Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review)

  • Authors:
    • Ziqiao Liu
    • Hanshen Zhou
    • Junxiao Shen
    • Yiming Qi
    • Xuke Gong
    • Cheng Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Urology, International Institutes of Medicine, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, P.R. China, Department of General Surgery, International Institutes of Medicine, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 51
    |
    Published online on: November 24, 2025
       https://doi.org/10.3892/mmr.2025.13761
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Renal cell carcinoma (RCC) is a malignant tumor originating from the epithelial cells of the renal tubules. RCC has a high propensity for distant metastasis, complicating clinical management due to the paucity of effective post‑metastatic therapeutic strategies and the associated poor prognosis. Epithelial‑mesenchymal transition (EMT) is a biological process in which cells switch from epithelial to mesenchymal characteristics. RCC cells undergoing EMT exhibit a higher grade of malignancy with enhanced invasiveness and metastatic capabilities, thereby markedly promoting the tendency for distant metastasis. Non‑coding RNAs (ncRNAs) are a group of functional RNAs that are not translated into proteins. ncRNAs serve key roles in RCC progression and one of the key mechanisms involved is through regulating the EMT process. The present study reviews the research on ncRNAs regulating EMT in RCC and their future clinical applications, highlighting their notable potential as novel diagnostic biomarkers and therapeutic targets to combat metastatic RCC in the future.
View Figures

Figure 1

Regulatory mechanisms of EMT
progression associated with ncRNA in RCC. A complex regulatory
network of ncRNAs modulates EMT in cancer cells through selective
activation or inhibition of key signaling pathway components. →,
promotion; ⊥, inhibition; EMT, epithelial-mesenchymal transition;
ncRNA, non-coding RNA; RCC, renal cell carcinoma; miRNA, microRNA;
circRNA, circular RNA; HOTAIR, HOX transcript antisense intergenic
RNA; NEAT1, nuclear enriched abundant transcript 1; SNHG, small
nuclear RNA host gene; CDKN2B-AS1, CDK inhibitor 2B-antisense RNA
1; OTUD6B, ovarian tumor domain deubiquitinase 6B.

Figure 2

ncRNAs regulate EMT in RCC. ncRNAs
regulating the EMT progression and miRNAs are the center of this
system. Pseudogenes, circRNAs, lncRNAs and T-UCRs can exert their
downstream effects by sequestering miRNAs, which establishes miRNAs
as the central hub of this regulatory network. However, certain
circRNAs and lncRNAs may also regulate EMT directly, independent of
the miRNA pathway. RNAs can be located in the cytoplasm and
extracellular vesicles of RCC. Certain tumor cells release various
EVs, including exosomes and microparticles containing ncRNAs, which
further promote the EMT process and facilitate tumor metastasis.
After EMT, the carcinoma cells become more invasive and spread to
distant organs through the circulation. EMT, epithelial-mesenchymal
transition; ncRNA, non-coding RNA; RCC, renal cell carcinoma; EVs,
extracellular vesicles; miRNA, microRNA; circRNA, circular RNA;
T-UCRs, transcribed-ultra conserved regions; lncRNA, long
non-coding RNA.
View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI

2 

Rouprêt M, Seisen T, Birtle AJ, Capoun O, Compérat EM, Dominguez-Escrig JL, Gürses Andersson I, Liedberg F, Mariappan P, Hugh Mostafid A, et al: European association of urology guidelines on upper urinary tract urothelial carcinoma: 2023 Update. Eur Urol. 84:49–64. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Motzer RJ, Jonasch E, Agarwal N, Alva A, Baine M, Beckermann K, Carlo MI, Choueiri TK, Costello BA, Derweesh IH, et al: Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 20:71–90. 2022. View Article : Google Scholar

4 

Young M, Jackson-Spence F, Beltran L, Day E, Suarez C, Bex A, Powles T and Szabados B: Renal cell carcinoma. Lancet. 404:476–491. 2024. View Article : Google Scholar : PubMed/NCBI

5 

Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS and Kalluri R: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 527:525–530. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Berkers J, Govaere O, Wolter P, Beuselinck B, Schöffski P, van Kempen LC, Albersen M, Van den Oord J, Roskams T, Swinnen J, et al: A possible role for microRNA-141 down-regulation in sunitinib resistant metastatic clear cell renal cell carcinoma through induction of epithelial-to-mesenchymal transition and hypoxia resistance. J Urol. 189:1930–1938. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Galichon P, Finianos S and Hertig A: EMT-MET in renal disease: Should we curb our enthusiasm? Cancer Lett. 341:24–29. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Fu XD: Non-coding RNA: A new frontier in regulatory biology. Natl Sci Rev. 1:190–204. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Xiao Y, Ren Y, Hu W, Paliouras AR, Zhang W, Zhong L, Yang K, Su L, Wang P, Li Y, et al: Long non-coding RNA-encoded micropeptides: Functions, mechanisms and implications. Cell Death Discov. 10:4502024. View Article : Google Scholar : PubMed/NCBI

