Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Diabetic keratopathy and nuclear proteins (Review)

  • Authors:
    • Haiying Xu
    • Zhi-Liang Jiang
    • Yuehong Wang
    • Xiaoli Hou
    • Weixia Dong
    • Yanfang Chen
    • Qiuying Zhang
    • Xinying Ji
    • Shaoping Ji
    • Yalong Dang
  • View Affiliations / Copyright

    Affiliations: Department of Histology and Pathology, Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, School of Medicine and Health Sciences, Zhengzhou Health College, Zhengzhou, Henan 450000, P.R. China, School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, P.R. China, Department of Ophthalmology, The First People's Hospital of Hangzhou, Hangzhou, Zhejiang 310003, P.R. China, Department of Microbiology and Immunology, Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, School of Medicine and Health Sciences, Zhengzhou Health College, Zhengzhou, Henan 450000, P.R. China, Department of Ophthalmology, Sanmenxia Central Hospital, Sanmenxia, Henan 472001, P.R. China
    Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 35
    |
    Published online on: November 10, 2025
       https://doi.org/10.3892/mmr.2025.13744
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic keratopathy (DK) is an ocular complication of diabetes mellitus (DM). Driven by DM‑induced chronic hyperglycemia and its associated metabolic changes, DK is characterized by progressive damage to the corneal epithelium, nerves, stroma and endothelium, manifesting as corneal epitheliopathy, neuropathy, stromal lesions and endotheliopathy. Nuclear proteins (NPs) play essential roles in the regulation of gene expression and physiological activities in the nucleus, and have been implicated in the occurrence and development DM and its complications. The present review provides an overview of DK and highlights the role of core NPs in its pathogenesis, including peroxisome proliferator‑activated receptors, high‑mobility group box 1, enhancer of zeste homolog, phosphatase and tensin homolog and sirtuins. The review underscores that the roles of these NPs in DK remain incompletely understood and highlights the need for further mechanistic studies and clinical trials to advance DK management. Therefore, it is suggested that future research should focus on elucidating the molecular mechanisms of NPs in DK, and developing novel detection techniques and treatment strategies to provide more effective outcomes for patients with DK.
View Figures

Figure 1

Structure of the eyeball and cornea.
The image was created using Figdraw (version 2.0; Beijing Figdraw
Technology Co., Ltd.).
View References

1 

Bodke H, Wagh V and Kakar G: Diabetes mellitus and prevalence of other comorbid conditions: A systematic review. Cureus. 15:e493742023.PubMed/NCBI

2 

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al: IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183:1091192022. View Article : Google Scholar : PubMed/NCBI

3 

Cole JB and Florez JC: Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 16:377–390. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Zhu L, Titone R and Robertson DM: The impact of hyperglycemia on the corneal epithelium: Molecular mechanisms and insight. Ocul Surf. 17:644–654. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Zhao H, He Y, Ren YR and Chen BH: Corneal alteration and pathogenesis in diabetes mellitus. Int J Ophthalmol. 12:1939–1950. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Lyu Y, Zeng X, Li F and Zhao S: The effect of the duration of diabetes on dry eye and corneal nerves. Cont Lens Anterior Eye. 42:380–385. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, et al: Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology. 128:1580–1591. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Priyadarsini S, Whelchel A, Nicholas S, Sharif R, Riaz K and Karamichos D: Diabetic keratopathy: Insights and challenges. Surv Ophthalmol. 65:513–529. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Han SB, Yang HK and Hyon JY: Influence of diabetes mellitus on anterior segment of the eye. Clin Interv Aging. 14:53–63. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Buonfiglio F, Wasielica-Poslednik J, Pfeiffer N and Gericke A: Diabetic keratopathy: Redox signaling pathways and therapeutic prospects. Antioxidants (Basel). 13:1202024. View Article : Google Scholar : PubMed/NCBI

11 

Pelley JW: 17-Protein synthesis and degradation. Elsevier's Integrated Biochemistry. Pelley JW: Mosby, Philadelphia: pp. 147–158. 2007, View Article : Google Scholar

12 

Goodman SR: Chapter 5-regulation of gene expression. Medical Cell Biology. (Third Edition). Goodman SR: Academic Press; San Diego, CA: pp. 149–190. 2008

13 

Bernhofer M, Goldberg T, Wolf S, Ahmed M, Zaugg J, Boden M and Rost B: NLSdb-major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res. 46:D503–D508. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Li W and Jiang H: Nuclear protein condensates and their properties in regulation of gene expression. J Mol Biol. 434:1671512022. View Article : Google Scholar : PubMed/NCBI

