|
1
|
Jagannathan R, Patel SA, Ali MK and
Narayan KMV: Global updates on cardiovascular disease mortality
trends and attribution of traditional risk factors. Curr Diab Rep.
19:442019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kahleova H, Levin S and Barnard ND:
Vegetarian dietary patterns and cardiovascular disease. Prog
Cardiovasc Dis. 61:54–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A,
Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP,
Commodore-Mensah Y, et al: Heart disease and stroke Statistics-2022
update: A report from the American heart association. Circulation.
145:e153–e639. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tan Y-Q, Chen HW and Li J: Astragaloside
IV: An effective drug for the treatment of cardiovascular diseases.
Drug Des Devel Ther. 14:3731–3746. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Roth GA, Mensah GA, Johnson CO, Addolorato
G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ,
Benziger CP, et al: Global burden of cardiovascular diseases and
risk factors, 1990–2019. J Am Coll Cardiol. 76:2982–3021. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhu XY, Shi MQ, Jiang ZM, Xiao Li, Tian JW
and Su FF: Global, regional, and national burden of cardiovascular
diseases attributable to metabolic risks across all age groups from
1990 to 2021: An analysis of the 2021 global burden of disease
study data. BMC Public Health. 25:17042025. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yan Z, Zhao W, Zhao N, Liu Y, Yang B, Wang
L, Liu J, Wang D, Wang J, Jiao X, et al: PRMT1 alleviates
isoprenaline-induced myocardial hypertrophy by methylating SRSF1.
Acta Biochim Biophys Sin (Shanghai). 57:1338–1349. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chang CC, Cheng HC, Chou WC, Huang YT,
Hsieh PL, Chu PM and Lee SD: Sesamin suppresses
angiotensin-II-enhanced oxidative stress and hypertrophic markers
in H9c2 cells. Environ Toxicol. 38:2165–2172. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Feng Z, Pan L, Qiao C, Yang Y, Yang X and
Xie Y: Cardamonin intervenes in myocardial hypertrophy progression
by regulating Usp18. Phytomedicine. 134:1559702024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pang Y, Wu L, Xia J, Xu X, Gao C, Hou L
and Jiang L: Trim38 attenuates pressure overload-induced cardiac
hypertrophy by suppressing the TAK1/JNK/P38 signaling pathway. Int
J Mol Med. 55:982025. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li D, Guo Y, Cen X, Qiu HL, Chen S, Zeng
XF, Zeng Q, Xu M and Tang QZ: Lupeol protects against cardiac
hypertrophy via TLR4-PI3K-Akt-NF-κB pathways. Acta Pharmacol Sin.
43:1989–2002. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Oudit GY, Crackower MA, Eriksson U, Sarao
R, Kozieradzki I, Sasaki T, Irie-Sasaki J, Gidrewicz D, Rybin VO,
Wada T, et al: Phosphoinositide 3-kinase gamma-deficient mice are
protected from isoproterenol-induced heart failure. Circulation.
108:2147–2152. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhou WW, Dai C, Liu WZ, Zhang C, Zhang Y,
Yang GS, Guo QH, Li S, Yang HX and Li AY: Gentianella acuta
improves TAC-induced cardiac remodelling by regulating the Notch
and PI3K/Akt/FOXO1/3 pathways. Biomed Pharmacother. 154:1135642022.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ghafouri-Fard S, Khanbabapour Sasi A,
Hussen BM, Shoorei H, Siddiq A, Taheri M and Ayatollahi SA:
Interplay between PI3K/AKT pathway and heart disorders. Mol Biol
Rep. 49:9767–9781. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li J, Yan C, Wang Y, Chen C, Yu H, Liu D,
Huang K and Han Y: GCN5-mediated regulation of pathological cardiac
hypertrophy via activation of the TAK1-JNK/p38 signaling pathway.
Cell Death Dis. 13:4212022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang T, Li L, Mo X, Xie S, Liu S, Zhao N,
Zhang H, Chen S, Zeng X, Wang S, et al: Matairesinol blunts adverse
cardiac remodeling and heart failure induced by pressure overload
by regulating Prdx1 and PI3K/AKT/FOXO1 signaling. Phytomedicine.
135:1560542024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu Z, Liu H and Wang J: Astragaloside IV
protects against the pathological cardiac hypertrophy in mice.
