Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review)

  • Authors:
    • Liwen Zhang
    • Haoxuan Li
    • Dongxu Li
    • Qingqing Dai
  • View Affiliations / Copyright

    Affiliations: Department of Critical Care Medicine, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Lab of Reproduction and Development, Shanghai Key Lab of Female Reproductive Endocrine Related Diseases, Shanghai 200433, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 31
    |
    Published online on: November 3, 2025
       https://doi.org/10.3892/mmr.2025.13741
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sepsis refers to the state of the body exhibited after an uncontrolled reaction to infection. This is marked by the impaired function of multiple organs, with the lungs often being impacted. Individuals affected by sepsis often suffer acute lung injury, which may advance to a more serious acute respiratory distress syndrome. Inflammatory responses and apoptosis are key in the onset and progression of sepsis‑induced acute lung injury (SALI). The present review examines the pathogenesis of SALI, emphasizing the synergistic roles of inflammatory responses and apoptosis as well as their effect on lung tissue. An overactivated inflammatory response can exacerbate lung tissue damage and promote the occurrence of apoptosis. Meanwhile, excessive apoptosis can further intensify the inflammatory response, therefore resulting in a vicious cycle. The present review also discusses therapeutic strategies that target the synergistic effects of inflammation and apoptosis, including NF‑κB pathway inhibitors, MAPK signaling pathway inhibitors, antioxidants, mesenchymal stem cell therapy and biologics. Despite the progress made to date in understanding the synergistic effects of inflammation and apoptosis, there are still numerous areas that require further exploration, such as the complex molecular regulatory networks connecting inflammation and apoptosis as well as the impact of clinical individual differences on this synergy, which require further investigation to ultimately translate mechanistic findings into targeted therapies, thus providing new insights and approaches for the treatment of SALI.
View Figures

Figure 1

Functional shifts in macrophages. LPS
or IFN promotes the polarization of macrophages toward the M1
phenotype, resulting in an increased release of pro-inflammatory
factors such as TNF-α, NO, IL-1β and IL-6. In the later stages of
inflammatory repair, M1 macrophages transition into M2 macrophages,
which secrete anti-inflammatory factors such as IL-4, IL-10, IL-13
and TGF-β, thereby suppressing the inflammatory response and
facilitating tissue repair and remodeling. LPS, lipopolysaccharide;
NO, nitric oxide.

Figure 2

Activation of apoptosis-related
signalling pathways. The activation of the extrinsic apoptotic
pathway is primarily mediated by the binding of specific ligands to
the Fas receptor and TNF receptor on the cell surface, which is
followed by the recruitment of FADD to form the DISC. Notably,
there are marked differences in the formation of DISC between type
I and II cells. In type I cells, the DISC is formed efficiently and
stably, resulting in the production of a substantial amount of
Casp8. This enzyme directly activates downstream effector enzymes,
including Casp3, thereby triggering apoptosis. Conversely, in type
II cells, DISC formation is inefficient and unstable, yielding only
a limited amount of Casp8, which subsequently cleaves Bid into
tBid. tBid then translocates to the outer mitochondrial membrane,
activating Bax/Bak, which leads to the disruption of mitochondrial
membrane integrity, the release of Cyt c and subsequent binding
with Apaf-1 to form the apoptosome. This process further activates
Casp9, which triggers downstream Casp3 to initiate apoptosis. DISC,
death-inducing signaling complex; Bid, BH3 interacting domain death
agonist; tBid, truncated Bid; Bak, Bcl-2 homologous antagonist
killer; Cyt c, cytochrome c; Apaf-1, apoptotic protease activating
factor 1; FADD, Fas-associated death domain; Casp, caspase; Bad,
Bcl-2-associtaed death protein.

Figure 3

DAMPs released by apoptotic cells.
Proteins or peptides released from apoptotic cells into the
extracellular space can be transformed into DAMPs, including
nuclear proteins such as HMGB1, histones, HSPs and oxidized
phospholipids. These DAMPs can be recognized by PRRs, which
subsequently activate downstream MAPK and NF-κB pathways through
the adaptor protein Myd88, resulting in the secretion of
inflammatory mediators. DAMPs, damage-associated molecular
patterns; HMGB1, high mobility group box 1; HSPs, heat shock
proteins; PRRs, pattern recognition receptors; MAPK,
mitogen-activated protein kinase; Myd88, myeloid differentiation
primary response 88; OxPLs, oxidized phospholipids; TLR, toll-like
receptors; CLR, C-type lectin receptors; MCP-1, monocyte
chemoattractant protein 1; RLR, RIG-I-like receptors; NLR, NOD-like
receptors.

Figure 4

MSC therapy. MSCs are derived from
various sources, including adipose tissue, bone marrow, umbilical
cord blood and placental tissue. On the one hand, MSCs can
differentiate into lung cells, directly replacing damaged cells and
tissues, thereby promoting the repair of injured sites.
Additionally, MSCs can migrate to the damaged lung area, where they
reduce the permeability of pulmonary endothelial and epithelial
cells by secreting various paracrine factors that promote
angiogenesis and tissue repair. On the other hand, MSCs release
anti-inflammatory cytokines and miRNA exosomes, which inhibit NF-κB
activation, decrease the release of pro-inflammatory factors and
upregulate the expression of anti-apoptotic molecules.
Simultaneously, MSCs also reduce mitochondrial fission, alleviate
oxidative stress damage in macrophages and induce the polarization
of macrophages toward an anti-inflammatory phenotype. MSCs,
mesenchymal stem cells; miRNA, micro-RNA; PGE2, prostaglandin
E2.
View References