15 

Escandon P, Vasini B, Whelchel AE, Nicholas SE, Matlock HG, Ma JX and Karamichos D: The role of peroxisome proliferator-activated receptors in healthy and diseased eyes. Exp Eye Res. 208:1086172021. View Article : Google Scholar : PubMed/NCBI

16 

Khatol P, Saraf S and Jain A: Peroxisome proliferated activated receptors (PPARs): Opportunities and challenges for ocular therapy. Crit Rev Ther Drug Carrier Syst. 35:65–97. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Hou Y, Lan J, Zhang F and Wu X: Expression profiles and potential corneal epithelial wound healing regulation targets of high-mobility group box 1 in diabetic mice. Exp Eye Res. 202:1083642021. View Article : Google Scholar : PubMed/NCBI

18 

Peng Y, Bui CH, Zhang XJ, Chen JS, Tham CC, Chu WK, Chen LJ, Pang CP and Yam JC: The role of EZH2 in ocular diseases: A narrative review. Epigenomics. 15:557–570. 2023. View Article : Google Scholar : PubMed/NCBI

19 

Rocher N: Anatomy and physiology of the human eye. Soins. 30–31. 2010.(In French). PubMed/NCBI

20 

Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F and Mozafari M: Corneal repair and regeneration: Current concepts and future directions. Front Bioeng Biotechnol. 7:1352019. View Article : Google Scholar : PubMed/NCBI

21 

Meek KM and Knupp C: Corneal structure and transparency. Prog Retin Eye Res. 49:1–16. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Lavker RM, Kaplan N, Wang J and Peng H: Corneal epithelial biology: Lessons stemming from old to new. Exp Eye Res. 198:1080942020. View Article : Google Scholar : PubMed/NCBI

23 

Doughty MJ and Jonuscheit S: Corneal structure, transparency, thickness and optical density (densitometry), especially as relevant to contact lens wear-a review. Cont Lens Anterior Eye. 42:238–245. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Luke RA, Braun RJ, Driscoll TA, Begley CG and Awisi-Gyau D: Parameter estimation for evaporation-driven tear film thinning. Bull Math Biol. 82:712020. View Article : Google Scholar : PubMed/NCBI

25 

Braun RJ, King-Smith PE, Begley CG, Li L and Gewecke NR: Dynamics and function of the tear film in relation to the blink cycle. Prog Retin Eye Res. 45:132–164. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Wilson SL, El Haj AJ and Yang Y: Control of scar tissue formation in the cornea: Strategies in clinical and corneal tissue engineering. J Funct Biomater. 3:642–687. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Melnyk S and Bollag WB: Aquaporins in the cornea. Int J Mol Sci. 25:37482024. View Article : Google Scholar : PubMed/NCBI

28 

Sridhar MS: Anatomy of cornea and ocular surface. Indian J Ophthalmol. 66:190–194. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Wilson SE: Bowman's layer in the cornea-structure and function and regeneration. Exp Eye Res. 195:1080332020. View Article : Google Scholar : PubMed/NCBI

30 

DelMonte DW and Kim T: Anatomy and physiology of the cornea. J Cataract Refract Surg. 37:588–598. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Hassell JR and Birk DE: The molecular basis of corneal transparency. Exp Eye Res. 91:326–335. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Marfurt CF, Cox J, Deek S and Dvorscak L: Anatomy of the human corneal innervation. Exp Eye Res. 90:478–492. 2010. View Article : Google Scholar : PubMed/NCBI

33 

de Oliveira RC and Wilson SE: Descemet's membrane development, structure, function and regeneration. Exp Eye Res. 197:1080902020. View Article : Google Scholar : PubMed/NCBI

34 

Ljubimov AV: Diabetic complications in the cornea. Vision Res. 139:138–152. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Mukhija R, Gupta N, Vashist P, Tandon R and Gupta SK: Population-based assessment of visual impairment and pattern of corneal disease: Results from the CORE (corneal opacity rural epidemiological) study. Br J Ophthalmol. 104:994–998. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Chang YS, Tai MC, Ho CH, Chu CC, Wang JJ, Tseng SH and Jan RL: Risk of corneal ulcer in patients with diabetes mellitus: A retrospective large-scale cohort study. Sci Rep. 10:73882020. View Article : Google Scholar : PubMed/NCBI

37 

Yeung A and Dwarakanathan S: Diabetic keratopathy. Dis Mon. 67:1011352021. View Article : Google Scholar : PubMed/NCBI

