|
1
|
Guan Q: A comprehensive review and update
on the pathogenesis of inflammatory bowel disease. J Immunol Res.
2019:72472382019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Singh N and Bernstein CN: Environmental
risk factors for inflammatory bowel disease. United European
Gastroenterol J. 10:1047–1053. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bruner LP, White AM and Proksell S:
Inflammatory bowel disease. Prim Care. 50:411–427. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H
and Vallance BA: Pathobionts in inflammatory bowel disease:
Origins, underlying mechanisms, and implications for clinical care.
Gastroenterology. 166:44–58. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sun Y, Zhang Z, Zheng CQ and Sang LX:
Mucosal lesions of the upper gastrointestinal tract in patients
with ulcerative colitis: A review. World J Gastroenterol.
27:2963–2978. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Voelker R: What is ulcerative colitis?
JAMA. 331:7162024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dolinger M, Torres J and Vermeire S:
Crohn's disease. Lancet. 403:1177–1191. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cockburn E, Kamal S, Chan A, Rao V, Liu T,
Huang JY and Segal JP: Crohn's disease: An update. Clin Med (Lond).
23:549–557. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lewis JD, Parlett LE, Funk MLJ, Brensinger
C, Pate V, Wu Q, Dawwas GK, Weiss A, Constant BD, et al: Incidence,
Prevalence, and Racial and Ethnic Distribution of Inflammatory
Bowel Disease in the United States. Gastroenterology.
165:1197–1205. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Saez A, Herrero-Fernandez B, Gomez-Bris R,
Sánchez-Martinez H and Gonzalez-Granado JM: Pathophysiology of
inflammatory bowel disease: Innate immune system. Int J Mol Sci.
24:15262023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yue N, Hu P, Tian C, Kong C, Zhao H, Zhang
Y, Yao J, Wei Y, Li D and Wang L: Dissecting innate and adaptive
immunity in inflammatory bowel disease: Immune
compartmentalization, microbiota crosstalk, and emerging therapies.
J Inflamm Res. 17:9987–10014. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hisamatsu T, Miyoshi J, Oguri N, Morikubo
H, Saito D, Hayashi A, Omori T and Matsuura M:
Inflammation-associated carcinogenesis in inflammatory bowel
disease: Clinical features and molecular mechanisms. Cells.
14:5672025. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fathima A and Jamma T: UDCA ameliorates
inflammation driven EMT by inducing TGR5 dependent SOCS1 expression
in mouse macrophages. Sci Rep. 14:242852024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Endo-Umeda K, Kim E, Thomas DG, Liu W, Dou
H, Yalcinkaya M, Abramowicz S, Xiao T, Antonson P, Gustafsson JÅ,
et al: Myeloid LXR (Liver X Receptor) Deficiency induces
inflammatory gene expression in foamy macrophages and accelerates
atherosclerosis. Arterioscler Thromb Vasc Biol. 42:719–731. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shah SC and Itzkowitz SH: Colorectal
cancer in inflammatory bowel disease: Mechanisms and management.
Gastroenterology. 162:715–730.e3. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhou RW, Harpaz N, Itzkowitz SH and
Parsons RE: Molecular mechanisms in colitis-associated colorectal
cancer. Oncogenesis. 12:482023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Griffett K, Hayes M, Bedia-Diaz G,
Appourchaux K, Sanders R, Boeckman MP, Koelblen T, Zhang J,
Schulman IG, Elgendy B and Burris TP: Antihyperlipidemic activity
of gut-restricted LXR inverse agonists. ACS Chem Biol.
17:1143–1154. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tavazoie MF, Pollack I, Tanqueco R,
Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-Agullo C,
Derbyshire ML, Posada J, et al: LXR/ApoE activation restricts
innate immune suppression in cancer. Cell. 172:825–840. e182018.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nishimaki-Mogami T, Tamehiro N, Sato Y,
Okuhira K, Sai K, Kagechika H, Shudo K, Abe-Dohmae S, Yokoyama S,
Ohno Y, et al: The RXR agonists PA024 and HX630 have different
abilities to activate LXR/RXR and to induce ABCA1 expression in
macrophage cell lines. Biochem Pharmacol. 76:1006–1013. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Brahma M, Ghosal S, Maruthi M and Kalangi
SK: Endocytosis of LXRs: Signaling in liver and disease. Prog Mol
Biol Transl Sci. 194:347–375. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mukwaya A, Lennikov A, Xeroudaki M,
Mirabelli P, Lachota M, Jensen L, Peebo B and Lagali N:
Time-dependent LXR/RXR pathway modulation characterizes capillary
remodeling in inflammatory corneal neovascularization.