10 

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Slack FJ and Chinnaiyan AM: The role of non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Niu X, Lu D, Zhan W, Sun J, Li Y, Shi Y, Yu K, Huang S, Ma X, Liu X and Liu B: miR-9-5p/HMMR regulates the tumorigenesis and progression of clear cell renal cell carcinoma through EMT and JAK1/STAT1 signaling pathway. J Transl Med. 23:362025. View Article : Google Scholar : PubMed/NCBI

13 

Chen J, Zhong Y and Li L: miR-124 and miR-203 synergistically inactivate EMT pathway via coregulation of ZEB2 in clear cell renal cell carcinoma (ccRCC). J Transl Med. 18:692020. View Article : Google Scholar : PubMed/NCBI

14 

Wang L, Yang G, Zhao D, Wang J, Bai Y, Peng Q, Wang H, Fang R, Chen G, Wang Z, et al: CD103-positive CSC exosome promotes EMT of clear cell renal cell carcinoma: Role of remote MiR-19b-3p. Mol Cancer. 18:862019. View Article : Google Scholar : PubMed/NCBI

15 

Kulkarni P, Dasgupta P, Hashimoto Y, Shiina M, Shahryari V, Tabatabai ZL, Yamamura S, Tanaka Y, Saini S, Dahiya R and Majid S: A lncRNA TCL6-miR-155 interaction regulates the Src-Akt-EMT network to mediate kidney cancer progression and metastasis. Cancer Res. 81:1500–1512. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Saleeb R, Kim SS, Ding Q, Scorilas A, Lin S, Khella HW, Boulos C, Ibrahim G and Yousef GM: The miR-200 family as prognostic markers in clear cell renal cell carcinoma. Urol Oncol. 37:955–963. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, Abudurexiti M, Wang ZD, Zhu WK, Su JQ, et al: The function and mechanisms of action of circular RNAs in urologic cancer. Mol Cancer. 22:612023. View Article : Google Scholar : PubMed/NCBI

18 

Javdani H, Mollaei H, Karimi F, Mahmoudi S, Farahi A, Mirzaei-Parsa MJ and Shahabi A: Review article epithelial to mesenchymal transition-associated microRNAs in breast cancer. Mol Biol Rep. 49:9963–9973. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, et al: N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 10:46952019. View Article : Google Scholar : PubMed/NCBI

20 

Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, et al: LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother. 154:1136092022. View Article : Google Scholar : PubMed/NCBI

21 

Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI

22 

Chen L and Shan G: CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 505:49–57. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Xu Y, Liu H, Zhang Y, Luo J, Li H, Lai C, Shi L and Heng B: piRNAs and circRNAs acting as diagnostic biomarkers in clear cell renal cell carcinoma. Sci Rep. 15:77742025. View Article : Google Scholar : PubMed/NCBI

24 

Nieto MA: Epithelial plasticity: A common theme in embryonic and cancer cells. Science. 342:12348502013. View Article : Google Scholar : PubMed/NCBI

25 

Glauert AM, Daniel MR, Lucy JA and Dingle JT: Studies on the mode of action of excess of vitamin A. VII. Changes in the fine structure of erythrocytes during haemolysis by vitamin A. J Cell Biol. 17:111–121. 1963. View Article : Google Scholar : PubMed/NCBI

26 

Royer C and Lu X: Epithelial cell polarity: A major gatekeeper against cancer? Cell Death Differ. 18:1470–1477. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Han L, Luo H, Huang W, Zhang J, Wu D, Wang J, Pi J, Liu C, Qu X, Liu H, et al: Modulation of the EMT/MET process by E-cadherin in airway epithelia stress injury. Biomolecules. 11:6692021. View Article : Google Scholar : PubMed/NCBI

28 

Wang SS, Jiang J, Liang XH and Tang YL: Links between cancer stem cells and epithelial-mesenchymal transition. OncoTargets Ther. 8:2973–2980. 2015.PubMed/NCBI

29 

Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, et al: Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 17:557–588. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Lan T, Luo M and Wei X: Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 14:1952021. View Article : Google Scholar : PubMed/NCBI

32 

Polyak K and Weinberg RA: Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Galassi C, Manic G, Esteller M, Galluzzi L and Vitale I: Epigenetic regulation of cancer stemness. Signal Transduct Target Ther. 10:2432025. View Article : Google Scholar : PubMed/NCBI