38 

Huang C, Liao R, Wang F and Tang S: Characteristics of reconstituted tight junctions after corneal epithelial wounds and ultrastructure alterations of corneas in type 2 diabetic rats. Curr Eye Res. 41:783–790. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Shih KC, Lam KS and Tong L: A systematic review on the impact of diabetes mellitus on the ocular surface. Nutr Diabetes. 7:e2512017. View Article : Google Scholar : PubMed/NCBI

40 

Alfuraih S, Barbarino A, Ross C, Shamloo K, Jhanji V, Zhang M and Sharma A: Effect of high glucose on ocular surface epithelial cell barrier and tight junction proteins. Invest Ophthalmol Vis Sci. 61:32020. View Article : Google Scholar : PubMed/NCBI

41 

Liu T, Sun DP, Li DF, Bi WJ and Xie LX: Observation and quantification of diabetic keratopathy in type 2 diabetes patients using in vivo laser confocal microscopy. Zhonghua Yan Ke Za Zhi. 56:754–760. 2020.(In Chinese). PubMed/NCBI

42 

Xu KP, Li Y, Ljubimov AV and Yu FS: High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes. 58:1077–1085. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Lan X, Zhang W, Zhu J, Huang H, Mo K, Guo H, Zhu L, Liu J, Li M, Wang L, et al: dsRNA induced IFNβ-MMP13 axis drives corneal wound healing. Invest Ophthalmol Vis Sci. 63:142022. View Article : Google Scholar

44 

Di G, Du X, Qi X, Zhao X, Duan H, Li S, Xie L and Zhou Q: Mesenchymal stem cells promote diabetic corneal epithelial wound healing through TSG-6-dependent stem cell activation and macrophage switch. Invest Ophthalmol Vis Sci. 58:4344–4354. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Bikbova G, Oshitari T, Baba T, Bikbov M and Yamamoto S: Diabetic corneal neuropathy: Clinical perspectives. Clin Ophthalmol. 12:981–987. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Liu YC, Lin MT and Mehta JS: Analysis of corneal nerve plexus in corneal confocal microscopy images. Neural Regen Res. 16:690–691. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Kaplan H, Yüzbaşıoğlu S, Vural G and Gümüşyayla Ş: Investigation of small fiber neuropathy in patients with diabetes mellitus by corneal confocal microscopy. Neurophysiol Clin. 54:1029552024. View Article : Google Scholar : PubMed/NCBI

48 

Mokhtar SBA, van der Heide FCT, Oyaert KAM, van der Kallen CJH, Berendschot TTJM, Scarpa F, Colonna A, de Galan BE, van Greevenbroek MMJ, Dagnelie PC, et al: (Pre)diabetes and a higher level of glycaemic measures are continuously associated with corneal neurodegeneration assessed by corneal confocal microscopy: The maastricht study. Diabetologia. 66:2030–2041. 2023. View Article : Google Scholar : PubMed/NCBI

49 

Carmichael J, Fadavi H, Ishibashi F, Howard S, Boulton AJM, Shore AC and Tavakoli M: Implementation of corneal confocal microscopy for screening and early detection of diabetic neuropathy in primary care alongside retinopathy screening: Results from a feasibility study. Front Endocrinol (Lausanne). 13:e8915752022. View Article : Google Scholar

50 

Banerjee M, Mukhopadhyay P and Ghosh S, Basu M, Pandit A, Malik R and Ghosh S: Corneal confocal microscopy abnormalities in children and adolescents with type 1 diabetes. Endocr Pract. 29:692–698. 2023. View Article : Google Scholar : PubMed/NCBI

51 

De Clerck EEB, Schouten JSAG, Berendschot TTJM, Koolschijn RS, Nuijts RMMA, Schram MT, Schaper NC, Henry RMA, Dagnelie PC, Ruggeri A, et al: Reduced corneal nerve fibre length in prediabetes and type 2 diabetes: The maastricht study. Acta Ophthalmol. 98:485–491. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Mvilongo C, Akono ME, Nkoudou D, Nanfack C, Nomo A, Dim R and Eballé AO: Clinical profile of corneal sensitivity in diabetic patients: A case-control study. J Fr Ophtalmol. 47:1042122024. View Article : Google Scholar : PubMed/NCBI

53 

Schiano Lomoriello D, Abicca I, Parravano M, Giannini D, Russo B, Frontoni S and Picconi F: Early alterations of corneal subbasal plexus in uncomplicated type 1 diabetes patients. J Ophthalmol. 2019:98182172019. View Article : Google Scholar : PubMed/NCBI