Angiogenesis. 21:395–413. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hiebl V, Ladurner A, Latkolik S and Dirsch
VM: Natural products as modulators of the nuclear receptors and
metabolic sensors LXR, FXR and RXR. Biotechnol Adv. 36:1657–1698.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gu Y, Bi X, Liu X, Qian Q, Wen Y, Hua S,
Fu Q, Zheng Y and Sun S: Roles of ABCA1 in chronic obstructive
pulmonary disease. COPD. 22:24937012025. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Srivastava RAK, Cefalu AB, Srivastava NS
and Averna M: NPC1L1 and ABCG5/8 induction explain synergistic
fecal cholesterol excretion in ob/ob mice co-treated with PPAR-α
and LXR agonists. Mol Cell Biochem. 473:247–262. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Matsuo M: ABCA1 and ABCG1 as potential
therapeutic targets for the prevention of atherosclerosis. J
Pharmacol Sci. 148:197–203. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang B and Tontonoz P: Liver X receptors
in lipid signalling and membrane homeostasis. Nat Rev Endocrinol.
14:452–463. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Aljabban J, Rohr M, Borkowski VJ, Nemer M,
Cohen E, Hashi N, Aljabban H, Boateng E, Syed S, Mohammed M, et al:
Probing predilection to Crohn's disease and Crohn's disease flares:
A crowd-sourced bioinformatics approach. J Pathol Inform.
13:1000942022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Saito H, Tachiura W, Nishimura M, Shimizu
M, Sato R and Yamauchi Y: Hydroxylation site-specific and
production-dependent effects of endogenous oxysterols on
cholesterol homeostasis: Implications for SREBP-2 and LXR. J Biol
Chem. 299:1027332023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
de Freitas FA, Levy D, Reichert CO,
Cunha-Neto E, Kalil J and Bydlowski SP: Effects of oxysterols on
immune cells and related diseases. Cells. 11:12512022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Das S, Parigi SM, Luo X, Fransson J, Kern
BC, Okhovat A, Diaz OE, Sorini C, Czarnewski P, Webb AT, et al:
Liver X receptor unlinks intestinal regeneration and tumorigenesis.
Nature. 637:1198–1206. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yu S, Li S, Henke A, Muse ED, Cheng B,
Welzel G, Chatterjee AK, Wang D, Roland J, Glass CK and Tremblay M:
Dissociated sterol-based liver X receptor agonists as therapeutics
for chronic inflammatory diseases. FASEB J. 30:2570–2579. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
George M, Lang M, Gali CC, Babalola JA,
Tam-Amersdorfer C, Stracke A, Strobl H, Zimmermann R, Panzenboeck U
and Wadsack C: Liver X receptor activation attenuates
oxysterol-induced inflammatory responses in fetoplacental
endothelial cells. Cells. 12:11862023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yan C, Zheng L, Jiang S, Yang H, Guo J,
Jiang LY, Li T, Zhang H, Bai Y, Lou Y, et al: Exhaustion-associated
cholesterol deficiency dampens the cytotoxic arm of antitumor
immunity. Cancer Cell. 41:1276–1293.e11. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lin CY and Gustafsson JÅ: Targeting liver
X receptors in cancer therapeutics. Nat Rev Cancer. 15:216–224.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
de la Aleja AG, Herrero C,
Torres-Torresano M, Schiaffino MT, Del Castillo A, Alonso B, Vega
MA, Puig-Kröger A, Castrillo A and Corbí ÁL: Inhibition of LXR
controls the polarization of human inflammatory macrophages through
upregulation of MAFB. Cell Mol Life Sci. 80:962023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Snodgrass RG, Benatzy Y, Schmid T,
Namgaladze D, Mainka M, Schebb NH, Lütjohann D and Brüne B:
Efferocytosis potentiates the expression of arachidonate
15-lipoxygenase (ALOX15) in alternatively activated human
macrophages through LXR activation. Cell Death Differ.
28:1301–1316. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sharma B, Gupta V, Dahiya D, Kumar H,
Vaiphei K and Agnihotri N: Clinical relevance of cholesterol
homeostasis genes in colorectal cancer. Biochim Biophys Acta Mol
Cell Biol Lipids. 1864:1314–1327. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang Q, Ren M, Feng F, Chen K and Ju X:
Treatment of colon cancer with liver X receptor agonists induces
immunogenic cell death. Mol Carcinog. 57:903–910. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Dianat-Moghadam H, Abbasspour-Ravasjani S,
Hamishehkar H, Rahbarghazi R and Nouri M: LXR inhibitor
SR9243-loaded immunoliposomes modulate lipid metabolism and
stemness in colorectal cancer cells. Med Oncol. 40:1562023.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bhunia AK and Al-Sadi R: Editorial:
Intestinal epithelial barrier disruption by enteric pathogens.