Biomed Pharmacother. 97:1468–1478. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qian W, Yu D, Zhang J, Hu Q, Tang C, Liu
P, Ye P, Wang X, Lv Q, Chen M and Sheng L: Wogonin attenuates
isoprenaline-induced myocardial hypertrophy in mice by suppressing
the PI3K/Akt pathway. Front Pharmacol. 9:8962018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Solbach TF, König J, Fromm MF and Zolk O:
ATP-binding cassette transporters in the heart. Trends Cardiovasc
Med. 16:7–15. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Park S, Lim BBC, Perez-Terzic C, Mer G and
Terzic A: Interaction of asymmetric ABCC9-encoded nucleotide
binding domains determines KATP channel SUR2A catalytic activity. J
Proteome Res. 7:1721–1728. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Aubert G, Barefield DY, Demonbreun AR,
Ramratnam M, Fallon KS, Warner JL, Rossi AE, Hadhazy M, Makielski
JC and McNally EM: Deletion of sulfonylurea receptor 2 in the adult
myocardium enhances cardiac glucose uptake and is cardioprotective.
JACC Basic Transl Sci. 4:251–268. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Flagg TP, Kurata HT, Masia R, Caputa G,
Magnuson MA, Lefer DJ, Coetzee WA and Nichols CG: Differential
structure of atrial and ventricular KATP: Atrial KATP channels
require SUR1. Circ Res. 103:1458–1465. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Stoller D, Kakkar R, Smelley M, Chalupsky
K, Earley JU, Shi NQ, Makielski JC and McNally EM: Mice lacking
sulfonylurea receptor 2 (SUR2) ATP-sensitive potassium channels are
resistant to acute cardiovascular stress. J Mol Cell Cardiol.
43:445–454. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fahrenbach JP, Stoller D, Kim G, Aggarwal
N, Yerokun B, Earley JU, Hadhazy M, Shi NQ, Makielski JC and
McNally EM: Abcc9 is required for the transition to oxidative
metabolism in the newborn heart. FASEB J. 28:2804–2815. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mohammed Abdul KS, Jovanović S, Du Q,
Sukhodub A and Jovanović A: A link between ATP and SUR2A: A novel
mechanism explaining cardioprotection at high altitude. Int J
Cardiol. 189:73–76. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
McClenaghan C and Nichols CG: Kir6.1 and
SUR2B in Cantú syndrome. Am J Physiol Cell Physiol. 323:C920–C935.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
McClenaghan C, Huang Y, Yan Z, Harter TM,
Halabi CM, Chalk R, Kovacs A, van Haaften G, Remedi MS and Nichols
CG: Glibenclamide reverses cardiovascular abnormalities of Cantu
syndrome driven by KATP channel overactivity. J Clin Invest.
130:1116–1121. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
McClenaghan C, Huang Y, Matkovich SJ,
Kovacs A, Weinheimer CJ, Perez R, Broekelmann TJ, Harter TM, Lee
JM, Remedi MS and Nichols CG: The mechanism of High-output cardiac
hypertrophy arising from potassium channel Gain-of-Function in
Cantú syndrome. Function (Oxf). 1:zqaa0042020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang H, Hanson A, de Almeida TS, Emfinger
C, McClenaghan C, Harter T, Yan Z, Cooper PE, Brown GS, Arakel EC,
et al: Complex consequences of Cantu syndrome SUR2 variant R1154Q
in genetically modified mice. JCI Insight. 6:e1459342021.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fernlund E, Kissopoulou A, Green H,
Karlsson JE, Ellegård R, Årstrand HK, Jonasson J and Gunnarsson C:
Hereditary hypertrophic cardiomyopathy in children and young
Adults-the value of reevaluating and expanding gene panel analyses.
Genes (Basel). 11:14722020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
He K, Wang X, Li T, Li Y and Ma L:
Chlorogenic acid attenuates isoproterenol Hydrochloride-induced
cardiac hypertrophy in AC16 cells by inhibiting the Wnt/β-Catenin
signaling pathway. Molecules. 29:7602024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang X, He K, Ma L, Wu L, Yang Y and Li Y:
Puerarin attenuates isoproterenol-induced myocardial hypertrophy
via inhibition of the Wnt/β-catenin signaling pathway. Mol Med Rep.
26:3062022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dorn GW and Force T: Protein kinase
cascades in the regulation of cardiac hypertrophy. J Clin Invest.