54 

Torricelli AA and Wilson SE: Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res. 129:151–160. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Priyadarsini S, McKay TB, Sarker-Nag A, Allegood J, Chalfant C, Ma JX and Karamichos D: Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp Eye Res. 153:90–100. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Sinha NR, Balne PK, Bunyak F, Hofmann AC, Lim RR, Mohan RR and Chaurasia SS: Collagen matrix perturbations in corneal stroma of Ossabaw mini pigs with type 2 diabetes. Mol Vis. 27:666–678. 2021.PubMed/NCBI

57 

Kalteniece A, Ferdousi M, Azmi S, Marshall A, Soran H and Malik RA: Keratocyte density is reduced and related to corneal nerve damage in diabetic neuropathy. Invest Ophthalmol Vis Sci. 59:3584–3590. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Gad H, Al-Jarrah B, Saraswathi S, Mohamed S, Kalteniece A, Petropoulos IN, Khan A, Ponirakis G, Singh P, Khodor SA, et al: Corneal confocal microscopy identifies a reduction in corneal keratocyte density and sub-basal nerves in children with type 1 diabetes mellitus. Br J Ophthalmol. 106:1368–1372. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Eghrari AO, Riazuddin SA and Gottsch JD: Overview of the cornea: Structure, function, and development. Prog Mol Biol Transl Sci. 134:7–23. 2015. View Article : Google Scholar : PubMed/NCBI

60 

El-Agamy A and Alsubaie S: Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. Clin Ophthalmol. 11:481–486. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Goldstein AS, Janson BJ, Skeie JM, Ling JJ and Greiner MA: The effects of diabetes mellitus on the corneal endothelium: A review. Surv Ophthalmol. 65:438–450. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Yalcın SO, Kaplan AT and Sobu E: Corneal endothelial cell morphology and optical coherence tomography findings in children with type 1 diabetes mellitus. Eur J Ophthalmol. 33:1331–1339. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Amador-Muñoz DP, Conforti V, Matheus LM, Molano-Gonzalez N and Payán-Gómez C: Diabetes mellitus type 1 has a higher impact on corneal endothelial cell density and pachymetry than diabetes mellitus type 2, independent of age: A meta-regression model. Cornea. 41:965–973. 2022. View Article : Google Scholar : PubMed/NCBI

64 

Chowdhury B, Bhadra S, Mittal P and Shyam K: Corneal endothelial morphology and central corneal thickness in type 2 diabetes mellitus patients. Indian J Ophthalmol. 69:1718–1724. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Kim YJ and Kim TG: The effects of type 2 diabetes mellitus on the corneal endothelium and central corneal thickness. Sci Rep. 11:83242021. View Article : Google Scholar : PubMed/NCBI

66 

Taşlı NG, Icel E, Karakurt Y, Ucak T, Ugurlu A, Yilmaz H and Akbas EM: The findings of corneal specular microscopy in patients with type-2 diabetes mellitus. BMC Ophthalmol. 20:2142020. View Article : Google Scholar : PubMed/NCBI

67 

Zhang K, Zhao L, Zhu C, Nan W, Ding X, Dong Y and Zhao M: The effect of diabetes on corneal endothelium: A meta-analysis. BMC Ophthalmol. 21:782021. View Article : Google Scholar : PubMed/NCBI

68 

Papadakou P, Chatziralli I, Papathanassiou M, Lambadiari V, Siganos CS, Theodossiadis P and Kozobolis V: The effect of diabetes mellitus on corneal endothelial cells and central corneal thickness: A case-control study. Ophthalmic Res. 63:550–554. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Sekimoto T and Yoneda Y: Intrinsic and extrinsic negative regulators of nuclear protein transport processes. Genes Cells. 17:525–535. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT and Matunis MJ: Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 158:915–927. 2002. View Article : Google Scholar : PubMed/NCBI

71 

Jeon P, Ham HJ, Park S and Lee JA: Regulation of cellular ribonucleoprotein granules: From assembly to degradation via post-translational modification. Cells. 11:20632022. View Article : Google Scholar : PubMed/NCBI

72 

Shen F, Kirmani KZ, Xiao Z, Thirlby BH, Hickey RJ and Malkas LH: Nuclear protein isoforms: Implications for cancer diagnosis and therapy. J Cell Biochem. 112:756–760. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Simon JA and Lange CA: Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 647:21–29. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Glancy E, Ciferri C and Bracken AP: Structural basis for PRC2 engagement with chromatin. Curr Opin Struct Biol. 67:135–144. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Khan NH, Chen HJ, Fan Y, Surfaraz M, Ahammad MF, Qin YZ, Shahid M, Virk R, Jiang E, Wu DD and Ji XY: Biology of PEST-containing nuclear protein: A potential molecular target for cancer research. Front Oncol. 12:7845972022. View Article : Google Scholar : PubMed/NCBI