Front Cell Infect Microbiol. 13:11347532023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu Y, Yu X, Zhao J, Zhang H, Zhai Q and
Chen W: The role of MUC2 mucin in intestinal homeostasis and the
impact of dietary components on MUC2 expression. Int J Biol
Macromol. 164:884–891. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yao D, Dai W, Dong M, Dai C and Wu S: MUC2
and related bacterial factors: Therapeutic targets for ulcerative
colitis. EBioMedicine. 74:1037512021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang H, Wang X, Zhao L, Zhang K, Cui J
and Xu G: Biochanin a ameliorates DSS-induced ulcerative colitis by
improving colonic barrier function and protects against the
development of spontaneous colitis in the Muc2 deficient mice. Chem
Biol Interact. 395:1110142024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang A, Yang X, Lin J, Wang Y, Yang J,
Zhang Y, Tian Y, Dong H, Zhang Z and Song R: Si-Ni-San alleviates
intestinal and liver damage in ulcerative colitis mice by
regulating cholesterol metabolism. J Ethnopharmacol.
336:1187152025. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Klepsch V, Moschen AR, Tilg H, Baier G and
Hermann-Kleiter N: Nuclear Receptors Regulate Intestinal
Inflammation in the Context of IBD. Front Immunol. 10:10702019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Song X, Wu W, Dai Y, Warner M, Nalvarte I,
Antonson P, Varshney M and Gustafsson JÅ: Loss of ERβ in aging
LXRαβ knockout mice leads to colitis. Int J Mol Sci. 24:124612023.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jakobsson T, Vedin LL, Hassan T, Venteclef
N, Greco D, D'Amato M, Treuter E, Gustafsson JÅ and Steffensen KR:
The oxysterol receptor LXRβ protects against DSS- and TNBS-induced
colitis in mice. Mucosal Immunol. 7:1416–1428. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Vassiliou E and Farias-Pereira R: Impact
of lipid metabolism on macrophage polarization: Implications for
inflammation and tumor immunity. Int J Mol Sci. 24:120322023.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yan JB, Luo MM, Chen ZY and He BH: The
function and role of the Th17/Treg cell balance in inflammatory
bowel disease. J Immunol Res. 2020:88135582020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Astier AL and Kofler DM: Editorial:
Dysregulation of Th17 and Treg cells in autoimmune diseases. Front
Immunol. 14:11518362023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Knochelmann HM, Dwyer CJ, Bailey SR, Amaya
SM, Elston DM, Mazza-McCrann JM and Paulos CM: When worlds collide:
Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol.
15:458–469. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
King RJ, Singh PK and Mehla K: The
cholesterol pathway: Impact on immunity and cancer. Trends Immunol.
43:78–92. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Korach-André M and Gustafsson JÅ: Liver X
receptors as regulators of metabolism. Biomol Concepts. 6:177–190.
2015. View Article : Google Scholar
|
|
54
|
Xu H, Xin Y, Wang J, Liu Z, Cao Y, Li W,
Zhou Y, Wang Y and Liu P: The TICE pathway: Mechanisms and
potential clinical applications. Curr Atheroscler Rep. 25:653–662.
2023. View Article : Google Scholar
|
|
55
|
Modica S, Gofflot F, Murzilli S, D'Orazio
A, Salvatore L, Pellegrini F, Nicolucci A, Tognoni G, Copetti M,
Valanzano R, et al: The intestinal nuclear receptor signature with
epithelial localization patterns and expression modulation in
tumors. Gastroenterology. 138:636–648. 648.e1–12. 2010. View Article : Google Scholar
|
|
56
|
Willemsen S, Yengej FAY, Puschhof J,
Rookmaaker MB, Verhaar MC, van Es J, Beumer J and Clevers H: A
comprehensive transcriptome characterization of individual nuclear
receptor pathways in the human small intestine. Proc Natl Acad Sci
USA. 121:e24111891212024. View Article : Google Scholar
|
|
57
|
Kikuchi T, Orihara K, Oikawa F, Han SI,
Kuba M, Okuda K, Satoh A, Osaki Y, Takeuchi Y, Aita Y, et al:
Intestinal CREBH overexpression prevents high-cholesterol
diet-induced hypercholesterolemia by reducing Npc1l1 expression.
