|
1
|
Cohen PA, Jhingran A, Oaknin A and Denny
L: Cervical cancer. Lancet. 393:169–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kokhdan EP, Khodavandi P, Ataeyan MH,
Alizadeh F, Khodavandi A and Zaheri A: Anti-cancer activity of
secreted aspartyl proteinase protein from Candida tropicalis on
human cervical cancer HeLa cells. Toxicon. 249:1080732024.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bray F, Jemal A, Soerjomataram I, Siegel
RL, Ferlay J, Sung H and Laversanne M: Global cancer statistics
2022: Globocan estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
4
|
Luan H: Human papilloma virus infection
and its associated risk for cervical lesions: A cross-sectional
study in Putuo area of Shanghai, China. BMC Womens Health.
23:282023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang R, Pan W, Jin L, Huang W, Li Y, Wu D,
Gao C, Ma D and Liao S: Human papillomavirus vaccine against
cervical cancer: Opportunity and challenge. Cancer Lett.
471:88–102. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Xu J, Tan ZC, Shen ZY, Shen XJ and Tang
SM: Cordyceps cicadae polysaccharides inhibit human cervical cancer
hela cells proliferation via apoptosis and cell cycle arrest. Food
Chem Toxicol. 148:1119712021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang X, Song Z, Li Y, Wang H, Zhang S,
Reid AM, Lall N, Zhang J, Wang C, Lee D, et al: Cytotoxic and
antiangiogenetic xanthones inhibiting tumor proliferation and
metastasis from garcinia xipshuanbannaensis. J Nat Prod.
84:1515–1523. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kusari S, Hertweck C and Spiteller M:
Chemical ecology of endophytic fungi: Origins of secondary
metabolites. Chem Biol. 19:792–798. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang HW, Song YC and Tan RX: Biology and
chemistry of endophytes. Nat Prod Rep. 23:753–771. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bashyal BP, Wijeratne EM, Tillotson J,
Arnold AE, Chapman E and Gunatilaka AA: Chlorinated
dehydrocurvularins and alterperylenepoxide A from Alternaria sp.
AST0039, a fungal endophyte of Astragalus lentiginosus. J Nat Prod.
80:427–433. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li SJ, Zhang X, Wang XH and Zhao CQ: Novel
natural compounds from endophytic fungi with anticancer activity.
Eur J Med Chem. 156:316–343. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhu M, Zhang X, Feng H, Dai J, Li J, Che
Q, Gu Q, Zhu T and Li D: Penicisulfuranols A-F, alkaloids from the
mangrove endophytic fungus Penicillium janthinellum HDN13-309. J
Nat Prod. 80:71–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chakravarthi BV, Sujay R, Kuriakose GC,
Karande AA and Jayabaskaran C: Inhibition of cancer cell
proliferation and apoptosis-inducing activity of fungal taxol and
its precursor baccatin III purified from endophytic Fusarium
solani. Cancer Cell Int. 13:1052013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wu LS, Hu CL, Han T, Zheng CJ, Ma XQ,
Rahman K and Qin LP: Cytotoxic metabolites from Perenniporia
tephropora, an endophytic fungus from Taxus chinensis var. mairei.
Appl Microbiol Biotechnol. 97:305–315. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Uzor PF, Ebrahim W, Osadebe PO, Nwodo JN,
Okoye FB, Müller WE, Lin W, Liu Z and Proksch P: Metabolites from
Combretum dolichopetalum and its associated endophytic fungus
Nigrospora oryzae-evidence for a metabolic partnership.
Fitoterapia. 105:147–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wani MC, Taylor HL, Wall ME, Coggon P and
McPhail AT: Plant antitumor agents. VI. The isolation and structure
of taxol, a novel antileukemic and antitumor agent from Taxus
brevifolia. J Am Chem Soc. 93:2325–2327. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zaiyou J, Li M, Xu G and Zhou X: Isolation
of an endophytic fungus producing baccatin III from Taxus
wallichiana var. mairei. J Ind Microbiol Biotechnol. 40:1297–1302.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zaiyou J, Li M and Xiqiao H: An endophytic
fungus efficiently producing paclitaxel isolated from Taxus
wallichiana var. mairei. Medicine (Baltimore). 96:e74062017.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fan ZY, Peng J, Lou JQ, Chen Y, Wu XM, Tan
R and Tan RX: Neuroprotective α-pyrones from Nigrospora oryzae, an
endophytic fungus residing in Taxus chinensis var. mairei.
