCK)/NF‑κB signaling, while ZO‑1 dysfunction impairs mechanical coupling between TJs and actin filaments. Furthermore, the present review identifies that inflammatory mediators, such as IL‑1β, TNF‑α and IFN‑γ, trigger actin cytoskeleton remodeling via the cofilin phosphorylation cycle and the Rho‑associated protein kinase/MLCK pathway, establishing a cycle of barrier breakdown. Importantly, the present review highlights the lipocalin 10/slingshot homologue 1/cofilin axis and TJ‑cytoskeleton interactions as mechanistic targets for future intervention in HAEC treatment. These findings provide a comprehensive mechanistic framework for understanding HAEC pathogenesis and offer novel targets for clinical intervention.
View Figures

Figure 1

Potential roles of claudins in HAEC.
In macrophages with PTPN2 deficiency, the phosphorylation level of
STAT1 is elevated and NF-κB activation is increased, which promotes
the activation of pro-inflammatory M1 macrophages and leads to the
production of high levels of the inflammatory molecules IL-6 and
TNF-α. TNF-α further activates NF-κB, driving macrophages to
differentiate into the M1 phenotype. Although IL-6 can selectively
activate anti-inflammatory M2 macrophages, the expression of IL-6
receptors is significantly reduced in PTPN2-deficient macrophages
and the levels of STAT3 are lower compared with STAT1, making these
macrophages more likely to differentiate into the M1 subtype.
Additionally, the loss or reduction of LCN10 expression in
macrophages impairs the nuclear translocation of Nr4a1, leading to
an increase in M1 macrophages and a decrease in M2 macrophages. The
imbalance between M1 and M2 results in increased levels of
pro-inflammatory cytokines such as IL-1β, IL-17, TNF-α and IL-6,
while the level of the anti-inflammatory cytokine TGF-β is
significantly reduced. IL-1β induces the downregulation of
Claudin-3 expression by associating β-catenin with the claudin-3
promoter via the MLCK or Wnt signaling pathways. IL-17 and IL-6
upregulate claudin-2 expression through the MEK/ERK pathway, and
TNF-α and IL-6 increase claudin-2 expression via the PI3K/Akt
signaling pathway, leading to increased intestinal permeability and
intestinal barrier dysfunction, which promotes the development of
HAEC. Conversely, TGF-β mediates the expression of claudin-1
through the MEK/ERK signaling pathway, providing protective effects
for the intestinal barrier. HAEC, Hirschsprung-associated
enterocolitis; PTPN2, protein tyrosine phosphatase non-receptor
type 2; Nr4a1, nuclear receptor subfamily 4 group A member 1; MLCK,
myosin light chain kinase; LCN10, lipocalin-10; ZO-1, zonula
occludens protein 1; P, phosphate group; M1, M1-type macrophage;
M2, M2-type macrophage; IL-6R, IL-6 receptor.

Figure 2

Potential roles of occludin in HAEC.
IL-1β upregulates the expression of miRNAs that bind to occludin
mRNA, inducing its degradation or translational suppression,
thereby reducing occludin expression. This alteration increases
intestinal epithelial permeability, disrupts the intestinal barrier
function and promotes the development of HAECs. Inflammatory
signals such as TNF-α activate the MLCK pathway, leading to MLC
phosphorylation and mediating the internalization of occludin
through the OCEL domain, while simultaneously triggering a
caveolin-1-dependent endocytic cascade. At the same time, actin
depolymerization triggers the internalization of
cholesterol-enriched membranes, further promoting the
internalization of occludin and increasing the permeability of
paracellular pathways. On the other hand, occludin enhances the
transcription of caspase-3, promoting cell apoptosis. Under
inflammatory conditions, the downregulation of occludin may confer
an anti-apoptotic ability to cells, thus helping to maintain
mucosal homeostasis and protecting the intestinal barrier. HAEC,
Hirschsprung-associated enterocolitis; ZO-1, zonula occludens
protein 1; miRNA, microRNA; Pri-miRNA, primary miRNA; Cav-1,
caveolin-1; MLCK, myosin light chain kinase; P, phosphate group;
OCEL, occludin/ELL; MLC, myosin light chain; UTR, untranslated
region.