76 

Brown JD and Plutzky J: Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation. 115:518–533. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Chow BJ, Lee IXY, Liu C and Liu YC: Potential therapeutic effects of peroxisome proliferator-activated receptors on corneal diseases. Exp Biol Med (Maywood). 249:101422024. View Article : Google Scholar : PubMed/NCBI

78 

Kim IS, Silwal P and Jo EK: Peroxisome proliferator-activated receptor-targeted therapies: Challenges upon infectious diseases. Cells. 12:6502023. View Article : Google Scholar : PubMed/NCBI

79 

Mirza AZ, Althagafi II and Shamshad H: Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem. 166:502–513. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Jain N, Bhansali S, Kurpad AV, Hawkins M, Sharma A, Kaur S, Rastogi A and Bhansali A: Effect of a dual PPAR α/γ agonist on insulin sensitivity in patients of type 2 diabetes with hypertriglyceridemia-randomized double-blind placebo-controlled trial. Sci Rep. 9:190172019. View Article : Google Scholar : PubMed/NCBI

81 

Lin Y, Wang Y and Li PF: PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne). 13:10749112022. View Article : Google Scholar : PubMed/NCBI

82 

Hu P, Li K, Peng X, Kan Y, Li H, Zhu Y, Wang Z, Li Z, Liu HY and Cai D: Nuclear receptor PPARα as a therapeutic target in diseases associated with lipid metabolism disorders. Nutrients. 15:47722023. View Article : Google Scholar : PubMed/NCBI

83 

Matlock HG, Qiu F, Malechka V, Zhou K, Cheng R, Benyajati S, Whelchel A, Karamichos D and Ma JX: Pathogenic role of PPARα downregulation in corneal nerve degeneration and impaired corneal sensitivity in diabetes. Diabetes. 69:1279–1291. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Liang W, Huang L, Whelchel A, Yuan T, Ma X, Cheng R, Takahashi Y, Karamichos D and Ma JX: Peroxisome proliferator-activated receptor-α (PPARα) regulates wound healing and mitochondrial metabolism in the cornea. Proc Natl Acad Sci USA. 120:e22175761202023. View Article : Google Scholar : PubMed/NCBI

85 

Teo CHY, Lin MT, Lee IXY, Koh SK, Zhou L, Goh DS, Choi H, Koh HWL, Lam AYR, Lim PS, et al: Oral peroxisome proliferator-activated receptor-α agonist enhances corneal nerve regeneration in patients with type 2 diabetes. Diabetes. 72:932–946. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Mansoor H, Lee IXY, Lin MT, Ang HP, Xue YC, Krishaa L, Patil M, Koh SK, Tan HC, Zhou L and Liu YC: Topical and oral peroxisome proliferator-activated receptor-α agonist ameliorates diabetic corneal neuropathy. Sci Rep. 14:134352024. View Article : Google Scholar : PubMed/NCBI

87 

Jeon KI, Kulkarni A, Woeller CF, Phipps RP, Sime PJ, Hindman HB and Huxlin KR: Inhibitory effects of PPARγ ligands on TGF-β1-induced corneal myofibroblast transformation. Am J Pathol. 184:1429–4145. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Jeon KI, Phipps RP, Sime PJ and Huxlin KR: Inhibitory effects of PPARγ ligands on TGF-β1-induced CTGF expression in cat corneal fibroblasts. Exp Eye Res. 138:52–58. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Wang J, Chen S, Zhao X, Guo Q, Yang R, Zhang C, Huang Y, Ma L and Zhao S: Effect of PPARγ on oxidative stress in diabetes-related dry eye. Exp Eye Res. 231:1094982023. View Article : Google Scholar : PubMed/NCBI

90 

Tobita Y, Arima T, Nakano Y, Uchiyama M, Shimizu A and Takahashi H: Peroxisome proliferator-activated receptor beta/delta agonist suppresses inflammation and promotes neovascularization. Int J Mol Sci. 21:52962020. View Article : Google Scholar : PubMed/NCBI

91 

Goodwin GH and Johns EW: Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur J Biochem. 40:215–219. 1973. View Article : Google Scholar : PubMed/NCBI

92 

Thomas JO and Stott K: H1 and HMGB1: Modulators of chromatin structure. Biochem Soc Trans. 40:341–346. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, et al: HMGB1 in health and disease. Mol Aspects Med. 40:1–116. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Bell CW, Jiang W, Reich CF III and Pisetsky DS: The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol. 291:C1318–C1325. 2006. View Article : Google Scholar : PubMed/NCBI