115:527–537. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bisserier M, Berthouze-Duquesnes M,
Breckler M, Tortosa F, Fazal L, de Régibus A, Laurent AC, Varin A,
Lucas A, Branchereau M, et al: Carabin protects against cardiac
hypertrophy by blocking calcineurin, Ras, and
Ca2+/calmodulin-dependent protein kinase II signaling. Circulation.
131:390–400. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
de Lucia C, Eguchi A and Koch WJ: New
Insights in cardiac β-adrenergic signaling during heart failure and
aging. Front Pharmacol. 9:9042018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jeong MY, Lin YH, Wennersten SA,
Demos-Davies KM, Cavasin MA, Mahaffey JH, Monzani V, Saripalli C,
Mascagni P, Reece TB, et al: Histone deacetylase activity governs
diastolic dysfunction through a nongenomic mechanism. Sci Transl
Med. 10:eaao01442018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Singh K, Xiao L, Remondino A, Sawyer DB
and Colucci WS: Adrenergic regulation of cardiac myocyte apoptosis.
J Cell Physiol. 189:257–265. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lymperopoulos A, Rengo G and Koch WJ:
Adrenergic nervous system in heart failure: Pathophysiology and
therapy. Circ Res. 113:739–753. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Su H, Liu M, Wang S, Tian B, Hu H, Ma LK
and Pan J: Co-administration of isoprenaline and phenylephrine
induced a new HFrEF mouse model through activation of both SNS and
RAAS. Front Cardiovasc Med. 12:15315092025. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ferrari R, Ceconi C, Curello S and Visioli
O: The neuroendocrine and sympathetic nervous system in congestive
heart failure. Eur Heart J. 19 (Suppl F):F45–F51. 1998.PubMed/NCBI
|
|
42
|
Abi-Gerges A, Castro L, Leroy J, Domergue
V, Fischmeister R and Vandecasteele G: Selective changes in
cytosolic β-adrenergic cAMP signals and L-type Calcium Channel
regulation by Phosphodiesterases during cardiac hypertrophy. J Mol
Cell Cardiol. 150:109–121. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xu H, Wang Z, Chen M, Zhao W, Tao T, Ma L,
Ni Y and Li W: YTHDF2 alleviates cardiac hypertrophy via regulating
Myh7 mRNA decoy. Cell Biosci. 11:1322021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Murray DR, Prabhu SD and Chandrasekar B:
Chronic beta-adrenergic stimulation induces myocardial
proinflammatory cytokine expression. Circulation. 101:2338–2341.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu BY, Li L, Liu GL, Ding W, Chang WG, Xu
T, Ji XY, Zheng XX, Zhang J and Wang JX: Baicalein attenuates
cardiac hypertrophy in mice via suppressing oxidative stress and
activating autophagy in cardiomyocytes. Acta Pharmacol Sin.
42:701–714. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wei H, Guo X, Yan J, Tian X, Yang W, Cui
K, Wang L and Bingyan G: Neuregulin-4 alleviates isoproterenol
(ISO)-induced cardial remodeling by inhibiting inflammation and
apoptosis via AMPK/NF-κB pathway. Int Immunopharmacol.
143:1133012024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang J, Wang Z and Chen DL: Shikonin
ameliorates isoproterenol (ISO)-induced myocardial damage through
suppressing fibrosis, inflammation, apoptosis and ER stress. Biomed
Pharmacother. 93:1343–1357. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang D, Liu HQ, Liu FY, Guo Z, An P, Wang
MY, Yang Z, Fan D and Tang QZ: Mitochondria in pathological cardiac
hypertrophy research and therapy. Front Cardiovasc Med.
8:8229692022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Singh GK, McClenaghan C, Aggarwal M, Gu H,
Remedi MS, Grange DK and Nichols CG: A unique High-output cardiac
hypertrophy phenotype arising from low systemic vascular resistance
in cantu syndrome. J Am Heart Assoc. 11:e0273632022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Samad M, Malempati S and Restini CBA:
Natriuretic peptides as biomarkers: Narrative review and
considerations in cardiovascular and respiratory dysfunctions. Yale
J Biol Med. 96:137–149. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Edwards JG: Cardiac MHC gene expression:
More complexity and a step forward. Am J Physiol Heart Circ
Physiol. 294:H14–H15. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xu J, Sun Z, Li J, Li J, Li Y, Huang H,
Yuan F, Liu M and Fang Z: Qian Yang Yu Yin Granule prevents
hypertensive cardiac remodeling by inhibiting NLRP3 inflammasome
activation via Nrf2. J Ethnopharmacol. 337:1188202025. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nakamura M and Sadoshima J: Mechanisms of
physiological and pathological cardiac hypertrophy. Nat Rev
Cardiol. 15:387–407. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Münzel T, Camici GG, Maack C, Bonetti NR,
Fuster V and Kovacic JC: Impact of oxidative stress on the heart
and vasculature: Part 2 of a 3-Part series. J Am Coll Cardiol.