Figure 3

Potential roles of ZO-1 in HAEC.
Upregulation of PI3K regulatory subunit 3 can induce NF-κB
activation and reduce ZO-1 expression. A deficiency in ZO-1 leads
to delayed recruitment and assembly of claudins and occludin at TJs
and affects actin distribution, thereby impairing TJ barrier
function. Additionally, downregulation of ZO-1 weakens
Wnt/β-catenin signaling, leading to excessive proliferation of
epithelial cells and disrupting mucosal repair. Furthermore, ZO-1
downregulation increases the sensitivity of intestinal epithelial
cells to cytochalasin D, which disrupts the actin cytoskeleton,
resulting in TJ barrier dysfunction, increased epithelial
permeability and promotion of HAEC development. HAEC,
Hirschsprung-associated enterocolitis; ZO-1, zonula occludens
protein 1; TJ, tight junction; PI3KR3, PI3K regulatory subunit
3.

Figure 4

Potential roles of actin in HAEC.
Inflammatory mediators released by macrophages cause a significant
decrease in LCN10 expression, inactivation of Ssh1 and increased
phosphorylation of cofilin. These changes result in suppressed
F-actin depolymerization, a heightened F-actin/G-actin ratio and
subsequent stress fiber formation. The consequent maldistribution
of tight junction proteins and loss of barrier integrity increase
epithelial permeability, thereby exacerbating the progression of
HAEC. Increased intracellular LCN10 can induce the
dephosphorylation of Ssh1/cofilin, promoting the depolymerization
of F-actin into G-actin, which helps repair TJ disassembly, reduces
paracellular permeability and protects intestinal barrier function.
Additionally, TNF-α activates the RhoA/ROCK signaling pathway,
which subsequently phosphorylates MLCK. This cascade induces
phosphorylation of MLC-2, triggering actin contraction, increased
paracellular permeability and intestinal barrier dysfunction.
Furthermore, ROCK activates LIMK to phosphorylate cofilin, thereby
stabilizing F-actin polymers and amplifying cytoskeletal
remodeling. LPS stimulates NF-κB via TLR4 and significantly reduces
F-actin density through NF-κB/phosphorylated p38 signaling. Cells
with Trek-1 gene deficiency show lower F-actin levels, leading to
the opening of paracellular channels, disruption of intestinal
barrier function and promotion of HAEC development. HAEC,
Hirschsprung-associated enterocolitis; ZO-1, zonula occludens
protein 1; TJ, tight junction; G-actin, globular-actin; F-actin,
filamentous actin; MLCK, myosin light chain kinase; MLC-2, myosin
light chain-2; LCN10, lipocalin-10; Ssh1, slingshot homologue 1;
Trek-1, Twik-related K+ channel-1; TLR4, Toll-like
receptor 4; ROCK, Rho-associated protein kinase; LIMK, LIM kinase;
MLCP, myosin light chain phosphatase; P, phosphate group; LPS,
lipopolysaccharide.
View References

1 

Montalva L, Cheng LS, Kapur R, Langer JC, Berrebi D, Kyrklund K, Pakarinen M, de Blaauw I, Bonnard A and Gosain A: Hirschsprung disease. Nat Rev Dis Primers. 9:542023. View Article : Google Scholar : PubMed/NCBI

2 

Gosain A, Frykman PK, Cowles RA, Horton J, Levitt M, Rothstein DH, Langer JC and Goldstein AM; American Pediatric Surgical Association Hirschsprung Disease Interest Group, : Guidelines for the diagnosis and management of Hirschsprung-associated enterocolitis. Pediatr Surg Int. 33:517–521. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Nakamura H, Tomuschat C, Coyle D, O'Donnel AM, Lim T and Puri P: Altered goblet cell function in Hirschsprung's disease. Pediatr Surg Int. 34:121–128. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Lewit RA, Veras LV, Cowles RA, Fowler K, King S, Lapidus-Krol E, Langer JC, Park CJ, Youssef F, Vavilov S and Gosain A: Reducing Underdiagnosis of Hirschsprung-Associated Enterocolitis: A Novel Scoring System. J Surg Res. 261:253–260. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Feng W, Zhang B, Fan L, Song A, Hou J, Die X, Liu W, Wang Y and Guo Z: Clinical characteristics and influence of postoperative Hirschsprung-associated enterocolitis: Retrospective study at a tertiary children's hospital. Pediatr Surg Int. 40:1062024. View Article : Google Scholar : PubMed/NCBI