1 

Gao X, Cai S, Li X and Wu G: Sepsis-induced immunosuppression: Mechanisms, biomarkers and immunotherapy. Front Immunol. 16:15771052025. View Article : Google Scholar : PubMed/NCBI

2 

Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 47:1181–1247. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Xie J, Wang H, Kang Y, Zhou L, Liu Z, Qin B, Ma X, Cao X, Chen D, Lu W, et al: The epidemiology of sepsis in Chinese ICUs: A National cross-sectional survey. Crit Care Med. 48:e209–e218. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Dulhunty JM, Brett SJ, De Waele JJ, Rajbhandari D, Billot L, Cotta MO, Davis JS, Finfer S, Hammond NE, Knowles S, et al: Continuous vs Intermittent β-lactam antibiotic infusions in critically Ill patients with sepsis: The BLING III Randomized clinical trial. JAMA. 332:629–637. 2024. View Article : Google Scholar : PubMed/NCBI

5 

Li W, Li D, Chen Y, Abudou H, Wang H, Cai J, Wang Y, Liu Z, Liu Y and Fan H: Classic signaling pathways in alveolar injury and repair involved in sepsis-induced ALI/ARDS: New research progress and prospect. Dis Markers. 2022:63623442022.PubMed/NCBI

6 

Vincent JL, Opal SM, Marshall JC and Tracey KJ: Sepsis definitions: Time for change. Lancet. 381:774–775. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Jiang J, Huang K, Xu S, Garcia JGN, Wang C and Cai H: Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol. 36:1016382020. View Article : Google Scholar : PubMed/NCBI

8 

Boada-Romero E, Martinez J, Heckmann BL and Green DR: The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol. 21:398–414. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Qu J, Jin J, Zhang M and Ng LG: Neutrophil diversity and plasticity: Implications for organ transplantation. Cell Mol Immunol. 20:993–1001. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Zi SF, Wu XJ, Tang Y, Liang YP, Liu X, Wang L, Li SL, Wu CD, Xu JY, Liu T, et al: Endothelial cell-derived extracellular vesicles promote aberrant neutrophil trafficking and subsequent remote lung injury. Adv Sci (Weinh). 11:e24006472024. View Article : Google Scholar : PubMed/NCBI

11 

Yang R, Zheng T, Xiang H, Liu M and Hu K: Lung single-cell RNA profiling reveals response of pulmonary capillary to sepsis-induced acute lung injury. Front Immunol. 15:13089152024. View Article : Google Scholar : PubMed/NCBI

12 

Serhan CN, Chiang N and Van Dyke TE: Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 8:349–361. 2008. View Article : Google Scholar : PubMed/NCBI

13 

do Nascimento MF, Ferreira LRP, Vieira Junior JM, Deheinzelin D, Aparecida Santos Nussbaum AC, Toshihiro Sakamoto LH, Vasconcelos RO, Salomao R, Waisberg J, Azevedo LCP, et al: Circulating extracellular vesicles as potential biomarkers and mediators of acute respiratory distress syndrome in sepsis. Sci Rep. 15:55122025. View Article : Google Scholar : PubMed/NCBI

14 

Gupta S and Sahni V: The intriguing commonality of NETosis between COVID-19 & Periodontal disease. Med Hypotheses. 144:1099682020. View Article : Google Scholar : PubMed/NCBI

15 

Scozzi D, Liao F, Krupnick AS, Kreisel D and Gelman AE: The role of neutrophil extracellular traps in acute lung injury. Front Immunol. 13:9531952022. View Article : Google Scholar : PubMed/NCBI

16 

Kumar S, Payal N, Srivastava VK, Kaushik S, Saxena J and Jyoti A: Neutrophil extracellular traps and organ dysfunction in sepsis. Clin Chim Acta. 523:152–162. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP and Miao C: Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 13:e11702023. View Article : Google Scholar : PubMed/NCBI

18 

Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH and Wagner DD: Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 107:15880–15885. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H and Guo D: Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases. Mediators Inflamm. 2023:88216102023. View Article : Google Scholar : PubMed/NCBI

20 

Dang W, Tao Y, Xu X, Zhao H, Zou L and Li Y: The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res. 71:1417–1432. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Wang Z and Wang Z: The role of macrophages polarization in sepsis-induced acute lung injury. Front Immunol. 14:12094382023. View Article : Google Scholar : PubMed/NCBI

22 

Li S, Feng T, Zhang Y, Shi Q, Wang W, Ren J, Shen G, Gu H, Luo C and Li Y: Lianhua Qingwen protects LPS-induced acute lung injury by promoting M2 macrophage infiltration. J Ethnopharmacol. 320:1174672024. View Article : Google Scholar : PubMed/NCBI

23 

Yang J, Huang X, Yu Q, Wang S, Wen X, Bai S, Cao L, Zhang K, Zhang S and Wang X: Extracellular vesicles derived from M2-like macrophages alleviate acute lung injury in a miR-709-mediated manner. J Extracell Vesicles. 13:e124372024. View Article : Google Scholar : PubMed/NCBI

24 

Morrell ED, Bhatraju PK, Mikacenic CR, Radella F II, Manicone AM, Stapleton RD, Wurfel MM and Gharib SA: Alveolar macrophage transcriptional programs are associated with outcomes in acute respiratory distress Syndrome. Am J Respir Crit Care Med. 200:732–741. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Zenga J, Loi GWZ, Saipuljumri EN, Romero Durán MA, Silva-García O, Perez-Aguilar JM, Baizabal-Aguirre VM and Lo CH: Peptide-based allosteric inhibitor targets TNFR1 conformationally active region and disables receptor-ligand signaling complex. Proc Natl Acad Sci USA. 121:e23081321212024. View Article : Google Scholar