34 

Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong STC, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015. View Article : Google Scholar : PubMed/NCBI

36 

De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP and Figueroa A: Cancer drug resistance induced by EMT: Novel therapeutic strategies. Arch Toxicol. 95:2279–2297. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Spranger S, Koblish HK, Horton B, Scherle PA, Newton R and Gajewski TF: Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer. 2:32014. View Article : Google Scholar : PubMed/NCBI

38 

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ and Wainwright DA: Molecular pathways: Targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 21:5427–5433. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N and Mandai M: Tumor immune microenvironment during epithelial-mesenchymal transition. Clin Cancer Res. 27:4669–4679. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, Wang H, Fang R, Bu X, Cai S and Du J: TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget. 7:52294–52306. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Mittal V: Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 13:395–412. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Aparicio LA, Blanco M, Castosa R, Concha Á, Valladares M, Calvo L and Figueroa A: Clinical implications of epithelial cell plasticity in cancer progression. Cancer Lett. 366:1–10. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Lin S, Sun JG, Wu JB, Long HX, Zhu CH, Xiang T, Ma H, Zhao ZQ, Yao Q, Zhang AM, et al: Aberrant microRNAs expression in CD133+/CD326+ human lung adenocarcinoma initiating cells from A549. Mol Cells. 33:277–283. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Yuan J, Dong R, Liu F, Zhan L, Liu Y, Wei J and Wang N: The miR-183/182/96 cluster functions as a potential carcinogenic factor and prognostic factor in kidney renal clear cell carcinoma. Exp Ther Med. 17:2457–2464. 2019.PubMed/NCBI

46 

Bartel DP: Metazoan MicroRNAs. Cell. 173:20–51. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Seyhan AA: Trials and tribulations of MicroRNA therapeutics. Int J Mol Sci. 25:14692024. View Article : Google Scholar : PubMed/NCBI

48 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI

50 

Ransohoff JD, Wei Y and Khavari PA: The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 19:143–157. 2018. View Article : Google Scholar : PubMed/NCBI

51 

McCabe EM and Rasmussen TP: lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol. 75:38–48. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Yoon JH, Abdelmohsen K and Gorospe M: Post-transcriptional gene regulation by long noncoding RNA. J Mol Biol. 425:3723–3730. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Mauer C, Paz S and Caputi M: Backsplicing of the HIV-1 transcript generates multiple circRNAs to promote viral replication. Npj Viruses. 3:212025. View Article : Google Scholar : PubMed/NCBI

56 

Ma Y, Wang T, Zhang X, Wang P and Long F: The role of circular RNAs in regulating resistance to cancer immunotherapy: Mechanisms and implications. Cell Death Dis. 15:3122024. View Article : Google Scholar : PubMed/NCBI

57 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Thamjamrassri P and Ariyachet C: Circular RNAs in cell cycle regulation of cancers. Int J Mol Sci. 25:60942024. View Article : Google Scholar : PubMed/NCBI

60 

Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer. 18:1602019. View Article : Google Scholar : PubMed/NCBI

61 

Fang L, Du WW, Awan FM, Dong J and Yang BB: The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett. 459:216–226. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Fei T, Chen Y, Xiao T, Li W, Cato L, Zhang P, Cotter MB, Bowden M, Lis RT, Zhao SG, et al: Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc Natl Acad Sci USA. 114:E5207–E5215. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Lu R, Ji Z, Li X, Qin J, Cui G, Chen J, Zhai Q, Zhao C, Zhang W and Yu Z: Tumor suppressive microRNA-200a inhibits renal cell carcinoma development by directly targeting TGFB2. Tumour Biol. 36:6691–6700. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Wang X, Chen X, Wang R, Xiao P, Xu Z, Chen L, Hang W, Ruan A, Yang H and Zhang X: microRNA-200c modulates the epithelial-to-mesenchymal transition in human renal cell carcinoma metastasis. Oncol Rep. 30:643–650. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Xu XW, Li S, Yin F and Qin LL: Expression of miR-205 in renal cell carcinoma and its association with clinicopathological features and prognosis. Eur Rev Med Pharmacol Sci. 22:662–670. 2018.PubMed/NCBI