Mol Metab. 5:1092–1102. 2016. View Article : Google Scholar
|
|
58
|
Dianat-Moghadam H, Khalili M, Keshavarz M,
Azizi M, Hamishehkar H, Rahbarghazi R and Nouri M: Modulation of
LXR signaling altered the dynamic activity of human colon
adenocarcinoma cancer stem cells in vitro. Cancer Cell Int.
21:1002021. View Article : Google Scholar
|
|
59
|
Lazennec G and Richmond A: Chemokines and
chemokine receptors: New insights into cancer-related inflammation.
Trends Mol Med. 16:133–144. 2010. View Article : Google Scholar
|
|
60
|
Kobayashi T, Siegmund B, Le Berre C, Wei
SC, Ferrante M, Shen B, Bernstein CN, Danese S, Peyrin-Biroulet L
and Hibi T: Ulcerative colitis. Nat Rev Dis Primers. 6:742020.
View Article : Google Scholar
|
|
61
|
Saez A, Gomez-Bris R, Herrero-Fernandez B,
Mingorance C, Rius C and Gonzalez-Granado JM: Innate lymphoid cells
in intestinal homeostasis and inflammatory bowel disease. Int J Mol
Sci. 22:76182021. View Article : Google Scholar
|
|
62
|
dos Santos Ramos A, Viana GCS, de Macedo
Brigido M and Almeida JF: Neutrophil extracellular traps in
inflammatory bowel diseases: Implications in pathogenesis and
therapeutic targets. Pharmacol Res. 171:1057792021. View Article : Google Scholar
|
|
63
|
Kiss M, Czimmerer Z and Nagy L: The role
of lipid-activated nuclear receptors in shaping macrophage and
dendritic cell function: From physiology to pathology. J Allergy
Clin Immunol. 132:264–286. 2013. View Article : Google Scholar
|
|
64
|
Parigi SM, Das S, Frede A, Cardoso RF,
Tripathi KP, Doñas C, Hu YOO, Antonson P, Engstrand L, Gustafsson
JÅ and Villablanca EJ: Liver X receptor regulates Th17 and RORγt+
Treg cells by distinct mechanisms. Mucosal Immunol. 14:411–419.
2021. View Article : Google Scholar
|
|
65
|
Qin T, Yang J, Huang D, Zhang Z, Huang Y,
Chen H and Xu G: DOCK4 stimulates MUC2 production through its
effect on goblet cell differentiation. J Cell Physiol.
236:6507–6519. 2021. View Article : Google Scholar
|
|
66
|
Herold M, Breuer J, Hucke S, Knolle P,
Schwab N, Wiendl H and Klotz L: Liver X receptor activation
promotes differentiation of regulatory T cells. PLoS One.
12:e01849852017. View Article : Google Scholar
|
|
67
|
Li H, Fan C, Lu H, Feng C, He P, Yang X,
Xiang C, Zuo J and Tang W: Protective role of berberine on
ulcerative colitis through modulating enteric glial
cells-intestinal epithelial cells-immune cells interactions. Acta
Pharm Sin B. 10:447–461. 2020. View Article : Google Scholar
|
|
68
|
Lee JW, Wang P, Kattah MG, Youssef S,
Steinman L, DeFea K and Straus DS: Differential regulation of
chemokines by IL-17 in colonic epithelial cells. J Immunol.
181:6536–6545. 2008. View Article : Google Scholar
|
|
69
|
Jakobsson T, Treuter E, Gustafsson JÅ and
Steffensen KR: Liver X receptor biology and pharmacology: new
pathways, challenges and opportunities. Trends Pharmacol Sci.
33:394–404. 2012. View Article : Google Scholar
|
|
70
|
Delfini M, Stakenborg N, Viola MF and
Boeckxstaens G: Macrophages in the gut: Masters in multitasking.
Immunity. 55:1530–1548. 2022. View Article : Google Scholar
|
|
71
|
Xiong T, Zheng X, Zhang K, Wu H, Dong Y,
Zhou F, Cheng B, Li L, Xu W, Su J, et al: Ganluyin ameliorates
DSS-induced ulcerative colitis by inhibiting the enteric-origin
LPS/TLR4/NF-κB pathway. J Ethnopharmacol. 289:1150012022.
View Article : Google Scholar
|
|
72
|
Miranda-Bautista J, Rodríguez-Feo JA,
Puerto M, López-Cauce B, Lara JM, González-Novo R, Martín-Hernández
D, Ferreiro-Iglesias R, Bañares R and Menchén L: Liver X receptor
exerts anti-inflammatory effects in colonic epithelial cells via
ABCA1 and its expression is decreased in human and experimental
inflammatory bowel disease. Inflamm Bowel Dis. 27:1661–1673. 2021.
View Article : Google Scholar
|
|
73
|
Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y and
Xie J: Kaempferol alleviates murine experimental colitis by
restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB axis.