26 

Crijns H, Vanheule V and Proost P: Targeting chemokine-glycosaminoglycan interactions to inhibit inflammation. Front Immunol. 11:4832020. View Article : Google Scholar : PubMed/NCBI

27 

Karin N and Wildbaum G: The role of chemokines in shaping the balance between CD4+ T cell subsets and its therapeutic implications in autoimmune and cancer diseases. Front Immunol. 6:6092015. View Article : Google Scholar : PubMed/NCBI

28 

Yang S, Yu J, Dong X, Zeng J, Tan L, Zhang H, Sun R, Tuo Y, Yang J, Wan C and Bai H: CCR2 signaling regulates anti-chlamydia T cell immune responses in the airway. PLoS Pathog. 21:e10129122025. View Article : Google Scholar : PubMed/NCBI

29 

Cheng PP, He XL, Jia ZH, Hu SH, Feng X, Jiang YH, Li Q, Zhao LQ, Cui XL, Ye SY, et al: Midkine, a novel MCP-1 activator mediated PM2.5-aggravated experimental pulmonary fibrosis. Environ Int. 197:1093542025. View Article : Google Scholar : PubMed/NCBI

30 

Neehus AL, Carey B, Landekic M, Panikulam P, Deutsch G, Ogishi M, Arango-Franco CA, Philippot Q, Modaresi M, Mohammadzadeh I, et al: Human inherited CCR2 deficiency underlies progressive polycystic lung disease. Cell. 187:390–408. e232024. View Article : Google Scholar : PubMed/NCBI

31 

Molino S, Pisarevsky A, Badu S, Wu Q, Mingorance FL, Vega P, Stefanolo JP, Repetti J, Ludueña G, Pepa P, et al: Randomized placebo-controlled trial of oral tannin supplementation on COVID-19 symptoms, gut dysbiosis and cytokine response. J Funct Foods. 99:1053562022. View Article : Google Scholar : PubMed/NCBI

32 

Hammock BD, Wang W, Gilligan MM and Panigrahy D: Eicosanoids: The overlooked storm in coronavirus disease 2019 (COVID-19)? Am J Pathol. 190:1782–1788. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Wu J, Ye J, Kong W, Zhang S and Zheng Y: Programmed cell death pathways in hearing loss: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 53:e129152020. View Article : Google Scholar : PubMed/NCBI

34 

Dho SH, Cho M, Woo W, Jeong S and Kim LK: Caspases as master regulators of programmed cell death: apoptosis, pyroptosis and beyond. Exp Mol Med. 57:1121–1132. 2025. View Article : Google Scholar : PubMed/NCBI

35 

Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK and Peter ME: Molecular ordering of the initial signaling events of CD95. Mol Cell Biol. 22:207–220. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Fu Y, Sacco O, DeBitetto E, Kanshin E, Ueberheide B and Sfeir A: Mitochondrial DNA breaks activate an integrated stress response to reestablish homeostasis. Mol Cell. 83:3740–3753. e92023. View Article : Google Scholar : PubMed/NCBI

38 

Bilen M, Benhammouda S, Slack RS and Germain M: The integrated stress response as a key pathway downstream of mitochondrial dysfunction. Curr Opinion Physiol. 27:1005552022. View Article : Google Scholar

39 

Breckenridge DG, Stojanovic M, Marcellus RC and Shore GC: Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol. 160:1115–1127. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Du Y, Wang G, Liu B, Guo M, Yan X, Dou M, Yu F, Ba Y and Zhou G: Naringin alleviates fluoride-induced neurological impairment: A focus on the regulation of energy metabolism mediated by mitochondrial permeability transition pore. Sci Total Environ. 955:1770732024. View Article : Google Scholar : PubMed/NCBI

41 

Xue Y, Wang J, Huang Y, Gao X, Kong L, Zhang T and Tang M: Comparative cytotoxicity and apoptotic pathways induced by nanosilver in human liver HepG2 and L02 cells. Hum Exp Toxicol. 37:1293–1309. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Chang X, Niu S, Shang M, Li J, Guo M, Zhang W, Sun Z, Li Y, Zhang R, Shen X, et al: ROS-Drp1-mediated mitochondria fission contributes to hippocampal HT22 cell apoptosis induced by silver nanoparticles. Redox Biol. 63:1027392023. View Article : Google Scholar : PubMed/NCBI

43 

Wang HW, Zhang Y, Tan PP, Jia LS, Chen Y and Zhou BH: Mitochondrial respiratory chain dysfunction mediated by ROS is a primary point of fluoride-induced damage in Hepa1-6 cells. Environ Pollut. 255((Pt 3)): 1133592019. View Article : Google Scholar : PubMed/NCBI

44 

Kushnareva Y, Andreyev AY, Kuwana T and Newmeyer DD: Bax activation initiates the assembly of a multimeric catalyst that facilitates bax pore formation in mitochondrial outer membranes. PLoS Biol. 10:e10013942012. View Article : Google Scholar : PubMed/NCBI

45 

Vandenabeele P, Bultynck G and Savvides SN: Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol. 24:312–333. 2023. View Article : Google Scholar : PubMed/NCBI

46 

An J, Park SH, Ko IG, Jin JJ, Hwang L, Ji ES, Kim SH, Kim CJ, Park SY, Hwang JJ and Choi CW: Polydeoxyribonucleotide ameliorates lipopolysaccharide-induced lung injury by inhibiting apoptotic cell death in rats. Int J Mol Sci. 18:18472017. View Article : Google Scholar : PubMed/NCBI

47 

Wang H, Guo M, Wei H and Chen Y: Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 8:922023. View Article : Google Scholar : PubMed/NCBI

48 

Chen L, Liu S and Tao Y: Regulating tumor suppressor genes: Post-translational modifications. Signal Transduct Target Ther. 5:902020. View Article : Google Scholar : PubMed/NCBI