68 

Qiu M, Liang Z, Chen L, Tan G, Wang K, Liu L, Liu J and Chen H: MicroRNA-429 suppresses cell proliferation, epithelial-mesenchymal transition, and metastasis by direct targeting of BMI1 and E2F3 in renal cell carcinoma. Urol Oncol. 33:332.e9–e18. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Machackova T, Mlcochova H, Stanik M, Dolezel J, Fedorko M, Pacik D, Poprach A, Svoboda M and Slaby O: MiR-429 is linked to metastasis and poor prognosis in renal cell carcinoma by affecting epithelial-mesenchymal transition. Tumour Biol. 37:14653–14658. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Chen Z, Zhang J, Zhang Z, Feng Z, Wei J, Lu J, Fang Y, Liang Y, Cen J, Pan Y, et al: The putative tumor suppressor microRNA-30a-5p modulates clear cell renal cell carcinoma aggressiveness through repression of ZEB2. Cell Death Dis. 8:e28592017. View Article : Google Scholar : PubMed/NCBI

71 

Liu W, Li H, Wang Y, Zhao X, Guo Y, Jin J and Chi R: MiR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis and epithelial-to-mesenchymal transition by targeting G-protein subunit α-13 in renal cell carcinoma. Gene. 626:275–281. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Han N, Li H and Wang H: MicroRNA-203 inhibits epithelial-mesenchymal transition, migration, and invasion of renal cell carcinoma cells via the inactivation of the PI3K/AKT signaling pathway by inhibiting CAV1. Cell Adhes Migr. 14:227–241. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T, Nohata N, Kinoshita T, Nakagawa M and Enokida H: Tumor suppressive microRNA-138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 41:805–817. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Dasgupta P, Kulkarni P, Majid S, Hashimoto Y, Shiina M, Shahryari V, Bhat NS, Tabatabai L, Yamamura S, Saini S, et al: LncRNA CDKN2B-AS1/miR-141/cyclin D network regulates tumor progression and metastasis of renal cell carcinoma. Cell Death Dis. 11:6602020. View Article : Google Scholar : PubMed/NCBI

75 

Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, Zhang S, Nie L and Yu Z: miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin Oncol. 140:387–397. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Lichner Z, Saleh C, Subramaniam V, Seivwright A, Prud'homme GJ and Yousef GM: miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/tumor initiating cell properties. Oncotarget. 6:5567–5581. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Liu Y, Zhang M, Qian J, Bao M, Meng X, Zhang S, Zhang L, Zhao R, Li S, Cao Q, et al: miR-134 functions as a tumor suppressor in cell proliferation and epithelial-to-mesenchymal transition by targeting KRAS in renal cell carcinoma cells. DNA Cell Biol. 34:429–436. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Liu F, Chen N, Xiao R, Wang W and Pan Z: miR-144-3p serves as a tumor suppressor for renal cell carcinoma and inhibits its invasion and metastasis by targeting MAP3K8. Biochem Biophys Res Commun. 480:87–93. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Dasgupta P, Kulkarni P, Majid S, Shahryari V, Hashimoto Y, Bhat NS, Shiina M, Deng G, Saini S, Tabatabai ZL, et al: MicroRNA-203 inhibits long noncoding RNA HOTAIR and regulates tumorigenesis through epithelial-to-mesenchymal transition pathway in renal cell carcinoma. Mol Cancer Ther. 17:1061–1069. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Dong JS, Wu B and Zha ZL: MicroRNA-588 regulates migration capacity and invasiveness of renal cancer cells by targeting EIF5A2. Eur Rev Med Pharmacol Sci. 23:10248–10256. 2019.PubMed/NCBI

81 

Pan H, Hong Y, Yu B, Li L and Zhang X: miR-4429 inhibits tumor progression and epithelial-mesenchymal transition via targeting CDK6 in clear cell renal cell carcinoma. Cancer Biother Radiopharm. 34:334–341. 2019.PubMed/NCBI

82 

Guo Z, Jia H and Ge J: MiR-206 suppresses proliferation and epithelial-mesenchymal transition of renal cell carcinoma by inhibiting CDK6 expression. Hum Cell. 33:750–758. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Guo Z, Lv X and Jia H: MiR-186 represses progression of renal cell cancer by directly targeting CDK6. Hum Cell. 33:759–767. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Xu B, Wang C, Wang YL, Chen SQ, Wu JP, Zhu WD, Wang CY, Guan H, Guan C, You ZH and Chen M: miR-143 inhibits renal cell carcinoma cells metastatic potential by suppressing ABL2. Kaohsiung J Med Sci. 36:592–598. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Sekino Y, Sakamoto N, Goto K, Honma R, Shigematsu Y, Quoc TP, Sentani K, Oue N, Teishima J, Kawakami F, et al: Uc.416 + A promotes epithelial-to-mesenchymal transition through miR-153 in renal cell carcinoma. BMC Cancer. 18:9522018. View Article : Google Scholar : PubMed/NCBI

86 

Xue D, Wang H, Chen Y, Shen D, Lu J, Wang M, Zebibula A, Xu L, Wu H, Li G and Xia L: Circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals. Mol Cancer. 18:1512019. View Article : Google Scholar : PubMed/NCBI