6 

Wu L, Gao Y, Zhou R, Xiao P, Zhang Z, Li B, Pierro A, Li L, Jiang Q and Li Q: Predictive value of plasma zonulin for postoperative Hirschsprung-associated enterocolitis. World J Pediatr Surg. 8:e0010572025. View Article : Google Scholar : PubMed/NCBI

7 

Hagens J, Reinshagen K and Tomuschat C: Prevalence of Hirschsprung-associated enterocolitis in patients with Hirschsprung disease. Pediatr Surg Int. 38:3–24. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Li S, Zhang Y, Li K, Liu Y, Chi S, Wang Y and Tang S: Update on the pathogenesis of the hirschsprung-associated enterocolitis. Int J Mol Sci. 24:46022023. View Article : Google Scholar : PubMed/NCBI

9 

Jiao CL, Chen XY and Feng JX: Novel Insights into the Pathogenesis of Hirschsprung's-associated Enterocolitis. Chin Med J (Engl). 129:1491–1497. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Cong X and Kong W: Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. 66:1094852020. View Article : Google Scholar : PubMed/NCBI

11 

Chelakkot C, Ghim J and Ryu SH: Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 50:1–9. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Suzuki T: Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 70:631–659. 2013. View Article : Google Scholar : PubMed/NCBI

13 

König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F and Brummer RJ: Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 7:e1962016. View Article : Google Scholar : PubMed/NCBI

14 

Tsukita S, Furuse M and Itoh M: Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2:285–293. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Van Itallie CM and Anderson JM: Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 36:157–165. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Garcia-Hernandez V, Quiros M and Nusrat A: Intestinal epithelial claudins: Expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. 1397:66–79. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Arnaud AP, Hascoet J, Berneau P, LeGouevec F, Georges J, Randuineau G, Formal M, Henno S and Boudry G: A piglet model of iatrogenic rectosigmoid hypoganglionosis reveals the impact of the enteric nervous system on gut barrier function and microbiota postnatal development. J Pediatr Surg. 56:337–345. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Dariel A, Grynberg L, Auger M, Lefèvre C, Durand T, Aubert P, Le Berre-Scoul C, Venara A, Suply E, Leclair MD, et al: Analysis of enteric nervous system and intestinal epithelial barrier to predict complications in Hirschsprung's disease. Sci Rep. 10:217252020. View Article : Google Scholar : PubMed/NCBI

19 

Chen X, Meng X, Zhang H, Feng C, Wang B, Li N, Abdullahi KM, Wu X, Yang J, Li Z, et al: Intestinal proinflammatory macrophages induce a phenotypic switch in interstitial cells of Cajal. J Clin Invest. 130:6443–6456. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Pall H: Advances in pediatric gastroenterology. Pediatr Clin North Am. 68:xix–xx. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Roorda D, Oosterlaan J, van Heurn E and Derikx JPM: Risk factors for enterocolitis in patients with Hirschsprung disease: A retrospective observational study. J Pediatr Surg. 56:1791–1798. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Abe K, Takeda M, Ishiyama A, Shimizu M, Goto H, Iida H, Fujimoto T, Ueda-Abe E, Yamada S, Fujiwara K, et al: Impact of epithelial claudin-4 and leukotriene B4 receptor 2 in normoganglionic hirschsprung disease colon on post pull-through enterocolitis. J Pediatr Surg. 60:1619002025. View Article : Google Scholar : PubMed/NCBI