49 

Wei H, Qu L, Dai S, Li Y, Wang H, Feng Y, Chen X, Jiang L, Guo M, Li J, et al: Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat Commun. 12:22802021. View Article : Google Scholar : PubMed/NCBI

50 

Aubrey BJ, Kelly GL, Janic A, Herold MJ and Strasser A: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Wang S, Zhong S, Huang Y, Zhu S, Chen S, Wang R, Wangmo S, Peng B, Lv H, Yang J, et al: MDM2 is essential to maintain the homeostasis of epithelial cells by targeting p53. J Innate Immun. 16:397–412. 2024.PubMed/NCBI

52 

Lane K, Andres-Terre M, Kudo T, Monack DM and Covert MW: Escalating threat levels of bacterial infection can be discriminated by distinct MAPK and NF-kappaB signaling dynamics in single host cells. Cell Syst. 8:183–196. e42019. View Article : Google Scholar : PubMed/NCBI

53 

DeCuzzi NL, Oberbauer D, Chmiel KJ, Pargett M, Ferguson JM, Murphy D, Hardy M, Ram A, Zeki AA and Albeck JG: Spatiotemporal clusters of extracellular signal-regulated kinase activity coordinate cytokine-induced inflammatory responses in human airway epithelial cells. Am J Respir Cell Mol Biol. 72:520–532. 2025. View Article : Google Scholar : PubMed/NCBI

54 

Mokra D: Acute lung injury - from pathophysiology to treatment. Physiol Res. 69 (Suppl 3):S353–S366. 2020.PubMed/NCBI

55 

McMinimy R, Manford AG, Gee CL, Chandrasekhar S, Mousa GA, Chuang J, Phu L, Shih KY, Rose CM, Kuriyan J, et al: Reactive oxygen species control protein degradation at the mitochondrial import gate. Mol Cell. 84:4612–4628. e132024. View Article : Google Scholar : PubMed/NCBI

56 

Zhang J, Wei Y, Yue Y, Jiao H, Wu Y, Fu W, Lin KM, Lu C, Mou S and Zhong Q: RIPK4 promotes oxidative stress and ferroptotic death through the downregulation of ACSM1. Proc Natl Acad Sci USA. 121:e24106281212024. View Article : Google Scholar : PubMed/NCBI

57 

Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, Li C, Yang F, Zeng R, Wei P, et al: Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res. 27:329–351. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Ma M, Jiang W and Zhou R: DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity. 57:752–771. 2024. View Article : Google Scholar : PubMed/NCBI

59 

Deng C, Zhao L, Yang Z, Shang JJ, Wang CY, Shen MZ, Jiang S, Li T, Di WC, Chen Y, et al: Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin. 43:520–528. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Dutta S, Dutta S, Somanath PR, Narayanan SP, Wang X and Zhang D: Circulating nucleosomes and histones in the development of lung injury and sepsis. Curr Issues Mol Biol. 47:1332025. View Article : Google Scholar : PubMed/NCBI

61 

Pei Q, Ni W, Yuan Y, Yuan J, Zhang X and Yao M: HSP70 Ameliorates Septic Lung Injury via Inhibition of Apoptosis by Interacting with KANK2. Biomolecules. 12:4102022. View Article : Google Scholar : PubMed/NCBI

62 

Karki P, Zhang CO, Promnares K, Li Y, Ke Y, Birukova AA and Birukov KG: Truncated oxidized phospholipids exacerbate endothelial dysfunction and lung injury caused by bacterial pathogens. Cell Signal. 109:1108042023. View Article : Google Scholar : PubMed/NCBI

63 

Munemasa Y: Histone H2B induces retinal ganglion cell death through toll-like receptor 4 in the vitreous of acute primary angle closure patients. Lab Invest. 100:1080–1089. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Beltran-Garcia J, Osca-Verdegal R, Perez-Cremades D, Novella S, Hermenegildo C, Pallardó FV and García-Giménez JL: Extracellular histones activate endothelial NLRP3 inflammasome and are associated with a severe sepsis phenotype. J Inflamm Res. 15:4217–4238. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Orecchioni M, Kobiyama K, Winkels H, Ghosheh Y, McArdle S, Mikulski Z, Kiosses WB, Fan Z, Wen L, Jung Y, et al: Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science. 375:214–221. 2022. View Article : Google Scholar : PubMed/NCBI

66 

Dong Y and Yong VW: Oxidized phospholipids as novel mediators of neurodegeneration. Trends Neurosci. 45:419–429. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, et al: Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 461:282–286. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Yang M, Liu J, Piao C, Shao J and Du J: ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis. Cell Death Dis. 6:e17802015. View Article : Google Scholar : PubMed/NCBI

69 

Wang Y, Zhang W, Xu Y, Wu D, Gao Z, Zhou J, Qian H, He B and Wang G: Extracellular HMGB1 impairs macrophage-mediated efferocytosis by suppressing the Rab43-controlled cell surface transport of CD91. Front Immunol. 13:7676302022. View Article : Google Scholar : PubMed/NCBI

70 

Bondue B, Vosters O, de Nadai P, Glineur S, De Henau O, Luangsay S, Van Gool F, Communi D, De Vuyst P, Desmecht D and Parmentier M: ChemR23 dampens lung inflammation and enhances anti-viral immunity in a mouse model of acute viral pneumonia. PLoS Pathog. 7:e10023582011. View Article : Google Scholar : PubMed/NCBI