87 

Chen Z, Wang Z, Chen Z, Fu F, Huang X and Huang Z: Pseudogene HSPB1P1 contributes to renal cell carcinoma proliferation and metastasis by targeting miR-296-5p to regulate HMGA1 expression. Cell Biol Int. 45:2479–2489. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Wang YB, Zhang ZL, Shao JK and Li RS: Effect of miR-186 targeting E-cadherin on proliferation and metastasis of renal cell carcinoma. Zhonghua Yi Xue Za Zhi. 101:1020–1025. 2021.(In Chinese). PubMed/NCBI

89 

Sharma A, Singh P, Jha R, Almatroodi SA, Alrumaihi F, Rahmani AH, Alharbi HO, Dohare R and Syed MA: Exploring the role of miR-200 family in regulating CX3CR1 and CXCR1 in lung adenocarcinoma tumor microenvironment: Implications for therapeutic intervention. Sci Rep. 13:163332023. View Article : Google Scholar : PubMed/NCBI

90 

He L, Jiang Z, Wang J and Han Z: Mechanism of miR-200b-3p-induced FOSL2 inhibition of endometrial cancer cell proliferation and metastasis. Sci Rep. 15:157422025. View Article : Google Scholar : PubMed/NCBI

91 

Jo H, Shim K and Jeoung D: Potential of the miR-200 family as a target for developing anti-cancer therapeutics. Int J Mol Sci. 23:58812022. View Article : Google Scholar : PubMed/NCBI

92 

Castro-Vega LJ, Jouravleva K, Liu WY, Martinez C, Gestraud P, Hupé P, Servant N, Albaud B, Gentien D, Gad S, et al: Telomere crisis in kidney epithelial cells promotes the acquisition of a microRNA signature retrieved in aggressive renal cell carcinomas. Carcinogenesis. 34:1173–1180. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Richardsen E, Andersen S, Melbø-Jørgensen C, Rakaee M, Ness N, Al-Saad S, Nordby Y, Pedersen MI, Dønnem T, Bremnes RM and Busund LT: MicroRNA 141 is associated to outcome and aggressive tumor characteristics in prostate cancer. Sci Rep. 9:3862019. View Article : Google Scholar : PubMed/NCBI

94 

Yang C, Dou R, Yin T and Ding J: MiRNA-106b-5p in human cancers: Diverse functions and promising biomarker. Biomed Pharmacother. 127:1102112020. View Article : Google Scholar : PubMed/NCBI

95 

Mlcochova H, Machackova T, Rabien A, Radova L, Fabian P, Iliev R, Slaba K, Poprach A, Kilic E, Stanik M, et al: Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma. Sci Rep. 6:318522016. View Article : Google Scholar : PubMed/NCBI

96 

Han W, Cui H, Liang J and Su X: Role of MicroRNA-30c in cancer progression. J Cancer. 11:2593–2601. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Huang J, Yao X, Zhang J, Dong B, Chen Q, Xue W, Xue W, Liu D and Huang Y: Hypoxia-induced downregulation of miR-30c promotes epithelial-mesenchymal transition in human renal cell carcinoma. Cancer Sci. 104:1609–1617. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Butz H, Szabó PM, Khella HWZ, Nofech-Mozes R, Patocs A and Yousef GM: miRNA-target network reveals miR-124as a key miRNA contributing to clear cell renal cell carcinoma aggressive behaviour by targeting CAV1 and FLOT1. Oncotarget. 6:12543–12557. 2015. View Article : Google Scholar : PubMed/NCBI

99 

He S, Zhang G, Dong H, Ma M and Sun Q: miR-203 facilitates tumor growth and metastasis by targeting fibroblast growth factor 2 in breast cancer. OncoTargets Ther. 9:6203–6210. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B and Camussi G: Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71:5346–5356. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Li DY, Lin FF, Li GP and Zeng FC: Exosomal microRNA-15a from ACHN cells aggravates clear cell renal cell carcinoma via the BTG2/PI3K/AKT axis. Kaohsiung J Med Sci. 37:973–982. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Cao J, Liu J, Xu R, Zhu X, Liu L and Zhao X: MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells. Mol Med Rep. 13:75–82. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Wu TK, Wei CW, Pan YR, Hsu RJ, Wu CY and Yu YL: The uremic toxin p-cresyl sulfate induces proliferation and migration of clear cell renal cell carcinoma via microRNA-21/ HIF-1α axis signals. Sci Rep. 9:32072019. View Article : Google Scholar : PubMed/NCBI