Phytochemistry. 216:1138732023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hu D, Fan Y, Tan Y, Tian Y, Liu N, Wang L,
Zhao D, Wang C and Wu A: Metabolic profiling on alternaria toxins
and components of Xinjiang Jujubes incubated with pathogenic
alternaria Alternata and Alternaria tenuissima via orbitrap
high-resolution mass spectrometry. J Agri Food Chem. 65:8466–8474.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Andersen B, Nielsen KF, Fernández Pinto V
and Patriarca A: Characterization of Alternaria strains from
Argentinean blueberry, tomato, walnut and wheat. Int J Food
Microbiol. 196:1–10. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang CL, Wu HM, Liu CL, Zhang X, Guo ZK,
Chen Y, Liu F, Liang Y, Jiao RH, Tan RX and Ge HM: Bialternacins
A-F, aromatic polyketide dimers from an endophytic Alternaria sp. J
Nat Prod. 82:792–797. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xi J, Tian LL, Xi J, Girimpuhwe D, Huang
C, Ma R, Yao X, Shi D, Bai Z, Wu QX and Fang J: Alterperylenol as a
novel thioredoxin reductase inhibitor induces liver cancer cell
apoptosis and ferroptosis. J Agric Food Chem. 70:15763–15775. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li L, Yang M, Yu J, Cheng S, Ahmad M, Wu
C, Wan X, Xu B, Ben-David Y and Luo H: A novel L-phenylalanine
dipeptide inhibits the growth and metastasis of prostate cancer
cells via targeting DUSP1 and TNFSF9. Int J Mol Sci. 23:109162022.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu Y, Xin ZZ, Song J, Zhu XY, Liu QN,
Zhang DZ, Tang BP, Zhou CL and Dai LS: Transcriptome analysis
reveals potential antioxidant defense mechanisms in Antheraea
pernyi in response to zinc stress. J Agric Food Chem. 66:8132–8141.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank
MH, He Y and Xia R: TBtools: An integrative toolkit developed for
interactive analyses of big biological data. Mol Plant.
13:1194–1202. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Case DA, Aktulga HM, Belfon K, Cerutti DS,
Cisneros GA, Cruzeiro VWD, Forouzesh N, Giese TJ, Götz AW, Gohlke
H, et al: Amber Tools. J Chem Inf Model. 63:6183–6191. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shaw DE, Maragakis P, Lindorff-Larsen K,
Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan
Y and Wriggers W: Atomic-level characterization of the structural
dynamics of proteins. Science. 330:341–346. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tian C, Kasavajhala K, Belfon KAA,
Raguette L, Huang H, Migues AN, Bickel J, Wang Y, Pincay J, Wu Q
and Simmerling C: ff19SB: Amino-acid-specific protein backbone
parameters trained against quantum mechanics energy surfaces in
solution. J Chem Theory Comput. 16:528–552. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Izadi S, Anandakrishnan R and Onufriev AV:
Building water models: A different approach. J Phys Chem Lett.
5:3863–3871. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang H, Gao X and Fang J: Multiple
staggered mesh ewald: Boosting the accuracy of the smooth particle
mesh ewald method. J Chem Theory Comput. 12:5596–5608. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Donnelly SM, Lopez NA and Dodin IY:
Steepest-descent algorithm for simulating plasma-wave caustics via
metaplectic geometrical optics. Phys Rev E. 104:0253042021.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bussi G, Donadio D and Parrinello M:
Canonical sampling through velocity rescaling. J Chem Phys.
126:0141012007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Nosé S and Klein ML: Constant pressure
molecular dynamics for molecular systems. Mol Phys. 50:1055–1076.
1983. View Article : Google Scholar
|
|
36
|
Zhang SY, Li ZL, Bai J, Wang Y, Zhang LM,
Wu X and Hua HM: A new perylenequinone from a halotolerant fungus,
Alternaria sp. M6. Chin J Nat Med. 10:68–71. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Campos FR, Barison A, Daolio C, Ferreira
AG and Rodrigues-Fo E: Complete 1H and 13C NMR assignments of
aurasperone A and fonsecinone A, two bis-naphthopyrones produced by
Aspergillus aculeatus. Magn Reson Chem. 43:962–965. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xiong HY, Fei DQ, Zhou JS, Yang CJ and Ma
GL: Steroids and other constituents from the mushroom Armillaria
lueo-virens. Chem Nat Compd. 45:759–761. 2009. View Article : Google Scholar
|
|
39
|
Wu J, Choi JH, Yoshida M, Hirai H, Harada
E, Masuda K, Koyama T, Yazawa K, Noguchi K, Nagasawa K and
Kawagishi H: Osteoclast-forming suppressing compounds, gargalols A,
B, and C, from the edible mushroom Grifola gargal. Tetrahedron.