71 

Duvall MG, Bruggemann TR and Levy BD: Bronchoprotective mechanisms for specialized pro-resolving mediators in the resolution of lung inflammation. Mol Aspects Med. 58:44–56. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Bos LDJ and Ware LB: Acute respiratory distress syndrome: Causes, pathophysiology, and phenotypes. Lancet. 400:1145–1156. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Burgess CL, Huang J, Bawa PS, Alysandratos KD, Minakin K, Ayers LJ, Morley MP, Babu A, Villacorta-Martin C, Yampolskaya M, et al: Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell. 31:657–675. e82024. View Article : Google Scholar : PubMed/NCBI

74 

Meyer NJ, Gattinoni L and Calfee CS: Acute respiratory distress syndrome. Lancet. 398:622–637. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Rizzo AN, Haeger SM, Oshima K, Yang Y, Wallbank AM, Jin Y, Lettau M, McCaig LA, Wickersham NE, McNeil JB, et al: Alveolar epithelial glycocalyx degradation mediates surfactant dysfunction and contributes to acute respiratory distress syndrome. JCI Insight. 7:e1545732022. View Article : Google Scholar : PubMed/NCBI

76 

Han S, Lee M, Shin Y, Giovanni R, Chakrabarty RP, Herrerias MM, Dada LA, Flozak AS, Reyfman PA, Khuder B, et al: Mitochondrial integrated stress response controls lung epithelial cell fate. Nature. 620:890–897. 2023. View Article : Google Scholar : PubMed/NCBI

77 

Xi Q, Liu L, Zhao Q and Zhu S: KLF13 attenuates lipopolysaccharide-induced alveolar epithelial cell damage by regulating mitochondrial quality control via binding PGC-1α. J Interferon Cytokine Res. 45:227–237. 2025. View Article : Google Scholar : PubMed/NCBI

78 

Wang C, Wu Z, Li Z, Wang Z, Ke H and Huang X: Beneficial effect of the mitochondrial ATP-sensitive potassium channel-specific opener nicorandil on the collapsed lung via inhibition of apoptosis in clinical thoracic surgery. Mol Med Rep. 27:612023. View Article : Google Scholar : PubMed/NCBI

79 

Lei X, Liu X, Yu J, Li K, Xia L, Su S, Lin P, Zhang D and Li Y: 3-methyladenine ameliorates acute lung injury by inhibiting oxidative damage and apoptosis. Heliyon. 10:e339962024. View Article : Google Scholar : PubMed/NCBI

80 

Lanzoni G, Linetsky E, Correa D, Messinger Cayetano S, Alvarez RA, Kouroupis D, Alvarez Gil A, Poggioli R, Ruiz P, Marttos AC, et al: Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 10:660–673. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Collada A, Cruz A and Perez-Gil J: Studying the interfacial activity and structure of pulmonary surfactant complexes. Chem Phys Lipids. 266:1054592025. View Article : Google Scholar : PubMed/NCBI

82 

Inoue S, Nagao J, Kawamoto K, Kan-O K, Fukuyama S, Sasaki S, Kudo S, Okamoto I and Sera T: Overstretching alveolar epithelial type II cells decreases surfactant secretion via actin polymerization and intracellular trafficking alteration. Heliyon. 10:e334992024. View Article : Google Scholar : PubMed/NCBI

83 

Hanusrichterova J, Mokry J, Al-Saiedy MR, Koetzler R, Amrein MW, Green FHY and Calkovska A: Factors influencing airway smooth muscle tone: A comprehensive review with a special emphasis on pulmonary surfactant. Am J Physiol Cell Physiol. 327:C798–C816. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Bastani MN and Jalilian S: Unraveling the enigma: The emerging significance of pulmonary surfactant proteins in predicting, diagnosing, and managing COVID-19. Immun Inflamm Dis. 12:e13022024. View Article : Google Scholar : PubMed/NCBI

85 

Jacob IB, Lawal AO, Mahmoud SS, Kopsack EM, Reynolds ES, Meng Q, Fan H, Massa PT, Thangamani S, Jia H and Wang G: Differential immunoregulation by human surfactant protein A variants determines severity of SARS-CoV-2-induced lung disease. Front Immunol. 16:14622782025. View Article : Google Scholar : PubMed/NCBI

86 

Zhu Y, Choi D, Somanath PR and Zhang D: Lipid-laden macrophages in pulmonary diseases. Cells. 13:8892024. View Article : Google Scholar : PubMed/NCBI

87 

Zhang J, Deng Y, Li G and Sun X: Interplay of surfactant protein A and tumor necrosis factor α in lung and intestinal tissues of rats with severe pneumonia. Mol Biotechnol. Apr 24–2025.(Epub ahead of print). View Article : Google Scholar

88 

Dargaville PA, Kamlin COF, Orsini F, Wang X, De Paoli AG, Kanmaz Kutman HG, Cetinkaya M, Kornhauser-Cerar L, Derrick M, Özkan H, et al: Two-year outcomes after minimally invasive surfactant therapy in preterm infants: Follow-Up of the OPTIMIST-A Randomized clinical trial. JAMA. 330:1054–1063. 2023. View Article : Google Scholar : PubMed/NCBI

89 

Schupp JC, Adams TS, Cosme C Jr, Raredon MSB, Yuan Y, Omote N, Poli S, Chioccioli M, Rose KA, Manning EP, et al: Integrated single-cell atlas of endothelial cells of the human lung. Circulation. 144:286–302. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Whitney JE, Zhang B, Koterba N, Chen F, Bush J, Graham K, Lacey SF, Melenhorst JJ, Teachey DT, Mensinger JL, et al: Systemic endothelial activation is associated with early acute respiratory distress syndrome in children with extrapulmonary sepsis. Crit Care Med. 48:344–352. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Runkle EA and Mu D: Tight junction proteins: From barrier to tumorigenesis. Cancer Lett. 337:41–48. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Guo X, Eitnier RA, Beard RS Jr, Meegan JE, Yang X, Aponte AM, Wang F, Nelson PR and Wu MH: Focal adhesion kinase and Src mediate microvascular hyperpermeability caused by fibrinogen- үC-terminal fragments. PLoS One. 15:e02317392020. View Article : Google Scholar : PubMed/NCBI