104 

Lyu J, Zhu Y and Zhang Q: An increased level of MiR-222-3p is associated with TMP2 suppression, ERK activation and is associated with metastasis and a poor prognosis in renal clear cell carcinoma. Cancer Biomark. 28:141–149. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Gorka J, Marona P, Kwapisz O, Waligórska A, Pospiech E, Dobrucki JW, Rys J, Jura J and Miekus K: MCPIP1 inhibits Wnt/β-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRNAs. Oncogene. 40:6720–6735. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Lei QQ, Huang Y, Li B, Han L and Lv C: MiR-155-5p promotes metastasis and epithelial-mesenchymal transition of renal cell carcinoma by targeting apoptosis-inducing factor. Int J Biol Markers. 36:20–27. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Meng K, Li Z and Cui X: Three LHPP gene-targeting co-expressed microRNAs (microRNA-765, microRNA-21, and microRNA-144) promote proliferation, epithelial-mesenchymal transition, invasion, and are independent prognostic biomarkers in renal cell carcinomas patients. J Clin Lab Anal. 35:e240772021. View Article : Google Scholar : PubMed/NCBI

108 

Landolt L, Eikrem Ø, Strauss P, Scherer A, Lovett DH, Beisland C, Finne K, Osman T, Ibrahim MM, Gausdal G, et al: Clear cell renal cell carcinoma is linked to epithelial-to-mesenchymal transition and to fibrosis. Physiol Rep. 5:e133052017. View Article : Google Scholar : PubMed/NCBI

109 

Yoshino H, Yonemori M, Miyamoto K, Tatarano S, Kofuji S, Nohata N, Nakagawa M and Enokida H: microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget. 8:20881–20894. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Xiong J, Liu Y, Jiang L, Zeng Y and Tang W: High expression of long non-coding RNA lncRNA-ATB is correlated with metastases and promotes cell migration and invasion in renal cell carcinoma. Jpn J Clin Oncol. 46:378–384. 2016. View Article : Google Scholar : PubMed/NCBI

111 

He X, Liu H, Guo F, Feng Y, Gao Y, Sun F, Song B, Lu H and Li Y: Long non-coding RNA Z38 promotes cell proliferation and metastasis in human renal cell carcinoma. Mol Med Rep. 16:5489–5494. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Ning L, Li Z, Wei D, Chen H and Yang C: LncRNA, NEAT1 is a prognosis biomarker and regulates cancer progression via epithelial-mesenchymal transition in clear cell renal cell carcinoma. Cancer Biomark. 19:75–83. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Xiong J, Liu Y, Luo S, Jiang L, Zeng Y, Chen Z, Shi X, Lv B and Tang W: High expression of the long non-coding RNA HEIRCC promotes renal cell carcinoma metastasis by inducing epithelial-mesenchymal transition. Oncotarget. 8:6555–6563. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Du Y, Kong C, Zhu Y, Yu M, Li Z, Bi J, Li Z, Liu X, Zhang Z and Yu X: Knockdown of SNHG15 suppresses renal cell carcinoma proliferation and EMT by regulating the NF-κB signaling pathway. Int J Oncol. 53:384–394. 2018.PubMed/NCBI

115 

Su Y, Zhou L, Yu Q, Lu J and Liu W: Long non-coding RNA LOC648987 promotes proliferation and metastasis of renal cell carcinoma by regulating epithelial-mesenchymal transition. Technol Cancer Res Treat. 20:15330338219978342021. View Article : Google Scholar : PubMed/NCBI

116 

Yu H, Liu J, Zhang Z, Zhu Y, Bi J and Kong C: SNHG12 promotes carcinogenesis of human renal cell cancer via functioning as a competing endogenous RNA and sponging miR-30a-3p. J Cell Mol Med. 25:4696–4708. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Zhang Y, Lan X, Wang Y, Liu C and Cui T: CRNDE mediates the viability and epithelial-mesenchymal transition of renal cell carcinoma via miR-136-5p. J Recept Signal Transduct Res. 41:234–244. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Shao IH, Peng PH, Wu HH, Chen JL, Lai JCY, Chang JS, Wu HT, Wu KJ, Pang ST and Hsu KW: RP11-367G18.1 V2 enhances clear cell renal cell carcinoma progression via induction of epithelial-mesenchymal transition. Cancer Med. 12:9788–9801. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI

120 

Zhang A, Zhao JC, Kim J, Fong KW, Yang YA, Chakravarti D, Mo YY and Yu J: LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 13:209–221. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Pu Y, Dong Z, Xia Y, Zhang M, Song J, Han J and Liu H: LncRNA NONHSAT113026 represses renal cell carcinoma tumorigenesis through interacting with NF-κB/p50 and SLUG. Biomed Pharmacother. 118:1093822019. View Article : Google Scholar : PubMed/NCBI