70:212–229. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fandy TE, Jiemjit A, Thakar M, Rhoden P,
Suarez L and Gore SD: Decitabine induces delayed reactive oxygen
species (ROS) accumulation in leukemia cells and induces the
expression of ROS generating enzymes. Clin Cancer Res.
20:1249–1258. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Dai DF, Johnson SC, Villarin JJ, Chin MT,
Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW II, Kang YJ, Prolla
TA, et al: Mitochondrial oxidative stress mediates angiotensin
II-induced cardiac hypertrophy and Galphaq overexpression-induced
heart failure. Circ Res. 108:837–846. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Qi B, Xu R, Jin Y, Wang Y, Cheng T, Liu C,
Ji Y, Guo L, Li J, Gao Y, et al: A critical role for IL-21/IL-21
receptor signaling in isoproterenol-induced cardiac remodeling. Sci
Rep. 15:189852025. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W,
Siddiqui S, Alam M, Abbas K, Moinuddin Hassan MI, Habib S and Islam
S: Apoptosis: A comprehensive overview of signaling pathways,
morphological changes, and physiological significance and
therapeutic implications. Cells. 13:18382024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cao H, Zhao L, Yuan Y, Liao C, Zeng W, Li
A, Huang Q, Zhao Y, Fan Y, Jiang L, et al: Lipoamide attenuates
hypertensive myocardial hypertrophy through PI3K/Akt-mediated Nrf2
signaling pathway. J Cardiovasc Transl Res. 17:910–922. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mei L, Chen Y, Chen P, Chen H, He S, Jin
C, Wang Y, Hu Z, Li W, Jin L, et al: Fibroblast growth factor 7
alleviates myocardial infarction by improving oxidative stress via
PI3Kα/AKT-mediated regulation of Nrf2 and HXK2. Redox Biol.
56:1024682022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Maruyama N, Ogata T, Kasahara T, Hamaoka
T, Higuchi Y, Tsuji Y, Tomita S, Sakamoto A, Nakanishi N and Matoba
S: Loss of Cavin-2 destabilizes phosphatase and tensin homologue
and enhances Akt signalling pathway in cardiomyocytes. Cardiovasc
Res. 120:1562–1576. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang Q, Luo Y, Zheng Q, Zhao H, Wei X and
Li X: Itaconate attenuates autoimmune hepatitis via PI3K/AKT/mTOR
pathway-mediated inhibition of dendritic cell maturation and
autophagy. Heliyon. 9:e175512023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Vainio L, Taponen S, Kinnunen SM,
Halmetoja E, Szabo Z, Alakoski T, Ulvila J, Junttila J, Lakkisto P,
Magga J and Kerkelä R: GSK3β serine 389 phosphorylation modulates
cardiomyocyte hypertrophy and ischemic injury. Int J Mol Sci.
22:135862021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Heineke J and Molkentin JD: Regulation of
cardiac hypertrophy by intracellular signalling pathways. Nat Rev
Mol Cell Biol. 7:589–600. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gu J, Qiu M, Lu Y, Ji Y, Qian Z and Sun W:
Piperlongumine attenuates angiotensin-II-induced cardiac
hypertrophy and fibrosis by inhibiting Akt-FoxO1 signalling.