23 

Perrin L and Matic Vignjevic D: The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Semin Cell Dev Biol. 150-151:23–27. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Günzel D and Yu AS: Claudins and the modulation of tight junction permeability. Physiol Rev. 93:525–569. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Bu C, Hu M, Su Y, Yuan F, Zhang Y, Xia J, Jia Z and Zhang L: Cell-permeable JNK-inhibitory peptide regulates intestinal barrier function and inflammation to ameliorate necrotizing enterocolitis. J Cell Mol Med. 28:e185342021. View Article : Google Scholar : PubMed/NCBI

26 

Gunasekaran A, Eckert J, Burge K, Zheng W, Yu Z, Kessler S, de la Motte C and Chaaban H: Hyaluronan 35 kDa enhances epithelial barrier function and protects against the development of murine necrotizing enterocolitis. Pediatr Res. 87:1177–1184. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Ganapathy AS, Saha K, Suchanec E, Singh V, Verma A, Yochum G, Koltun W, Nighot M, Ma T and Nighot P: AP2M1 mediates autophagy-induced CLDN2 (claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability. Autophagy. 18:2086–2103. 2022. View Article : Google Scholar : PubMed/NCBI

28 

Al-Sadi R, Ye D, Said HM and Ma TY: Cellular and molecular mechanism of interleukin-1β modulation of Caco-2 intestinal epithelial tight junction barrier. J Cell Mol Med. 15:970–982. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Rawat M, Nighot M, Al-Sadi R, Gupta Y, Viszwapriya D, Yochum G, Koltun W and Ma TY: IL1B increases intestinal tight junction permeability by Up-regulation of MIR200C-3p, which degrades occludin mRNA. Gastroenterology. 159:1375–1389. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Maria-Ferreira D, Nascimento AM, Cipriani TR, Santana-Filho AP, Watanabe PDS, Sant Ana DMG, Luciano FB, Bocate KCP, van den Wijngaard RM, Werner MFP and Baggio CH: Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells. Sci Rep. 8:122612018. View Article : Google Scholar : PubMed/NCBI

31 

Haines RJ, Beard RS Jr, Chen L, Eitnier RA and Wu MH: Interleukin-1β mediates β-Catenin-driven downregulation of claudin-3 and barrier dysfunction in caco2 cells. Dig Dis Sci. 61:2252–2261. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Ahmad R, Kumar B, Chen Z, Chen X, Müller D, Lele SM, Washington MK, Batra SK, Dhawan P and Singh AB: Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling. Oncogene. 36:6592–6604. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Mankertz J, Amasheh M, Krug SM, Fromm A, Amasheh S, Hillenbrand B, Tavalali S, Fromm M and Schulzke JD: TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res. 336:67–77. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Barmeyer C, Fromm M and Schulzke JD: Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch. 469:15–26. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Lee SH: Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intest Res. 13:11–18. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Raju P, Shashikanth N, Tsai PY, Pongkorpsakol P, Chanez-Paredes S, Steinhagen PR, Kuo WT, Singh G, Tsukita S and Turner JR: Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice. J Clin Invest. 130:5197–5208. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, Guilliams M, Malissen B, Agace WW and Mowat AM: Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6:498–510. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Meng X, Xiao J, Wang J, Sun M, Chen X, Wu L, Feng C, Zhuansun D, Yang J, Wu X, et al: Mesenchymal stem cells attenuates hirschsprung diseases-associated enterocolitis by reducing M1 macrophages infiltration via COX-2 dependent mechanism. J Pediatr Surg. 59:1498–1514. 2024. View Article : Google Scholar : PubMed/NCBI

39 

Zheng Z, Lin L, Lin H, Zhou J, Wang Z, Wang Y, Chen J, Lai C, Li R, Shen Z, et al: Acetylcholine from tuft cells promotes M2 macrophages polarization in Hirschsprung-associated enterocolitis. Front Immunol. 16:15599662025. View Article : Google Scholar : PubMed/NCBI