95 

van Beijnum JR, Buurman WA and Griffioen AW: Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 11:91–99. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Zhang S, Zhong J, Yang P, Gong F and Wang CY: HMGB1, an innate alarmin, in the pathogenesis of type 1 diabetes. Int J Clin Exp Pathol. 3:24–38. 2009.PubMed/NCBI

97 

Lotze MT and Tracey KJ: High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat Rev Immunol. 5:331–342. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Taniguchi N, Kawahara K, Yone K, Hashiguchi T, Yamakuchi M, Goto M, Inoue K, Yamada S, Ijiri K, Matsunaga S, et al: High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum. 48:971–981. 2003. View Article : Google Scholar : PubMed/NCBI

99 

Dasu MR, Devaraj S, Park S and Jialal I: Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 33:861–868. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Skrha J Jr, Kalousová M, Svarcová J, Muravská A, Kvasnička J, Landová L, Zima T and Skrha J: Relationship of soluble RAGE and RAGE ligands HMGB1 and EN-RAGE to endothelial dysfunction in type 1 and type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 120:277–281. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Wu H, Chen Z, Xie J, Kang LN, Wang L and Xu B: High mobility group box-1: A missing link between diabetes and its complications. Mediators Inflamm. 2016:38961472016. View Article : Google Scholar : PubMed/NCBI

102 

Steinle JJ: Role of HMGB1 signaling in the inflammatory process in diabetic retinopathy. Cell Signal. 73:1096872020. View Article : Google Scholar : PubMed/NCBI

103 

Feng L, Liang L, Zhang S, Yang J, Yue Y and Zhang X: HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway. Autophagy. 18:320–339. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Guo X, Shi Y, Du P, Wang J, Han Y, Sun B and Feng J: HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA. Life Sci. 239:1170202019. View Article : Google Scholar : PubMed/NCBI

105 

Hou Y, Xin M, Li Q and Wu X: Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp Eye Res. 204:1084542021. View Article : Google Scholar : PubMed/NCBI

106 

Liu Y and Yang Q: The roles of EZH2 in cancer and its inhibitors. Med Oncol. 40:1672023. View Article : Google Scholar : PubMed/NCBI

107 

Cao J, Pontes KC, Heijkants RC, Brouwer NJ, Groenewoud A, Jordanova ES, Marinkovic M, van Duinen S, Teunisse AF, Verdijk RM, et al: Overexpression of EZH2 in conjunctival melanoma offers a new therapeutic target. J Pathol. 245:433–444. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Lin Y, Su H, Zou B and Huang M: EZH2 promotes corneal endothelial cell apoptosis by mediating H3K27me3 and inhibiting HO-1 transcription. Curr Eye Res. 48:1122–1132. 2023. View Article : Google Scholar : PubMed/NCBI

109 

Zhang L, Wang L, Hu XB, Hou M, Xiao Y, Xiang JW, Xie J, Chen ZG, Yang TH, Nie Q, et al: MYPT1/PP1-mediated EZH2 dephosphorylation at S21 promotes epithelial-mesenchymal transition in fibrosis through control of multiple families of genes. Adv Sci (Weinh). 9:e21055392022. View Article : Google Scholar : PubMed/NCBI

110 

Thomas AA, Feng B and Chakrabarti S: ANRIL: A regulator of VEGF in diabetic retinopathy. Invest Ophthalmol Vis Sci. 58:470–480. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Wilson SE: Corneal myofibroblasts and fibrosis. Exp Eye Res. 201:1082722020. View Article : Google Scholar : PubMed/NCBI

112 

Liao K, Cui Z, Zeng Y, Liu J, Wang Y, Wang Z, Tang S and Chen J: Inhibition of enhancer of zeste homolog 2 prevents corneal myofibroblast transformation in vitro. Exp Eye Res. 208:1086112021. View Article : Google Scholar : PubMed/NCBI

113 

Wan SS, Pan YM, Yang WJ, Rao ZQ and Yang YN: Inhibition of EZH2 alleviates angiogenesis in a model of corneal neovascularization by blocking FoxO3a-mediated oxidative stress. FASEB J. 34:10168–10181. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Duraisamy AJ, Mishra M and Kowluru RA: Crosstalk between histone and DNA methylation in regulation of retinal matrix metalloproteinase-9 in diabetes. Invest Ophthalmol Vis Sci. 58:6440–6448. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Liu T, Wang Y, Wang Y and Chan AM: Multifaceted regulation of PTEN subcellular distributions and biological functions. Cancers (Basel). 11:12472019. View Article : Google Scholar : PubMed/NCBI