Phytomedicine. 82:1534612021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ren J, Yang L, Zhu L, Xu X, Ceylan AF, Guo
W, Yang J and Zhang Y: Akt2 ablation prolongs life span and
improves myocardial contractile function with adaptive cardiac
remodeling: Role of Sirt1-mediated autophagy regulation. Aging
Cell. 16:976–987. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bencun M, Spreyer L, Boileau E, Eschenbach
J, Frey N, Dieterich C and Völkers M: A novel uORF regulates
folliculin to promote cell growth and lysosomal biogenesis during
cardiac stress. Sci Rep. 15:33192025. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Völkers M, Toko H, Doroudgar S, Din S,
Quijada P, Joyo AY, Ornelas L, Joyo E, Thuerauf DJ, Konstandin MH,
et al: Pathological hypertrophy amelioration by PRAS40-mediated
inhibition of mTORC1. Proc Natl Acad Sci USA. 110:12661–12666.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu Q, Chen Y, Auger-Messier M and
Molkentin JD: Interaction between NFκB and NFAT coordinates cardiac
hypertrophy and pathological remodeling. Circ Res. 110:1077–1086.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yu H, Lin L, Zhang Z, Zhang H and Hu H:
Targeting NF-κB pathway for the therapy of diseases: Mechanism and
clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Czabotar PE, Lessene G, Strasser A and
Adams JM: Control of apoptosis by the BCL-2 protein family:
Implications for physiology and therapy. Nat Rev Mol Cell Biol.
15:49–63. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Meng X, Cui J and He G: Bcl-2 is involved
in cardiac hypertrophy through PI3K-Akt pathway. Biomed Res Int.
2021:66155022021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Condorelli G, Drusco A, Stassi G,
Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N,
Chung C, et al: Akt induces enhanced myocardial contractility and
cell size in vivo in transgenic mice. Proc Natl Acad Sci USA.
99:12333–12338. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Schiekofer S, Shiojima I, Sato K, Galasso
G, Oshima Y and Walsh K: Microarray analysis of Akt1 activation in
transgenic mouse hearts reveals transcript expression profiles
associated with compensatory hypertrophy and failure. Physiol
Genomics. 27:156–170. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Matsui T, Li L, Wu JC, Cook SA, Nagoshi T,
Picard MH, Liao R and Rosenzweig A: Phenotypic spectrum caused by
transgenic overexpression of activated Akt in the heart. J Biol
Chem. 277:22896–22901. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang T, Xiu YH, Xue H, Li YN, Cao JL, Hou
WS, Liu J, Cui YH, Xu T, Wang Y and Jin CH: A mechanism of
Isoorientin-induced apoptosis and migration inhibition in gastric
cancer AGS cells. Pharmaceuticals (Basel). 15:15412022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Marchi S, Giorgi C, Suski JM, Agnoletto C,
Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti
F, et al: Mitochondria-Ros crosstalk in the control of cell death
and aging. J Signal Transduct. 2012:3296352012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Manning BD and Toker A: AKT/PKB Signaling:
Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nagoshi T, Matsui T, Aoyama T, Leri A,
Anversa P, Li L, Ogawa W, del Monte F, Gwathmey JK, Grazette L, et
al: PI3K rescues the detrimental effects of chronic Akt activation
in the heart during ischemia/reperfusion injury. J Clin Invest.
115:2128–2138. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Derossi D, Williams EJ, Green PJ, Dunican
DJ and Doherty P: Stimulation of mitogenesis by a cell-permeable PI
3-kinase binding peptide. Biochem Biophys Res Commun. 251:148–152.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bryan J, Muñoz A, Zhang X, Düfer M, Drews
G, Krippeit-Drews P and Aguilar-Bryan L: ABCC8 and ABCC9: ABC
transporters that regulate K+ channels. Pflugers Arch. 453:703–718.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Seino S: ATP-sensitive potassium channels:
A model of heteromultimeric potassium channel/receptor assemblies.
Annu Rev Physiol. 61:337–362. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Huang Y, McClenaghan C, Harter TM, Hinman
K, Halabi CM, Matkovich SJ, Zhang H, Brown GS, Mecham RP, England
SK, et al: Cardiovascular consequences of KATP overactivity in
Cantu syndrome. JCI Insight. 3:e1211532018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li K, Janve VS and Denton JS: Automated
patch clamp analysis of heterologously expressed Kir6.2/SUR1 and
Kir6.1/SUR2B KATP currents. Am J Physiol Cell Physiol. 329:C82–C92.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Winter A, Nepper P, Hermann M, Bayer F,
Riess S, Salem R, Hlavicka J, Prinzing A, Hecker F, Holubec T, et
al: Glibenclamide serves as a potent vasopressor to treat
vasoplegia after cardiopulmonary bypass and reperfusion in a
porcine model. Int J Mol Sci. 26:40402025. View Article : Google Scholar : PubMed/NCBI
|