40 

Spalinger MR, Sayoc-Becerra A, Santos AN, Shawki A, Canale V, Krishnan M, Niechcial A, Obialo N, Scharl M, Li J, et al: PTPN2 regulates interactions between macrophages and intestinal epithelial cells to promote intestinal barrier function. Gastroenterology. 159:1763–1777.e14. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Li Q, Li Y, Huang W, Wang X, Liu Z, Chen J, Fan Y, Peng T, Sadayappan S, Wang Y and Fan GC: Loss of lipocalin 10 exacerbates diabetes-induced cardiomyopathy via disruption of Nr4a1-mediated anti-inflammatory response in macrophages. Front Immunol. 13:9303972022. View Article : Google Scholar : PubMed/NCBI

42 

Zhao H, Wang P, Wang X, Du W, Yang HH, Liu Y, Cui SN, Huang W, Peng T, Chen J, et al: Lipocalin 10 is essential for protection against inflammation-triggered vascular leakage by activating LDL receptor-related protein 2-slingshot homologue 1 signalling pathway. Cardiovasc Res. 119:1981–1996. 2023. View Article : Google Scholar : PubMed/NCBI

43 

Capozzi A, Riitano G, Recalchi S, Manganelli V, Costi R, Saccoliti F, Pulcinelli F, Garofalo T, Misasi R, Longo A, et al: Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by anti-β2-GPI antibodies. J Thromb Haemost. 19:2302–2313. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S and Tsukita S and Tsukita S: Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Boil. 123((6 Pt 2)): 1777–1788. 1993. View Article : Google Scholar : PubMed/NCBI

45 

Tugal D, Liao X and Jain MK: Transcriptional control of macrophage polarization. Arterioscler, Thromb, Vasc Biol. 33:1135–1144. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Buckley A and Turner JR: Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol. 10:a0293142018. View Article : Google Scholar : PubMed/NCBI

47 

Shimizu Y, Shirasago Y, Kondoh M, Suzuki T, Wakita T, Hanada K, Yagi K and Fukasawa M: Monoclonal antibodies against occludin completely prevented hepatitis C virus infection in a mouse model. J Virol. 92:e02258–17. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Nusrat A, Chen JA, Foley CS, Liang TW, Tom J, Cromwell M, Quan C and Mrsny RJ: The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem. 275:29816–29822. 2000. View Article : Google Scholar : PubMed/NCBI

49 

Srivastava AK, Venkata BS, Sweat YY, Rizzo HR, Jean-François L, Zuo L, Kurgan KW, Moore P, Shashikanth N, Smok I, et al: Serine 408 phosphorylation is a molecular switch that regulates structure and function of the occludin α-helical bundle. Proc Natl Acad Sci USA. 119:e22046181192022. View Article : Google Scholar : PubMed/NCBI

50 

Buschmann MM, Shen L, Rajapakse H, Raleigh DR, Wang Y, Wang Y, Lingaraju A, Zha J, Abbott E, McAuley EM, et al: Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell. 24:3056–3068. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Van Itallie CM, Fanning AS, Holmes J and Anderson JM: Occludin is required for cytokine-induced regulation of tight junction barriers. J Cell Sci. 123:2844–2852. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, Austin JR II, Raleigh DR, Guan Y, Watson AJ, Montrose MH and Turner JR: Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol. 189:111–126. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Shen L and Turner JR: Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis. Mol Biol Cell. 16:3919–3936. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Budianto IR, Kusmardi K, Maulana AMuh, Arumugam S, Afrin R and Soetikno V: Paneth-like cells disruption and intestinal dysbiosis in the development of enterocolitis in an iatrogenic rectosigmoid hypoganglionosis rat model. Front Surg. 11:14079482024. View Article : Google Scholar : PubMed/NCBI

55 

Nakamura H, O'Donnell AM, Tomuschat C, Coyle D and Puri P: Altered expression of caveolin-1 in the colon of patients with Hirschsprung's disease. Pediatr Surg Int. 35:929–934. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M and Schulzke JD: Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut. 56:61–72. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Zhang X, Zhang Y, He Y, Zhu X, Ai Q and Shi Y: β-glucan protects against necrotizing enterocolitis in mice by inhibiting intestinal inflammation, improving the gut barrier, and modulating gut microbiota. J Transl Med. 21:142023. View Article : Google Scholar : PubMed/NCBI