116 

Ho J, Cruise ES, Dowling RJO and Stambolic V: PTEN nuclear functions. Cold Spring Harb Perspect Med. 10:a0360792020. View Article : Google Scholar : PubMed/NCBI

117 

Li A, Qiu M, Zhou H, Wang T and Guo W: PTEN, insulin resistance and cancer. Curr Pharm Des. 23:3667–3676. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Liu A, Zhu Y, Chen W, Merlino G and Yu Y: PTEN dual lipid- and protein-phosphatase function in tumor progression. Cancers (Basel). 14:36662022. View Article : Google Scholar : PubMed/NCBI

119 

Li X, Yang P, Hou X and Ji S: Post-translational modification of PTEN protein: Quantity and activity. Oncol Rev. 18:14302372024. View Article : Google Scholar : PubMed/NCBI

120 

Li YZ, Di Cristofano A and Woo M: Metabolic role of PTEN in insulin signaling and resistance. Cold Spring Harb Perspect Med. 10:a0361372020. View Article : Google Scholar : PubMed/NCBI

121 

D'Amico AG, Maugeri G, Magrì B, Bucolo C and D'Agata V: Targeting the PINK1/Parkin pathway: A new perspective in the prevention and therapy of diabetic retinopathy. Exp Eye Res. 247:1100242024. View Article : Google Scholar : PubMed/NCBI

122 

Dai Y, Zhao X, Chen P, Yu Y, Wang Y and Xie L: Neuropeptide FF promotes recovery of corneal nerve injury associated with hyperglycemia. Invest Ophthalmol Vis Sci. 56:7754–7765. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Li J, Qi X, Wang X, Li W, Li Y and Zhou Q: PTEN inhibition facilitates diabetic corneal epithelial regeneration by reactivating Akt signaling pathway. Transl Vis Sci Technol. 9:52020. View Article : Google Scholar : PubMed/NCBI

124 

Zhang W, Yu F, Yan C, Shao C, Gu P, Fu Y, Sun H and Fan X: PTEN inhibition accelerates corneal endothelial wound healing through increased endothelial cell division and migration. Invest Ophthalmol Vis Sci. 61:192020. View Article : Google Scholar

125 

Liu X, Li X, Wu G, Qi P, Zhang Y, Liu Z, Li X, Yu Y, Ye X, Li Y, et al: Umbilical cord mesenchymal stem cell-derived small extracellular vesicles deliver miR-21 to promote corneal epithelial wound healing through PTEN/PI3K/Akt pathway. Stem Cells Int. 2022:12525572022. View Article : Google Scholar : PubMed/NCBI

126 

Penteado AB, Hassanie H, Gomes RA, Silva Emery FD and Goulart Trossini GH: Human sirtuin 2 inhibitors, their mechanisms and binding modes. Future Med Chem. 15:291–311. 2023. View Article : Google Scholar : PubMed/NCBI

127 

Vassilopoulos A, Fritz KS, Petersen DR and Gius D: The human sirtuin family: Evolutionary divergences and functions. Hum Genomics. 5:485–496. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family in health and disease. Signal Transduct Target Ther. 7:4022022. View Article : Google Scholar : PubMed/NCBI

129 

Tao Z, Jin Z, Wu J, Cai G and Yu X: Sirtuin family in autoimmune diseases. Front Immunol. 14:11862312023. View Article : Google Scholar : PubMed/NCBI

130 

Guarente L: Franklin H: Epstein lecture: Sirtuins, aging, and medicine. N Engl J Med. 364:2235–2244. 2011. View Article : Google Scholar : PubMed/NCBI

131 

Hong Q, Zhang L, Das B, Li Z, Liu B, Cai G, Chen X, Chuang PY, He JC and Lee K: Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93:1330–1343. 2018. View Article : Google Scholar : PubMed/NCBI

132 

Hammer SS, Vieira CP, McFarland D, Sandler M, Levitsky Y, Dorweiler TF, Lydic TA, Asare-Bediako B, Adu-Agyeiwaah Y, Sielski MS, et al: Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction. Diabetologia. 64:1674–1689. 2021. View Article : Google Scholar : PubMed/NCBI

133 

Chandrasekaran K, Salimian M, Konduru SR, Choi J, Kumar P, Long A, Klimova N, Ho CY, Kristian T and Russell JW: Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain. 142:3737–3752. 2019. View Article : Google Scholar : PubMed/NCBI