Front Immunol. 12:6798972021. View Article : Google Scholar
|
|
74
|
Li B, Jiang XF, Dong YJ, Zhang YP, He XL,
Zhou CL, Ding YY, Wang N, Wang YB, Cheng WQ, et al: The effects of
Atractylodes macrocephala extract BZEP self-microemulsion based on
gut-liver axis HDL/LPS signaling pathway to ameliorate metabolic
dysfunction-associated fatty liver disease in rats. Biomed
Pharmacother. 175:1165192024. View Article : Google Scholar
|
|
75
|
Pang J, Xu H, Wang X, Chen X, Li Q, Liu Q,
You Y, Zhang H, Xu Z, Zhao Y, et al: Resveratrol enhances
trans-intestinal cholesterol excretion through selective activation
of intestinal liver X receptor alpha. Biochem Pharmacol.
186:1144812021. View Article : Google Scholar
|
|
76
|
Ito A, Hong C, Rong X, Zhu X, Tarling EJ,
Hedde PN, Gratton E, Parks J and Tontonoz P: LXRs link metabolism
to inflammation through Abca1-dependent regulation of membrane
composition and TLR signaling. Elife. 4:e080092015. View Article : Google Scholar
|
|
77
|
Režen T, Rozman D, Kovács T, Kovács P,
Sipos A, Bai P and Mikó E: The role of bile acids in
carcinogenesis. Cell Mol Life Sci. 79:2432022. View Article : Google Scholar
|
|
78
|
Breevoort SR, Angdisen J and Schulman IG:
Macrophage-independent regulation of reverse cholesterol transport
by liver X receptors. Arterioscler Thromb Vasc Biol. 34:1650–1660.
2014. View Article : Google Scholar
|
|
79
|
Lifsey HC, Kaur R, Thompson BH, Bennett L,
Temel RE and Graf GA: Stigmasterol stimulates transintestinal
cholesterol excretion independent of liver X receptor activation in
the small intestine. J Nutr Biochem. 76:1082632020. View Article : Google Scholar
|
|
80
|
Liang L, Xie Q, Sun C, Wu Y, Zhang W and
Li W: Phospholipase A2 group IIA correlates with circulating
high-density lipoprotein cholesterol and modulates cholesterol
efflux possibly through regulation of PPAR-γ/LXR-α/ABCA1 in
macrophages. J Transl Med. 19:4842021. View Article : Google Scholar
|
|
81
|
Lo Sasso G, Bovenga F, Murzilli S,
Salvatore L, Di Tullio G, Martelli N, D'Orazio A, Rainaldi S, Vacca
M, Mangia A, et al: Liver X receptors inhibit proliferation of
human colorectal cancer cells and growth of intestinal tumors in
mice. Gastroenterology. 144:1497–1507. 1507e1–13. 2013. View Article : Google Scholar
|
|
82
|
Zhu X, Lee JY, Timmins JM, Brown JM,
Boudyguina E, Mulya A, Gebre AK, Willingham MC, Hiltbold EM, Mishra
N, et al: Increased cellular free cholesterol in
macrophage-specific Abca1 knock-out mice enhances pro-inflammatory
response of macrophages. J Biol Chem. 283:22930–22941. 2008.
View Article : Google Scholar
|
|
83
|
Pentinmikko N, Iqbal S, Mana M, Andersson
S, Cognetta AB III, Suciu RM, Roper J, Luopajärvi K, Markelin E,
Gopalakrishnan S, et al: Notum produced by Paneth cells attenuates
regeneration of aged intestinal epithelium. Nature. 571:398–402.
2019. View Article : Google Scholar
|
|
84
|
Liebergall SR, Angdisen J, Chan SH, Chang
Y, Osborne TF, Koeppel AF, Turner SD and Schulman IG: Inflammation
triggers liver X receptor dependent lipogenesis. Mol Cell Biol.
40:e00364–19. 2020. View Article : Google Scholar
|
|
85
|
Fantini MC, Favale A, Onali S and
Facciotti F: Tumor infiltrating regulatory T cells in sporadic and
colitis-associated colorectal cancer: The red little riding hood
and the wolf. Int J Mol Sci. 21:67442020. View Article : Google Scholar
|
|
86
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q,
Sun Y and Li M: Overcoming cancer risk in inflammatory bowel
disease: New insights into preventive strategies and pathogenesis
mechanisms including interactions of immune cells, cancer signaling
pathways, and gut microbiota. Front Immunol. 14:13389182024.