58 

Grothaus JS, Ares G, Yuan C, Wood DR and Hunter CJ: Rho kinase inhibition maintains intestinal and vascular barrier function by upregulation of occludin in experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 315:G514–G528. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Kuo WT, Shen L, Zuo L, Shashikanth N, Ong MLDM, Wu L, Zha J, Edelblum KL, Wang Y, Wang Y, et al: Inflammation-induced Occludin Downregulation Limits Epithelial Apoptosis by Suppressing Caspase-3 Expression. Gastroenterology. 157:1323–1337. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Spadaro D, Le S, Laroche T, Mean I, Jond L, Yan J and Citi S: Tension-dependent stretching activates ZO-1 to control the junctional localization of its interactors. Curr Biol. 27:3783–3795.e8. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E and Citi S: Scaffolding proteins of vertebrate apical junctions: Structure, functions and biophysics. Biochim Biophys Acta Biomembr. 1862:1833992020. View Article : Google Scholar : PubMed/NCBI

62 

Umeda K, Matsui T, Nakayama M, Furuse K, Sasaki H, Furuse M and Tsukita S: Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem. 279:44785–44794. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Otani T, Nguyen TP, Tokuda S, Sugihara K, Sugawara T, Furuse K, Miura T, Ebnet K and Furuse M: Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J Cell Biol. 218:3372–3396. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Sun S and Zhou J: Phase separation as a therapeutic target in tight junction-associated human diseases. Acta Pharmacol Sin. 41:1310–1313. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Zhang J, Lei H, Hu X and Dong W: Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. Eur J Pharmacol. 873:1729922020. View Article : Google Scholar : PubMed/NCBI

66 

Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T and Tsukita S, Furuse M and Tsukita S: ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 126:741–754. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Bentzel CJ, Hainau B, Ho S, Hui SW, Edelman A, Anagnostopoulos T and Benedetti EL: Cytoplasmic regulation of tight-junction permeability: Effect of plant cytokinins. Am J Physiol. 239:C75–C89. 1980. View Article : Google Scholar : PubMed/NCBI

68 

Van Itallie CM, Fanning AS, Bridges A and Anderson JM: ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell. 20:3930–3940. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Kuo WT, Zuo L, Odenwald MA, Madha S, Singh G, Gurniak CB, Abraham C and Turner JR: The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology. 161:1924–1939. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Grintsevich EE and Reisler E: Drebrin inhibits cofilin-induced severing of F-actin. Cytoskeleton (Hoboken). 71:472–483. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Suzuki K, Lareyre JJ, Sánchez D, Gutierrez G, Araki Y, Matusik RJ and Orgebin-Crist MC: Molecular evolution of epididymal lipocalin genes localized on mouse chromosome 2. Gene. 339:49–59. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Van Itallie CM, Tietgens AJ, Krystofiak E, Kachar B and Anderson JM: A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell. 26:2769–2787. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Yu D, Marchiando AM, Weber CR, Raleigh DR, Wang Y, Shen L and Turner JR: MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc Natl Acad Sci USA. 107:8237–8241. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ and Madara JL: Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol. 273:C1378–C1385. 1997. View Article : Google Scholar : PubMed/NCBI

75 

Walsh SV, Hopkins AM, Chen J, Narumiya S, Parkos CA and Nusrat A: Rho kinase regulates tight junction function and is necessary for tight junction assembly in polarized intestinal epithelia. Gastroenterology. 121:566–579. 2001. View Article : Google Scholar : PubMed/NCBI

76 

Odenwald MA, Choi W, Kuo WT, Singh G, Sailer A, Wang Y, Shen L, Fanning AS and Turner JR: The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J Biol Chem. 293:17317–17335. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Kuo W, Odenwald MA, Turner JR and Zuo L: Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci. 1514:21–33. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Ma TY, Boivin MA, Ye D, Pedram A and Said HM: Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: Role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol. 288:G422–G430. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Roan E, Waters CM, Teng B, Ghosh M and Schwingshackl A: The 2-pore domain potassium channel TREK-1 regulates stretch-induced detachment of alveolar epithelial cells. PLoS One. 9:e894292014. View Article : Google Scholar : PubMed/NCBI