134 

Li L, Zeng H, He X and Chen JX: Sirtuin 3 alleviates diabetic cardiomyopathy by regulating TIGAR and cardiomyocyte metabolism. J Am Heart Assoc. 10:e0189132021. View Article : Google Scholar : PubMed/NCBI

135 

Zhao K, Zhang H and Yang D: SIRT1 exerts protective effects by inhibiting endoplasmic reticulum stress and NF-κB signaling pathways. Front Cell Dev Biol. 12:14055462024. View Article : Google Scholar : PubMed/NCBI

136 

Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S and Majidinia M: SIRT1: A promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem. 130:13–28. 2024. View Article : Google Scholar : PubMed/NCBI

137 

Prabhakar PK, Singh K, Kabra D and Gupta J: Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. Phytomedicine. 76:1532522020. View Article : Google Scholar : PubMed/NCBI

138 

Nebbioso M, Lambiase A, Armentano M, Tucciarone G, Sacchetti M, Greco A and Alisi L: Diabetic retinopathy, oxidative stress, and sirtuins: An in depth look in enzymatic patterns and new therapeutic horizons. Surv Ophthalmol. 67:168–183. 2022. View Article : Google Scholar : PubMed/NCBI

139 

Wei S, Fan J, Zhang X, Jiang Y, Zeng S, Pan X, Sheng M and Chen Y: Sirt1 attenuates diabetic keratopathy by regulating the endoplasmic reticulum stress pathway. Life Sci. 265:1187892021. View Article : Google Scholar : PubMed/NCBI

140 

Wang Y, Zhao X, Wu X, Dai Y, Chen P and Xie L: microRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration. Diabetes. 65:2020–2031. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Hu J, Kan T and Hu X: Sirt3 regulates mitophagy level to promote diabetic corneal epithelial wound healing. Exp Eye Res. 181:223–231. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Zhang B, Cui S, Bai X, Zhuo L, Sun X, Hong Q, Fu B, Wang J, Chen X and Cai G: SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age (Dordr). 35:2237–2253. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu H, Jiang Z, Wang Y, Hou X, Dong W, Chen Y, Zhang Q, Ji X, Ji S, Dang Y, Dang Y, et al: Diabetic keratopathy and nuclear proteins (Review). Mol Med Rep 33: 35, 2026.
APA
Xu, H., Jiang, Z., Wang, Y., Hou, X., Dong, W., Chen, Y. ... Dang, Y. (2026). Diabetic keratopathy and nuclear proteins (Review). Molecular Medicine Reports, 33, 35. https://doi.org/10.3892/mmr.2025.13744
MLA
Xu, H., Jiang, Z., Wang, Y., Hou, X., Dong, W., Chen, Y., Zhang, Q., Ji, X., Ji, S., Dang, Y."Diabetic keratopathy and nuclear proteins (Review)". Molecular Medicine Reports 33.1 (2026): 35.
Chicago
Xu, H., Jiang, Z., Wang, Y., Hou, X., Dong, W., Chen, Y., Zhang, Q., Ji, X., Ji, S., Dang, Y."Diabetic keratopathy and nuclear proteins (Review)". Molecular Medicine Reports 33, no. 1 (2026): 35. https://doi.org/10.3892/mmr.2025.13744
Copy and paste a formatted citation
x
Spandidos Publications style
Xu H, Jiang Z, Wang Y, Hou X, Dong W, Chen Y, Zhang Q, Ji X, Ji S, Dang Y, Dang Y, et al: Diabetic keratopathy and nuclear proteins (Review). Mol Med Rep 33: 35, 2026.
APA
Xu, H., Jiang, Z., Wang, Y., Hou, X., Dong, W., Chen, Y. ... Dang, Y. (2026). Diabetic keratopathy and nuclear proteins (Review). Molecular Medicine Reports, 33, 35. https://doi.org/10.3892/mmr.2025.13744
MLA
Xu, H., Jiang, Z., Wang, Y., Hou, X., Dong, W., Chen, Y., Zhang, Q., Ji, X., Ji, S., Dang, Y."Diabetic keratopathy and nuclear proteins (Review)". Molecular Medicine Reports 33.1 (2026): 35.
Chicago
Xu, H., Jiang, Z., Wang, Y., Hou, X., Dong, W., Chen, Y., Zhang, Q., Ji, X., Ji, S., Dang, Y."Diabetic keratopathy and nuclear proteins (Review)". Molecular Medicine Reports 33, no. 1 (2026): 35. https://doi.org/10.3892/mmr.2025.13744
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team