93 

Garcia-Flores AE, Gross CM, Zemskov EA, Lu Q, Tieu K, Wang T and Black SM: Loss of SOX18/CLAUDIN5 disrupts the pulmonary endothelial barrier in ventilator-induced lung injury. Front Physiol. 13:10665152022. View Article : Google Scholar : PubMed/NCBI

94 

Rezk-Hanna M, Rossman MJ, Ludwig K, Sakti P, Cheng CW, Brecht ML, Benowitz NL and Seals DR: Electronic hookah (waterpipe) vaping reduces vascular endothelial function: The role of nicotine. Am J Physiol Heart Circ Physiol. 326:H490–H496. 2024. View Article : Google Scholar : PubMed/NCBI

95 

Solomon SD, Lowenstein CJ, Bhatt AS, Peikert A, Vardeny O, Kosiborod MN, Berger JS, Reynolds HR, Mavromichalis S, Barytol A, et al: Effect of the P-selectin inhibitor crizanlizumab on survival free of organ support in patients hospitalized for COVID-19: A Randomized controlled trial. Circulation. 148:381–390. 2023. View Article : Google Scholar : PubMed/NCBI

96 

Zhu J, Yang L, Jia Y, Balistrieri A, Fraidenburg DR, Wang J, Tang H and Yuan JX: Pathogenic mechanisms of pulmonary arterial hypertension: Homeostasis imbalance of endothelium-derived relaxing and contracting factors. JACC Asia. 2:787–802. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Boron M, Hauzer-Martin T, Keil J and Sun XL: Circulating thrombomodulin: Release mechanisms, measurements, and levels in diseases and medical procedures. TH Open. 6:e194–e212. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Sanchez-Santillan RN, Sierra-Vargas MP, Gonzalez-Islas D, Aztatzi-Aguilar OG, Pérez-Padilla R, Orea-Tejeda A, Debray-García Y, Ortega-Romero M, Keirns-Davis C, Loaeza-Roman A and Rios-Pereda A: Endothelial biomarkers (Von willebrand factor, BDCA3, urokinase) as predictors of mortality in COVID-19 patients: Cohort study. BMC Pulm Med. 24:3252024. View Article : Google Scholar : PubMed/NCBI

99 

Neubauer K and Zieger B: Endothelial cells and coagulation. Cell Tissue Res. 387:391–398. 2022. View Article : Google Scholar : PubMed/NCBI

100 

Naderpour Z, Aliannejad R, Mehrtash V, Mollazadeh R, Hosseini SE, Amini S, Pak N, Motlaq TM, Khodaei B, Jafarzadeh B, et al: Tissue plasminogen activator for COVID-19-induced severe acute respiratory distress Syndrome: A controlled clinical trial. Infect Disord Drug Targets. 2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

101 

Tung YT, Wei CH, Yen CC, Lee PY, Ware LB, Huang HE, Chen W and Chen CM: Aspirin attenuates hyperoxia-induced acute respiratory distress Syndrome (ARDS) by suppressing pulmonary inflammation via the NF-kappaB signaling pathway. Front Pharmacol. 12:7931072022. View Article : Google Scholar : PubMed/NCBI

102 

Li XG, Song X, Wang JY, Sun CH, Li ZQ, Meng LL and Chi SH: Fibroblast growth factor 18 alleviates hyperoxia-induced lung injury in mice by adjusting oxidative stress and inflammation. Eur Rev Med Pharmacol Sci. 25:1485–1494. 2021.PubMed/NCBI

103 

Hu Z, Dai J, Xu T, Chen H, Shen G, Zhou J, Ma H, Wang Y and Jin L: FGF18 alleviates sepsis-induced acute lung injury by inhibiting the NF-ĸB pathway. Respir Res. 25:1082024. View Article : Google Scholar : PubMed/NCBI

104 

Wang T, Lv L, Feng H and Gu W: Unlocking the potential: Quercetin and its natural derivatives as promising therapeutics for sepsis. Biomedicines. 12:4442024. View Article : Google Scholar : PubMed/NCBI

105 

Malekinejad Z, Baghbanzadeh A, Nakhlband A, Baradaran B, Jafari S, Bagheri Y, Raei F, Montazersaheb S and Farahzadi R: Recent clinical findings on the role of kinase inhibitors in COVID-19 management. Life Sci. 306:1208092022. View Article : Google Scholar : PubMed/NCBI

106 

Sun DZ, Song CQ, Xu YM and Dong XS: Role of the MAPK pathway in human lung epithelial-like A549 cells apoptosis induced by paraquat. Genet Mol Biol. 43:e201901372020. View Article : Google Scholar : PubMed/NCBI

107 

Grassme H, Kirschnek S, Riethmueller J, Riehle A, von Kürthy G, Lang F, Weller M and Gulbins E: CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science. 290:527–530. 2000. View Article : Google Scholar : PubMed/NCBI

108 

Sun R, Jiang K, Zeng C, Zhu R, Chu H, Liu H and Du J: Synergism of TNF-α and IFN-β triggers human airway epithelial cells death by apoptosis and pyroptosis. Mol Immunol. 153:160–169. 2023. View Article : Google Scholar : PubMed/NCBI