View Article : Google Scholar
|
|
87
|
Tao XY, Li QQ and Zeng Y: Clinical
application of liquid biopsy in colorectal cancer: Detection,
prediction, and treatment monitoring. Mol Cancer. 23:1452024.
View Article : Google Scholar
|
|
88
|
Dougherty MW and Jobin C: Intestinal
bacteria and colorectal cancer: Etiology and treatment. Gut
Microbes. 15:21850282023. View Article : Google Scholar
|
|
89
|
Benson AB, Venook AP, Al-Hawary MM, Arain
MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Farkas L, et
al: Colon cancer, version 2.2021, NCCN clinical practice guidelines
in oncology. J Natl Compr Canc Netw. 19:329–359. 2021. View Article : Google Scholar
|
|
90
|
Miller KD, Nogueira L, Devasia T, Mariotto
AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment
and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436.
2022.
|
|
91
|
Carethers JM: Racial and ethnic
disparities in colorectal cancer incidence and mortality. Adv
Cancer Res. 151:197–229. 2021. View Article : Google Scholar
|
|
92
|
Rawla P, Sunkara T and Barsouk A:
Epidemiology of colorectal cancer: Incidence, mortality, survival,
and risk factors. Prz Gastroenterol. 14:89–103. 2019.
|
|
93
|
Li N, Lu B, Luo C, Cai J, Lu M, Zhang Y,
Chen H and Dai M: Incidence, mortality, survival, risk factor and
screening of colorectal cancer: A comparison among China, Europe,
and Northern America. Cancer Lett. 522:255–268. 2021. View Article : Google Scholar
|
|
94
|
Li J, Ma X, Chakravarti D, Shalapour S and
DePinho RA: Genetic and biological hallmarks of colorectal cancer.
Genes Dev. 35:787–820. 2021. View Article : Google Scholar
|
|
95
|
Wen J, Min X, Shen M, Hua Q, Han Y, Zhao
L, Liu L, Huang G, Liu J and Zhao X: ACLY facilitates colon cancer
cell metastasis by CTNNB1. J Exp Clin Cancer Res. 38:4012019.
View Article : Google Scholar
|
|
96
|
Huang TX, Huang HS, Dong SW, Chen JY,
Zhang B, Li HH, Zhang TT, Xie Q, Long QY, Yang Y, et al:
ATP6V0A1-dependent cholesterol absorption in colorectal cancer
cells triggers immunosuppressive signaling to inactivate memory
CD8+ T cells. Nat Commun. 15:56802024. View Article : Google Scholar
|
|
97
|
Taank Y and Agnihotri N: Exploring the
anticancer potential of ergosterol and ergosta-5,22,25-triene-3-ol
against colorectal cancer: Insights from experimental models and
molecular mechanisms. Biochem Pharmacol. 240:1170612025. View Article : Google Scholar
|
|
98
|
Huang B, Song BL and Xu C: Cholesterol
metabolism in cancer: Mechanisms and therapeutic opportunities. Nat
Metab. 2:132–141. 2020. View Article : Google Scholar
|
|
99
|
Matthews HK, Bertoli C and de Bruin RAM:
Cell cycle control in cancer. Nat Rev Mol Cell Biol. 23:74–88.
2022. View Article : Google Scholar
|
|
100
|
Ren YM, Zhuang ZY, Xie YH, Yang PJ, Xia
TX, Xie YL, Liu ZH, Kang ZR, Leng XX, Lu SY, et al: BCAA-producing
Clostridium symbiosum promotes colorectal tumorigenesis through the
modulation of host cholesterol metabolism. Cell Host Microbe.
32:1519–1535. e72024. View Article : Google Scholar
|
|
101
|
Warns J, Marwarha G, Freking N and Ghribi
O: 27-hydroxycholesterol decreases cell proliferation in colon
cancer cell lines. Biochimie. 153:171–180. 2018. View Article : Google Scholar
|
|
102
|
Zhang W, Jiang H, Zhang J, Zhang Y, Liu A,
Zhao Y, Zhu X, Lin Z and Yuan X: Liver X receptor activation
induces apoptosis of melanoma cell through caspase pathway. Cancer
Cell Int. 14:162014. View Article : Google Scholar
|
|
103
|
Dufour J, Viennois E, De Boussac H, Baron
S and Lobaccaro JM: Oxysterol receptors, AKT and prostate cancer.