67:6576–6581. 2011. View Article : Google Scholar
|
|
40
|
Yue JM, Chen SN, Lin ZW and Sun HD:
Sterols from the fungus lactarium volemus. Phytochemistry.
56:801–806. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ding T, Zhou Y, Qin JJ, Yang LJ, Zhang WD
and Shen YH: Chemical constituents from wetland soil fungus
penicillium oxalicum GY1. Fitoterapia. 142:1045302020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu S, Sun C, Ha Y, Ma M, Wang N, Zhou Y
and Zhang Z: Novel antibacterial alkaloids from the mariana
trench-derived actinomycete streptomyces sp. SY2255. Tetrahedron
Lett. 137:1549352024. View Article : Google Scholar
|
|
43
|
Wu B, Lin WH, Gao HY, Zheng L, Wu LJ and
Kim CS: Four new antibacterial constituents from Senecio
cannabifolius. Pharm Biol. 44:440–444. 2006. View Article : Google Scholar
|
|
44
|
Pitera JW: Expected distributions of
root-mean-square positional deviations in proteins. J Phys Chem B.
118:6526–6530. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Trott O and Olson AJ: AutoDock vina:
Improving the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreading. J Comput
Chem. 31:455–461. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fu Y, Wu F, Huang JH, Chen YC and Luo MB:
Simulation study on the extension of semi-flexible polymer chains
in cylindrical channel. Chin J Polym Sci. 37:1053–1060. 2019.
View Article : Google Scholar
|
|
47
|
Cao X, Hummel MH, Wang Y, Simmerling C and
Coutsias EA: Exact analytical algorithm for the solvent-accessible
surface area and derivatives in implicit solvent molecular
simulations on GPUs. J Chem Theory Comput. 20:4456–4468. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang Y and Wang Y: HBCalculator: A tool
for hydrogen bond distribution calculations in molecular dynamics
simulations. J Chem Inf Model. 64:1772–1777. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jiang D, Du H, Zhao H, Deng Y, Wu Z, Wang
J, Zeng Y, Zhang H, Wang X, Wang E, et al: Assessing the
performance of MM/PBSA and MM/GBSA methods. 10. Prediction
reliability of binding affinities and binding poses for RNA-ligand
complexes. Phys Chem Chem Phys. 26:10323–10335. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liao Q: Enhanced sampling and free energy
calculations for protein simulations. Prog Mol Biol Transl Sci.
170:177–213. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bai F, Xu Y, Chen J, Liu Q, Gu J, Wang X,
Ma J, Li H, Onuchic JN and Jiang H: Free energy landscape for the
binding process of Huperzine A to acetylcholinesterase. Proc Natl
Acad Sci USA. 110:4273–4278. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang Z, Liu M, An Y, Gao C, Wang T, Zhang
Z, Zhang G, Li S, Li W, Li M and Wang G: Targeting immune
microenvironment in cervical cancer: Current research and advances.
J Transl Med. 23:8882025. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sharma S, Deep A and Sharma AK: Current
treatment for cervical cancer: An update. Anticancer Agents Med
Chem. 20:1768–1779. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Barra F, Lorusso D, Leone Roberti Maggiore
U, Ditto A, Bogani G, Raspagliesi F and Ferrero S: Investigational
drugs for the treatment of cervical cancer. Expert Opin Investig
Drugs. 26:389–402. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Giudice E, Mirza MR and Lorusso D:
Advances in the management of recurrent cervical cancer: State of
the art and future perspectives. Curr Oncol Rep. 25:1307–1326.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Newman DJ and Giddings LA: Natural
products as leads to antitumor drugs. Phytochem Rev. 13:123–137.
2014. View Article : Google Scholar
|
|
57
|
Baek SH: Editorial for the special issue
‘Anticancer activity and metabolic pathways of natural products
2.0’. Biomedicines. 13:20832025. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pero RW, Posner H, Blois M, Harvan D and
Spalding JW: Toxicity of metabolites produced by the ‘Alternaria’.