122 

Wang G, Zhang ZJ, Jian WG, Liu PH, Xue W, Wang TD, Meng YY, Yuan C, Li HM, Yu YP, et al: Novel long noncoding RNA OTUD6B-AS1 indicates poor prognosis and inhibits clear cell renal cell carcinoma proliferation via the Wnt/β-catenin signaling pathway. Mol Cancer. 18:152019. View Article : Google Scholar : PubMed/NCBI

123 

Zhang C, Zhu N, Liu C, Wu H, Yin Y, Shi Y, Liao D and Qin L: Steroid receptor RNA activator inhibits the migration, invasion and stemness characteristics of renal cell carcinoma cells. Int J Mol Med. 46:1765–1776. 2020.PubMed/NCBI

124 

Singh D, Kesharwani P, Alhakamy NA and Siddique HR: Accentuating CircRNA-miRNA-transcription factors axis: A conundrum in cancer research. Front Pharmacol. 12:7848012022. View Article : Google Scholar : PubMed/NCBI

125 

Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W and Cao H: An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget. 8:73271–73281. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Zhang D, Yang XJ, Luo QD, Fu DL, Li ZL, Zhang P and Chong T: Down-regulation of circular RNA_000926 attenuates renal cell carcinoma progression through miRNA-411-dependent CDH2 inhibition. Am J Pathol. 189:2469–8246. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Li J, Huang C, Zou Y, Yu J and Gui Y: Circular RNA MYLK promotes tumour growth and metastasis via modulating miR-513a-5p/VEGFC signalling in renal cell carcinoma. J Cell Mol Med. 24:6609–6621. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Li W, Yang FQ, Sun CM, Huang JH, Zhang HM, Li X, Wang GC, Zhang N, Che JP, Zhang WT, et al: circPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma. Theranostics. 10:4395–4409. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Liu H, Hu G, Wang Z, Liu Q, Zhang J, Chen Y, Huang Y, Xue W, Xu Y and Zhai W: circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis. Theranostics. 10:10791–10807. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Yan JS, Chen Q, Li YL and Gao YQ: Hsa_circ_0065217 promotes growth and metastasis of renal cancer through regulating the miR-214-3p-ALPK2 axis. Cell Cycle. 20:2519–2530. 2021. View Article : Google Scholar : PubMed/NCBI

131 

Li W, Song YYY, Rao T, Yu WM, Ruan Y, Ning JZ, Yao XB, Yang SY and Cheng F: CircCSNK1G3 up-regulates miR-181b to promote growth and metastasis via TIMP3-mediated epithelial to mesenchymal transitions in renal cell carcinoma. J Cell Mol Med. 26:1729–1741. 2022. View Article : Google Scholar : PubMed/NCBI

132 

Cen J, Liang Y, Feng Z, Chen X, Chen J, Wang Y, Zhu J, Xu Q, Shu G, Zheng W, et al: Hsa_circ_0057105 modulates a balance of epithelial-mesenchymal transition and ferroptosis vulnerability in renal cell carcinoma. Clin Transl Med. 13:e13392023. View Article : Google Scholar : PubMed/NCBI

133 

Xie X, Li H, Gao C, Lai Y, Liang J, Chen Z, Chen Z, Heng B, Yao N and Lai C: Downregulation of circular RNA circPSD3 promotes metastasis by modulating FBXW7 expression in clear cell renal cell carcinoma. J Oncol. 2022:50846312022. View Article : Google Scholar : PubMed/NCBI

134 

Yang CY, Wang J, Zhang JQ and Cai HM: Human circular RNA hsa_circRNA_101705 (circTXNDC11) regulates renal cancer progression by regulating MAPK/ERK pathway. Bioengineered. 12:4432–4441. 2021. View Article : Google Scholar : PubMed/NCBI

135 

Mighell AJ, Smith NR, Robinson PA and Markham AF: Vertebrate pseudogenes. FEBS Lett. 468:109–914. 2000. View Article : Google Scholar : PubMed/NCBI

136 

Ayubi E, Shahbazi F and Khazaei S: Decomposing difference in the kidney cancer burden measures between 1990 and 2019 based on the global burden of disease study. Sci Rep. 14:103902024. View Article : Google Scholar : PubMed/NCBI

137 

Choi J, Bang S, Suh J, Choi CI, Song W, Yuk HD, Lee CH, Kang M, Choo SH, Kim JK, et al: Survival pattern of metastatic renal cell carcinoma patients according to WHO/ISUP grade: A long-term multi-institutional study. Sci Rep. 14:47402024. View Article : Google Scholar : PubMed/NCBI