109 

Luo Z, Wang Q, Fan X, Koh XQ, Loh XJ, Wu C, Li Z and Wu YL: ROS-driven nanoventilator for MRSA-induced acute lung injury treatment via in situ oxygen supply, anti-inflammation and immunomodulation. Adv Sci (Weinh). 12:e24060602025. View Article : Google Scholar : PubMed/NCBI

110 

Hansberg W: Monofunctional Heme-Catalases. Antioxidants (Basel). 11:21732022. View Article : Google Scholar : PubMed/NCBI

111 

Flohe L, Toppo S and Orian L: The glutathione peroxidase family: Discoveries and mechanism. Free Radic Biol Med. 187:113–122. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Chen Y, Yang H, Hu X, Yang T, Zhao Y, Liu H and Fan H: Coenzyme Q10 ameliorates lipopolysaccharide-induced acute lung injury by attenuating oxidative stress and NLRP3 inflammation through regulating mitochondrial dynamics. Int Immunopharmacol. 141:1129412024. View Article : Google Scholar : PubMed/NCBI

113 

Wang Y, Lilienfeldt N and Hekimi S: Understanding coenzyme Q. Physiol Rev. 104:1533–1610. 2024. View Article : Google Scholar : PubMed/NCBI

114 

Honsho M and Fujiki Y: Asymmetric distribution of plasmalogens and their roles-A mini review. Membranes (Basel). 13:7642023. View Article : Google Scholar : PubMed/NCBI

115 

Steenberge LH, Rogers S, Sung AY, Fan J and Pagliarini DJ: Coenzyme Q(4) is a functional substitute for coenzyme Q(10) and can be targeted to the mitochondria. J Biol Chem. 300:1072692024. View Article : Google Scholar : PubMed/NCBI

116 

Traber MG, Leonard SW, Vasu VT, Morrissey BM, Lei HJ, Atkinson J and Cross CE: α-Tocopherol pharmacokinetics in adults with cystic fibrosis: Benefits of supplemental vitamin C administration. Nutrients. 14:37172022. View Article : Google Scholar : PubMed/NCBI

117 

Traber MG and Head B: Vitamin E: How much is enough, too much and why! Free Radic Biol Med. 177:212–225. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Kazemi A, Iraji A, Esmaealzadeh N, Salehi M and Hashempur MH: Peppermint and menthol: A review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit Rev Food Sci Nutr. 65:1553–1578. 2025. View Article : Google Scholar : PubMed/NCBI

119 

Huang M, Liu X, Ren Y, Huang Q, Shi Y, Yuan P and Chen M: Quercetin: A flavonoid with potential for treating acute lung injury. Drug Des Devel Ther. 18:5709–5728. 2024. View Article : Google Scholar : PubMed/NCBI

120 

Martini D, Negrini L, Marino M, Riso P, Del Bo C and Porrini M: What is the current direction of the research on carotenoids and human health? An overview of registered clinical trials. Nutrients. 14:11912022. View Article : Google Scholar : PubMed/NCBI

121 

Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, Oleshchuk O, Ivankiv Y, Shanaida V, Lytkin D and Bjørklund G: Alpha-lipoic Acid: An antioxidant with anti-aging properties for disease therapy. Curr Med Chem. 32:23–54. 2025. View Article : Google Scholar : PubMed/NCBI

122 

Maia LB, Maiti BK, Moura I and Moura JJG: Selenium-more than just a fortuitous sulfur substitute in redox biology. Molecules. 29:1202023. View Article : Google Scholar : PubMed/NCBI

123 

Shin JY, Choi JW, Kim DG, Zhou ZQ, Shin YK, Seo JH, Song HJ, Choi BM, Bae GS and Park SJ: Protective effects of Coenzyme Q10 against acute pancreatitis. Int Immunopharmacol. 88:1069002020. View Article : Google Scholar : PubMed/NCBI

124 

Hou J, Fang F, Kang S, Wang Z and Yang Y: Curcumin from Jianghuang (Rhizoma Curcumae Longae) protects against exposure to ultraviolet B by antioxidation and attenuating mitochondrion-dependent apoptosis. J Tradit Chin Med. 40:782–791. 2020.PubMed/NCBI

125 

Yao J, Peng T, Shao C and Liu Y, Lin H and Liu Y: The antioxidant action of astragali radix: Its active components and molecular basis. Molecules. 29:16912024. View Article : Google Scholar : PubMed/NCBI

126 

Zhao J, Zhang J, Liu Q, Wang Y, Jin Y, Yang Y, Ni C and Zhang L: Hongjingtian injection protects against myocardial ischemia reperfusion-induced apoptosis by blocking ROS induced autophagic-flux. Biomed Pharmacother. 135:1112052021. View Article : Google Scholar : PubMed/NCBI

127 

Shafabakhsh R, Mobini M, Raygan F, Aghadavod E, Ostadmohammadi V, Amirani E, Mansournia MA and Asemi Z: Curcumin administration and the effects on psychological status and markers of inflammation and oxidative damage in patients with type 2 diabetes and coronary heart disease. Clin Nutr ESPEN. 40:77–82. 2020. View Article : Google Scholar : PubMed/NCBI

128 

O'Connor EA, Evans CV, Ivlev I, Rushkin MC, Thomas RG, Martin A and Lin JS: Vitamin and mineral supplements for the primary prevention of cardiovascular disease and cancer: Updated evidence report and systematic review for the US preventive services task force. JAMA. 327:2334–2347. 2022. View Article : Google Scholar : PubMed/NCBI

129 

Monsel A, Zhu YG, Gennai S, Hao Q, Liu J and Lee JW: Cell-based therapy for acute organ injury: Preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology. 121:1099–1121. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, Rogers AJ, Gotts JE, Wiener-Kronish JP, Bajwa EK, et al: Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): A randomised phase 2a safety trial. Lancet Respir Med. 7:154–162. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Xu Q, Hou W, Zhao B, Fan P, Wang S, Wang L and Gao J: Mesenchymal stem cells lineage and their role in disease development. Mol Med. 30:2072024. View Article : Google Scholar : PubMed/NCBI