Environ Health Perspect. 4:87–94. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fang ZF, Yu SS, Zhou WQ, Chen XG, Ma SG,
Li Y and Qu J: A new isocoumarin from metabolites of the endophytic
fungus Alternaria tenuissima (Nees & T. Nees: Fr.)
Wiltshire. Chinese Chem Lett. 23:317–320. 2012. View Article : Google Scholar
|
|
60
|
Ma Y, Lin Q, Yang Y, Liang W, Salamone SJ,
Li Y, Lin Y, Zhao H, Zhao Y, Fang W, et al: Clinical
pharmacokinetics and drug exposure-toxicity correlation study of
docetaxel based chemotherapy in Chinese head and neck cancer
patients. Ann Transl Med. 8:2362020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yang Z, Liu Z, Ablise M, Jia J, Maimaiti
A, Lv ZY, Mutalipu Z, Yan T, Wang Y, Aihaiti A, et al: Design,
synthesis, and in vitro and in vivo anti-drug resistant cervical
cancer activity of novel licochalcone A derivatives based on dual
targeting of VEGFR-2/P-gp. Bioorg Chem. 163:1086392025. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zafar A, Khatoon S, Khan MJ, Abu J and
Naeem A: Advancements and limitations in traditional anti-cancer
therapies: A comprehensive review of surgery, chemotherapy,
radiation therapy, and hormonal therapy. Discov Oncol. 16:6072025.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Raman R, Debata S, Govindarajan T and
Kumar P: Targeting triple-negative breast cancer: Resistance
mechanisms and therapeutic advancements. Cancer Med. 14:e708032025.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li W, Xu F, Shuai W, Sun H, Yao H, Ma C,
Xu S, Yao H, Zhu Z, Yang DH, et al: Discovery of novel
quinoline-chalcone derivatives as potent antitumor agents with
microtubule polymerization inhibitory activity. J Med Chem.
62:993–1013. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
França GS, Baron M, King BR, Bossowski JP,
Bjornberg A, Pour M, Rao A, Patel AS, Misirlioglu S, Barkley D, et
al: Cellular adaptation to cancer therapy along a resistance
continuum. Nature. 631:876–883. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pang L, Cheng Y, Zou S and Song J: Long
noncoding RNA SNHG7 contributes to cell proliferation, migration,
invasion and epithelial to mesenchymal transition in non-small cell
lung cancer by regulating miR-449a/TGIF2 axis. Thorac Cancer.
11:264–276. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu K, Zhang Y, Liu L and Yuan Q:
MALAT1 promotes proliferation, migration, and invasion of
MG63 cells by upregulation of TGIF2 via negatively
regulating miR-129. Onco Targets Ther. 11:8729–8740. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xi L, Zhang Y, Kong S and Liang W:
miR-34 inhibits growth and promotes apoptosis of
osteosarcoma in nude mice through targetly regulating TGIF2
expression. Biosci Rep. 38:BSR201800782018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Weiler S, Ademokun JA and Norton JD: ID
helix-loop-helix proteins as determinants of cell survival in
B-cell chronic lymphocytic leukemia cells in vitro. Mol Cancer.
14:302015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ruzinova MB and Benezra R: Id proteins in
development, cell cycle and cancer. Trends Cell Biol. 13:410–418.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ouyang XS, Wang X, Ling MT, Wong HL, Tsao
SW and Wong YC: Id-1 stimu-lates serum independent prostate cancer
cell proliferation through inactivation of p16(INK4a)/pRB pathway.