80 

Tomuschat C, O'Donnell AM, Coyle D, Dreher N, Kelly D and Puri P: Altered expression of a two-pore domain (K2P) mechano-gated potassium channel TREK-1 in Hirschsprung's disease. Pediatr Res. 80:729–733. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Zheng Z, Gao M, Tang C, Huang L, Gong Y, Liu Y and Wang J: E.coli JM83 damages the mucosal barrier in Ednrb knockout mice to promote the development of Hirschsprung-associated enterocolitis via activation of TLR4/p-p38/NF-κB signaling. Mol Med Rep. 25:1682022. View Article : Google Scholar : PubMed/NCBI

82 

Samak G, Aggarwal S and Rao RK: ERK is involved in EGF-mediated protection of tight junctions, but not adherens junctions, in acetaldehyde-treated Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol. 301:G50–G59. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Krndija D, El Marjou F, Guirao B, Richon S, Leroy O, Bellaiche Y, Hannezo E and Matic Vignjevic D: Active cell migration is critical for steady-state epithelial turnover in the gut. Science. 365:705–710. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Lappalainen P, Kotila T, Jégou A and Romet-Lemonne G: Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol. 23:836–852. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Zhou WK, Qu Y, Liu YM, Gao MJ, Tang CY, Huang L, Du Q and Yin J: The abnormal phosphorylation of the Rac1, Lim-kinase 1, and Cofilin proteins in the pathogenesis of Hirschsprung's disease. Bioengineered. 13:8548–8557. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li S, Wang C, Zhang L, Chen S, Zhou Y, Yang D, Li K, Liu Y, Chi S, Wang Y, Wang Y, et al: Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review). Mol Med Rep 33: 28, 2026.
APA
Li, S., Wang, C., Zhang, L., Chen, S., Zhou, Y., Yang, D. ... Tang, S. (2026). Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review). Molecular Medicine Reports, 33, 28. https://doi.org/10.3892/mmr.2025.13738
MLA
Li, S., Wang, C., Zhang, L., Chen, S., Zhou, Y., Yang, D., Li, K., Liu, Y., Chi, S., Wang, Y., Li, L., Tang, S."Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review)". Molecular Medicine Reports 33.1 (2026): 28.
Chicago
Li, S., Wang, C., Zhang, L., Chen, S., Zhou, Y., Yang, D., Li, K., Liu, Y., Chi, S., Wang, Y., Li, L., Tang, S."Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review)". Molecular Medicine Reports 33, no. 1 (2026): 28. https://doi.org/10.3892/mmr.2025.13738
Copy and paste a formatted citation
x
Spandidos Publications style
Li S, Wang C, Zhang L, Chen S, Zhou Y, Yang D, Li K, Liu Y, Chi S, Wang Y, Wang Y, et al: Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review). Mol Med Rep 33: 28, 2026.
APA
Li, S., Wang, C., Zhang, L., Chen, S., Zhou, Y., Yang, D. ... Tang, S. (2026). Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review). Molecular Medicine Reports, 33, 28. https://doi.org/10.3892/mmr.2025.13738
MLA
Li, S., Wang, C., Zhang, L., Chen, S., Zhou, Y., Yang, D., Li, K., Liu, Y., Chi, S., Wang, Y., Li, L., Tang, S."Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review)". Molecular Medicine Reports 33.1 (2026): 28.
Chicago
Li, S., Wang, C., Zhang, L., Chen, S., Zhou, Y., Yang, D., Li, K., Liu, Y., Chi, S., Wang, Y., Li, L., Tang, S."Tight junction dysfunction and cytoskeletal remodeling in Hirschsprung‑associated enterocolitis: A decade of mechanistic insights and therapeutic prospects (Review)". Molecular Medicine Reports 33, no. 1 (2026): 28. https://doi.org/10.3892/mmr.2025.13738
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team