132 

Muzes G and Sipos F: Mesenchymal stem cell-derived secretome: A potential therapeutic option for autoimmune and immune-mediated inflammatory diseases. Cells. 11:23002022. View Article : Google Scholar : PubMed/NCBI

133 

Zhou T, Yuan Z, Weng J, Pei D, Du X, He C and Lai P: Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 14:242021. View Article : Google Scholar : PubMed/NCBI

134 

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS and Manson JJ; HLH Across Speciality Collaboration UK, : COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Homma K, Bazhanov N, Hashimoto K, Shimizu M, Heathman T, Hao Q, Nawgiri R, Muthukumarana V, Lee JW, Prough DS and Enkhbaatar P: Mesenchymal stem cell-derived exosomes for treatment of sepsis. Front Immunol. 14:11369642023. View Article : Google Scholar : PubMed/NCBI

137 

Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, Veronesi E, Horwitz EM and Dominici M: Challenges in clinical development of mesenchymal stromal/stem cells: Concise review. Stem Cells Transl Med. 8:1135–1148. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Park WS, Ahn SY, Sung SI, Ahn JY and Chang YS: Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res. 83:214–222. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Kakabadze Z, Kipshidze N, Paresishvili T, Kipshidze N, Vadachkoria Z and Chakhunashvili D: Human placental mesenchymal stem cells for the treatment of ARDS in Rat. Stem Cells Int. 2022:84185092022. View Article : Google Scholar : PubMed/NCBI

140 

Pharoun J, Berro J, Sobh J, Abou-Younes MM, Nasr L, Majed A, Khalil A, Joseph Stephan and Faour WH: Mesenchymal stem cells biological and biotechnological advances: Implications for clinical applications. Eur J Pharmacol. 977:1767192024. View Article : Google Scholar : PubMed/NCBI

141 

Wang J, Huang R, Xu Q, Zheng G, Qiu G, Ge M, Shu Q and Xu J: Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p. Crit Care Med. 48:e599–e610. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Murata M and Teshima T: Treatment of steroid-refractory acute graft-versus-host disease using commercial mesenchymal stem cell products. Front Immunol. 12:7243802021. View Article : Google Scholar : PubMed/NCBI

143 

Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, et al: Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 6:eaba68842020. View Article : Google Scholar : PubMed/NCBI

144 

Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F and Wang G: Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther. 9:2422024. View Article : Google Scholar : PubMed/NCBI

145 

Cen M, Ouyang W, Zhang W, Yang L, Lin X, Dai M, Hu H, Tang H, Liu H, Xia J and Xu F: MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 41:1019362021. View Article : Google Scholar : PubMed/NCBI

146 

Moslemi M, Hejazian SM, Shaddelan M, Javanali F, Mirghaffari A, Sadeghi A, Valizadeh H, Sharifi A, Haramshahi M, Ardalan M and Zununi Vahed S: Evaluating the effect of Edaravone on clinical outcome of patients with severe COVID-19 admitted to ICU: A randomized clinical trial. Inflammopharmacology. 30:1277–1282. 2022. View Article : Google Scholar : PubMed/NCBI

147 

Ding P, Yang R, Li C, Fu HL, Ren GL, Wang P, Zheng DY, Chen W, Yang LY, Mao YF, et al: Fibroblast growth factor 21 attenuates ventilator-induced lung injury by inhibiting the NLRP3/caspase-1/GSDMD pyroptotic pathway. Crit Care. 27:1962023. View Article : Google Scholar : PubMed/NCBI

148 

Gao J, Liu Q, Li J, Hu C, Zhao W, Ma W, Yao M and Xing L: Fibroblast Growth Factor 21 dependent TLR4/MYD88/NF-ĸB signaling activation is involved in lipopolysaccharide-induced acute lung injury. Int Immunopharmacol. 80:1062192020. View Article : Google Scholar : PubMed/NCBI

149 

Yan F, Yuan L, Yang F, Wu G and Jiang X: Emerging roles of fibroblast growth factor 21 in critical disease. Front Cardiovasc Med. 9:10539972022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang L, Li H, Li D and Dai Q: Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review). Mol Med Rep 33: 31, 2026.
APA
Zhang, L., Li, H., Li, D., & Dai, Q. (2026). Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review). Molecular Medicine Reports, 33, 31. https://doi.org/10.3892/mmr.2025.13741
MLA
Zhang, L., Li, H., Li, D., Dai, Q."Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review)". Molecular Medicine Reports 33.1 (2026): 31.
Chicago
Zhang, L., Li, H., Li, D., Dai, Q."Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review)". Molecular Medicine Reports 33, no. 1 (2026): 31. https://doi.org/10.3892/mmr.2025.13741
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang L, Li H, Li D and Dai Q: Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review). Mol Med Rep 33: 31, 2026.
APA
Zhang, L., Li, H., Li, D., & Dai, Q. (2026). Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review). Molecular Medicine Reports, 33, 31. https://doi.org/10.3892/mmr.2025.13741
MLA
Zhang, L., Li, H., Li, D., Dai, Q."Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review)". Molecular Medicine Reports 33.1 (2026): 31.
Chicago
Zhang, L., Li, H., Li, D., Dai, Q."Unraveling the synergy of inflammation and apoptosis in sepsis-induced acute lung injury: Insights and therapeutic perspectives (Review)". Molecular Medicine Reports 33, no. 1 (2026): 31. https://doi.org/10.3892/mmr.2025.13741
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team