Carcinogenesis. 23:721–725. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ling MT, Wang X, Ouyang XS, Lee TK, Fan
TY, Xu K, Tsao SW and Wong YC: Activation of MAPK signaling pathway
is essential for Id-1 induced serum independent prostate cancer
cell growth. Oncogene. 21:8498–8505. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Su Y, Zheng L, Wang Q, Bao J, Cai Z and
Liu A: The PI3K/Akt pathway upregulates Id1 and integrin α4 to
enhance recruitment of human ovarian cancer endothelial progenitor
cells. BMC Cancer. 10:4592010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sun WZ, Li MH, Chu M, Wei LL, Bi MY, He Y
and Yu LB: Id1 knockdown induces the apoptosis and inhibits the
proliferation and invasion of ovarian cancer cells. Eur Rev Med
Pharmacol Sci. 20:2812–2818. 2016.PubMed/NCBI
|
|
75
|
Papaspyridonos M, Matei I, Huang Y, do
Rosario Andre M, Brazier-Mitouart H, Waite JC, Chan AS, Kalter J,
Ramos I, Wu Q, et al: Id1 suppresses anti-tumour immune responses
and promotes tumour progression by impairing myeloid cell
maturation. Nat Commun. 6:68402015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang MH, Zhou XM, Zhang MY, Shi L, Xiao
RW, Zeng LS, Yang XZ, Zheng XFS, Wang HY and Mai SJ: BMP2 promotes
proliferation and invasion of nasopharyngeal carcinoma cells via
mTORC1 pathway. Aging (Albany NY). 9:1326–1340. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lan L, Evan T, Li H, Hussain A, Ruiz EJ,
Zaw Thin M, Ferreira RMM, Ps H, Riising EM, Zen Y, et al: GREM1 is
required to maintain cellular heterogeneity in pancreatic cancer.
Nature. 607:163–168. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Huang S, Wang Y, Luo L, Li X, Jin X, Li S,
Yu X, Yang M and Guo Z: BMP2 is related to Hirschsprung's disease
and required for enteric nervous system development. Front Cell
Neurosci. 13:5232019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Du M, Su XM, Zhang T and Xing YJ: Aberrant
promoter DNA methylation inhibits bone morphogenetic protein 2
expression and contributes to drug resistance in breast cancer. Mol
Med Rep. 10:1051–1055. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Waite KA and Eng C: BMP2 exposure results
in decreased PTEN protein degradation and increased PTEN levels.
Hum Mol Genet. 12:679–684. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Buijs JT, van der Horst G, van den Hoogen
C, Cheung H, de Rooij B, Kroon J, Petersen M, van Overveld PG,
Pelger RC and van der Pluijm G: The BMP2/7 heterodimer inhibits the
human breast cancer stem cell subpopulation and bone metastases
formation. Oncogene. 31:2164–2174. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Xiao B, Zhang W, Kuang Z, Lu J, Li W, Deng
C, He Y, Lei T, Hao W, Sun Z and Li L: SOX9 promotes nasopharyngeal
carcinoma cell proliferation, migration and invasion through BMP2
and mTOR signaling. Gene. 715:1440172019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen Z, Yuan L, Li X, Yu J and Xu Z: BMP2
inhibits cell proliferation by downregulating EZH2 in gastric
cancer. Cell Cycle. 21:2298–2308. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Vora M, Mondal A, Jia D, Gaddipati P, Akel
M, Gilleran J, Roberge J, Rongo C and Langenfeld J: Bone
morphogenetic protein signaling regulation of AMPK and PI3K in lung
cancer cells and C. elegans. Cell Biosci. 12:762022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mao J, Yu Y, Yang J, Li G, Li C, Qi X, Wen
T and Hu J: Comparative transcriptome analysis of sweet corn
seedlings under low-temperature stress. Crop J. 5:396–406. 2017.
View Article : Google Scholar
|
|
86
|
Chen L, Zhang Y, Chen H, Zhang X, Liu X,
He Z, Cong P, Chen Y and Mo D: Comparative transcriptome analysis
reveals a more complicated adipogenic process in intramuscular stem
cells than that of subcutaneous vascular stem cells. J Agric Food
Chem. 67:4700–4708. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhao W, Li J, Chen MM, Luo Y, Ju Z, Nesser
NK, Johnson-Camacho K, Boniface CT, Lawrence Y, Pande NT, et al:
Large-scale characterization of drug responses of clinically
relevant proteins in cancer cell lines. Cancer Cell. 38:829–843.e4.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Istyastono EP, Radifar M, Yuniarti N,
Prasasty VD and Mungkasi S: PyPLIF HIPPOS: A molecular interaction
fingerprinting tool for docking results of autoDock vina and
PLANTS. J Chem Inf Model. 60:3697–3702. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Errington D, Schneider C, Bouysset C and
Dreyer FA: Assessing interaction recovery of predicted
protein-ligand poses. J Cheminform. 17:762025. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang L, Zhang J, Zhang W, Zheng M, Guo H,
Pan X, Li W, Yang B and Ding L: The inhibitory effect of adenosine
on tumor adaptive immunity and intervention strategies. Acta Pharm
Sin B. 14:1951–1964. 2024. View Article : Google Scholar : PubMed/NCBI
|