Curr Opin Pharmacol. 12:724–728. 2012. View Article : Google Scholar
|
|
104
|
Pommier AJC, Alves G, Viennois E, Bernard
S, Communal Y, Sion B, Marceau G, Damon C, Mouzat K, Caira F, et
al: Liver X Receptor activation downregulates AKT survival
signaling in lipid rafts and induces apoptosis of prostate cancer
cells. Oncogene. 29:2712–2723. 2010. View Article : Google Scholar
|
|
105
|
Wan W, Hou Y, Wang K, Cheng Y, Pu X and Ye
X: The LXR-623-induced long non-coding RNA LINC01125 suppresses the
proliferation of breast cancer cells via PTEN/AKT/p53 signaling
pathway. Cell Death Dis. 10:2482019. View Article : Google Scholar
|
|
106
|
Ding X, Zhang W, Li S and Yang H: The role
of cholesterol metabolism in cancer. Am J Cancer Res. 9:219–227.
2019.
|
|
107
|
Piccinin E, Cariello M and Moschetta A:
Lipid metabolism in colon cancer: Role of liver X receptor (LXR)
and Stearoyl-CoA Desaturase 1 (SCD1). Mol Aspects Med.
78:1009332021. View Article : Google Scholar
|
|
108
|
Kashiwagi K, Sato-Yazawa H, Ishii J, Kohno
K, Tatsuta I, Miyazawa T, Takagi M, Chiba H and Yazawa T: LXRβ
activation inhibits the proliferation of small-cell lung cancer
cells by depleting cellular cholesterol. Anticancer Res.
42:2923–2930. 2022. View Article : Google Scholar
|
|
109
|
Derangère V, Chevriaux A, Courtaut F,
Bruchard M, Berger H, Chalmin F, Causse SZ, Limagne E, Végran F,
Ladoire S, et al: Liver X receptor β activation induces pyroptosis
of human and murine colon cancer cells. Cell Death Differ.
21:1914–1924. 2014. View Article : Google Scholar
|
|
110
|
Rébé C, Derangère V and Ghiringhelli F:
Induction of pyroptosis in colon cancer cells by LXRβ. Mol Cell
Oncol. 2:e9700942015. View Article : Google Scholar
|
|
111
|
No authors listed. LXR agonism depletes
MDSCs to promote antitumor immunity. Cancer Discov. 8:2632018.
View Article : Google Scholar
|
|
112
|
Wang L, Lynch C, Pitroda SP, Piffkó A,
Yang K, Huser AK, Liang HL and Weichselbaum RR: Radiotherapy and
immunology. J Exp Med. 221:e202321012024. View Article : Google Scholar
|
|
113
|
Wang H, Zhou F, Qin W, Yang Y, Li X and
Liu R: Metabolic regulation of myeloid-derived suppressor cells in
tumor immune microenvironment: Targets and therapeutic strategies.
Theranostics. 15:2159–2184. 2025. View Article : Google Scholar
|
|
114
|
Zhao H, Teng D, Yang L, Xu X, Chen J,
Jiang T, Feng AY, Zhang Y, Frederick DT, Gu L, et al:
Myeloid-derived itaconate suppresses cytotoxic CD8+ T cells and
promotes tumour growth. Nat Metab. 4:1660–1673. 2022. View Article : Google Scholar
|
|
115
|
Killock D: Immunotherapy: Targeting MDSCs
with LXR agonists. Nat Rev Clin Oncol. 15:200–201. 2018. View Article : Google Scholar
|
|
116
|
Liang H and Shen X: LXR activation
radiosensitizes non-small cell lung cancer by restricting
myeloid-derived suppressor cells. Biochem Biophys Res Commun.
528:330–335. 2020. View Article : Google Scholar
|
|
117
|
Hinshaw DC and Shevde LA: The tumor
microenvironment innately modulates cancer progression. Cancer Res.
79:4557–4566. 2019. View Article : Google Scholar
|
|
118
|
Ruan H, Zhang J, Wang Y, Huang Y, Wu J, He
C, Ke T, Luo J and Yang M: 27-Hydroxycholesterol/liver X
receptor/apolipoprotein E mediates zearalenone-induced intestinal
immunosuppression: A key target potentially linking zearalenone and
cancer. J Pharm Anal. 14:371–388. 2024. View Article : Google Scholar
|
|
119
|
Qiu W, Su W, Xu J, Liang M, Ma X, Xue P,
Kang Y, Sun ZJ and Xu Z: Immunomodulatory-photodynamic
nanostimulators for invoking pyroptosis to augment tumor
immunotherapy. Adv Healthc Mater. 11:e22012332022. View Article : Google Scholar
|
|
120
|
Pontini L and Marinozzi M: Shedding light
on the roles of liver X receptors in cancer by using chemical
probes. Br J Pharmacol. 178:3261–3276. 2021. View Article : Google Scholar
|
|
121
|
Wang M, Ma LJ, Yang Y, Xiao Z and Wan JB:
n-3 Polyunsaturated fatty acids for the management of alcoholic
liver disease: A critical review. Crit Rev Food Sci Nutr. 59
(sup1):S116–S129. 2018. View Article : Google Scholar
|
|
122
|
Gabitova L, Restifo D, Gorin A, Manocha K,
Handorf E, Yang DH, Cai KQ, Klein-Szanto AJ, Cunningham D, Kratz
LE, et al: Endogenous sterol metabolites regulate growth of
EGFR/KRAS-dependent tumors via LXR. Cell Rep. 12:1927–1938. 2015.