138 

Logan JE, Rampersaud EN, Sonn GA, Chamie K, Belldegrun AS, Pantuck AJ, Slamon DJ and Kabbinavar FF: Systemic therapy for metastatic renal cell carcinoma: A review and update. Rev Urol. 14:65–78. 2012.PubMed/NCBI

139 

Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI

140 

Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, et al: Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Zhang L, Lin H, Liang J, Liu X, Zhang C, Man Q, Li R, Zhao Y and Liu B: Programmed death-ligand 1 regulates ameloblastoma growth and recurrence. Int J Oral Sci. 17:292025. View Article : Google Scholar : PubMed/NCBI

142 

Zhong W and Sun T: Editorial: Epithelial-mesenchymal transition (EMT) as a therapeutic target in cancer, volume II. Front Oncol. 13:12188552023. View Article : Google Scholar : PubMed/NCBI

143 

Mao W, Wang K, Xu B, Zhang H, Sun S, Hu Q, Zhang L, Liu C, Chen S, Wu J, et al: ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma. Mol Cancer. 20:1422021. View Article : Google Scholar : PubMed/NCBI

144 

Silva-Santos RM, Costa-Pinheiro P, Luis A, Antunes L, Lobo F, Oliveira J, Henrique R and Jerónimo C: MicroRNA profile: A promising ancillary tool for accurate renal cell tumour diagnosis. Br J Cancer. 109:2646–2653. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Zhang YP, Cheng YB, Li S, Zhao N and Zhu ZH: An epithelial-mesenchymal transition-related long non-coding RNA signature to predict overall survival and immune microenvironment in kidney renal clear cell carcinoma. Bioengineered. 12:555–564. 2021. View Article : Google Scholar : PubMed/NCBI

146 

Jin J, Xie Y, Zhang JS, Wang JQ, Dai SJ, He WF, Li SY, Ashby CR Jr, Chen ZS and He Q: Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist Updat. 67:1009292023. View Article : Google Scholar : PubMed/NCBI

147 

Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I and Yarden Y: Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44:1370–1383. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Wesselhoeft RA, Kowalski PS, Parker-Hale FC, Huang Y, Bisaria N and Anderson DG: RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell. 74:508–520.e4. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Li H, Peng K, Yang K, Ma W, Qi S, Yu X, He J, Lin X and Yu G: Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics. 12:6422–6436. 2022. View Article : Google Scholar : PubMed/NCBI

151 

Liu Y, Wu W, Cai C, Zhang H, Shen H and Han Y: Patient-derived xenograft models in cancer therapy: Technologies and applications. Signal Transduct Target Ther. 8:1602023. View Article : Google Scholar : PubMed/NCBI

152 

Zhu J, Ding Y and Xu Q: Exosomal noncoding RNAs in renal cell carcinoma: Mechanisms, roles, and therapeutic potential. Crit Rev Oncol Hematol. 213:1048292025. View Article : Google Scholar : PubMed/NCBI

153 

Yu X, Du Z, Zhu P and Liao B: Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer. Pharmacol Rep. 76:273–286. 2024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Z, Zhou H, Shen J, Qi Y, Gong X and Zhang C: Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review). Mol Med Rep 33: 51, 2026.
APA
Liu, Z., Zhou, H., Shen, J., Qi, Y., Gong, X., & Zhang, C. (2026). Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review). Molecular Medicine Reports, 33, 51. https://doi.org/10.3892/mmr.2025.13761
MLA
Liu, Z., Zhou, H., Shen, J., Qi, Y., Gong, X., Zhang, C."Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review)". Molecular Medicine Reports 33.1 (2026): 51.
Chicago
Liu, Z., Zhou, H., Shen, J., Qi, Y., Gong, X., Zhang, C."Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review)". Molecular Medicine Reports 33, no. 1 (2026): 51. https://doi.org/10.3892/mmr.2025.13761
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Z, Zhou H, Shen J, Qi Y, Gong X and Zhang C: Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review). Mol Med Rep 33: 51, 2026.
APA
Liu, Z., Zhou, H., Shen, J., Qi, Y., Gong, X., & Zhang, C. (2026). Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review). Molecular Medicine Reports, 33, 51. https://doi.org/10.3892/mmr.2025.13761
MLA
Liu, Z., Zhou, H., Shen, J., Qi, Y., Gong, X., Zhang, C."Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review)". Molecular Medicine Reports 33.1 (2026): 51.
Chicago
Liu, Z., Zhou, H., Shen, J., Qi, Y., Gong, X., Zhang, C."Non‑coding RNAs in epithelial‑mesenchymal transition of renal cell carcinoma (Review)". Molecular Medicine Reports 33, no. 1 (2026): 51. https://doi.org/10.3892/mmr.2025.13761
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team