View Article : Google Scholar
|
|
123
|
Chen T, Xu J and Fu W: EGFR/FOXO3A/LXR-α
axis promotes prostate cancer proliferation and metastasis and
dual-targeting LXR-α/EGFR shows synthetic lethality. Front Oncol.
10:16882020. View Article : Google Scholar
|
|
124
|
Wu Y, Yu DD, Hu Y, Cao HX, Yu SR, Liu SW
and Feng JF: LXR ligands sensitize EGFR-TKI-resistant human lung
cancer cells in vitro by inhibiting Akt activation. Biochem Biophys
Res Commun. 467:900–905. 2015. View Article : Google Scholar
|
|
125
|
Liang X, Cao Y, Xiang S and Xiang Z:
LXRα-mediated downregulation of EGFR suppress colorectal cancer
cell proliferation. J Cell Biochem. 120:17391–17404. 2019.
View Article : Google Scholar
|
|
126
|
Trebska-McGowan K, Chaib M, Alvarez MA,
Kansal R, Pingili AK, Shibata D, Makowski L and Glazer ES: TGF-β
alters the proportion of infiltrating immune cells in a pancreatic
ductal adenocarcinoma. J Gastrointest Surg. 26:113–121. 2022.
View Article : Google Scholar
|
|
127
|
Park BV, Freeman ZT, Ghasemzadeh A,
Chattergoon MA, Rutebemberwa A, Steigner J, Winter ME, Huynh TV,
Sebald SM, Lee SJ, et al: TGFβ1-mediated SMAD3 enhances PD-1
expression on antigen-specific T cells in cancer. Cancer Discov.
6:1366–1381. 2016. View Article : Google Scholar
|
|
128
|
Kovač U, Skubic C, Bohinc L, Rozman D and
Režen T: Oxysterols and gastrointestinal cancers around the clock.
Front Endocrinol (Lausanne). 10:4832019. View Article : Google Scholar
|
|
129
|
Chen R, Zuo Z, Li Q, Wang H, Li N, Zhang
H, Yu X and Liu Z: DHA substitution overcomes high-fat diet-induced
disturbance in the circadian rhythm of lipid metabolism. Food
Funct. 11:3621–3631. 2020. View Article : Google Scholar
|
|
130
|
Le Martelot G, Claudel T, Gatfield D,
Schaad O, Kornmann B, Lo Sasso G, Moschetta A and Schibler U:
REV-ERBalpha participates in circadian SREBP signaling and bile
acid homeostasis. PLoS Biol. 7:e10001812009. View Article : Google Scholar
|
|
131
|
Wang Q, Wang J, Wang J and Zhang H:
Molecular mechanism of liver X receptors in cancer therapeutics.
Life Sci. 273:1192872021. View Article : Google Scholar
|
|
132
|
Nguyen LH, Cho YE, Kim S, Kim Y, Kwak J,
Suh JS, Lee J, Son K, Kim M, Jang ES, et al: Discovery of
N-Aryl-N'-[4-(aryloxy)cyclohexyl]squaramide-based inhibitors of
LXR/SREBP-1c signaling pathway ameliorating steatotic liver
disease: Navigating the role of SIRT6 activation. J Med Chem.
67:17608–17628. 2024. View Article : Google Scholar
|
|
133
|
Ghosh S, Devereaux MW, Anderson AL, Gehrke
S, Reisz JA, D'Alessandro A, Orlicky DJ, Lovell M, El Kasmi KC,
Shearn CT and Sokol RJ: NF-κB regulation of LRH-1 and ABCG5/8
potentiates phytosterol role in the pathogenesis of parenteral
nutrition-associated cholestasis. Hepatology. 74:3284–3300. 2021.
View Article : Google Scholar
|
|
134
|
Kato Y, Tabata K, Yachie-Kinoshita A,
Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y, Matsuki M, Matsuoka Y,
et al: Lenvatinib plus anti-PD-1 antibody combination treatment
activates CD8+ T cells through reduction of tumor-associated
macrophage and activation of the interferon pathway. PLoS One.
14:e02125132019. View Article : Google Scholar
|