You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Kovesdy CP: Epidemiology of chronic kidney disease: An update 2022. Kidney Int Suppl (2011). 12:7–11. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Flythe JE and Watnick S: Dialysis for chronic kidney failure: A review. JAMA. 332:1559–1573. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Wu X, Zhao M, Hu J, Lin C, Mei Z, Chen J, Zhou XJ, Nie S, Nie J, et al: Kidney function and cardiovascular disease: Evidence from observational studies and mendelian randomization analyses. Phenomics. 4:250–253. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jha V, Al-Ghamdi SMG, Li G, Wu MS, Stafylas P, Retat L, Card-Gowers J, Barone S, Cabrera C and Garcia Sanchez JJ: Global economic burden associated with chronic kidney disease: A pragmatic review of medical costs for the inside CKD research programme. Adv Ther. 40:4405–4420. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dan Hu Q, Wang HL, Liu J, He T, Tan RZ, Zhang Q, Su HW, Kantawong F, Lan HY and Wang L: Btg2 promotes focal segmental glomerulosclerosis via Smad3-dependent podocyte-mesenchymal transition. Adv Sci (Weinh). 10:e23043602023. View Article : Google Scholar : PubMed/NCBI | |
|
Panizo S, Martínez-Arias L, Alonso-Montes C, Cannata P, Martín-Carro B, Fernández-Martín JL, Naves-Díaz M, Carrillo-López N and Cannata-Andía JB: Fibrosis in chronic kidney disease: Pathogenesis and consequences. Int J Mol Sci. 22:4082021. View Article : Google Scholar : PubMed/NCBI | |
|
Ho HJ and Shirakawa H: Oxidative stress and mitochondrial dysfunction in chronic kidney disease. Cells. 12:882022. View Article : Google Scholar : PubMed/NCBI | |
|
Kushner P, Khunti K, Cebrián A and Deed G: Early identification and management of chronic kidney disease: A narrative review of the crucial role of primary care practitioners. Adv Ther. 41:3757–3770. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu HZ, Li CY, Liu LJ, Tong JB, Lan ZH, Tian SG, Li Q, Tong XL, Wu JF, Zhu ZG, et al: Efficacy and safety of qingfei huatan formula in the treatment of acute exacerbation of chronic obstructive pulmonary disease: A multi-centre, randomised, double-blind, placebo-controlled trial. J Integr Med. 22:561–569. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE and Pedraza-Chaverri J: Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules. 11:11442021. View Article : Google Scholar : PubMed/NCBI | |
|
Doke T and Susztak K: The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol. 32:841–853. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Li Z, Zhang S, Zhang T, Liu Y and Zhang L: Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 13:736–766. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hoogstraten CA, Hoenderop JG and de Baaij JHF: Mitochondrial dysfunction in kidney tubulopathies. Annu Rev Physiol. 86:379–403. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Che R, Yuan Y, Huang S and Zhang A: Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol. 306:F367–F378. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan M, Brooks C, Liu F, Sun L and Dong Z: Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83:568–581. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Palorini R, De Rasmo D, Gaviraghi M, Sala Danna L, Signorile A, Cirulli C, Chiaradonna F, Alberghina L and Papa S: Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration. Oncogene. 32:352–362. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mills EL, Kelly B and O'Neill LAJ: Mitochondria are the powerhouses of immunity. Nat Immunol. 18:488–498. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Miwa S, Kashyap S, Chini E and von Zglinicki T: Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 132:e1584472022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen K, Dai H, Yuan J, Chen J, Lin L, Zhang W, Wang L, Zhang J, Li K and He Y: Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 9:1052018. View Article : Google Scholar : PubMed/NCBI | |
|
Bhargava P and Schnellmann RG: Mitochondrial energetics in the kidney. Nat Rev Nephrol. 13:629–646. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Holmström KM and Finkel T: Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 15:411–421. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Q, Tang B and Zhang C: Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther. 7:1822022. View Article : Google Scholar : PubMed/NCBI | |
|
Podkowińska A and Formanowicz D: Chronic kidney disease as oxidative stress- and inflammatory-mediated cardiovascular disease. Antioxidants (Basel). 9:7522020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Hussain R, Mehmood K, Tang Z, Zhang H and Li Y: Mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy. Biomed Res Int. 2022:64595852022. View Article : Google Scholar : PubMed/NCBI | |
|
Filomeni G, De Zio D and Cecconi F: Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 22:377–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Quintana-Cabrera R and Scorrano L: Determinants and outcomes of mitochondrial dynamics. Mol Cell. 83:857–876. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kühlbrandt W: Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13:892015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zhao H and Li Y: Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct Target Ther. 8:3332023. View Article : Google Scholar : PubMed/NCBI | |
|
Dorn GW and Kitsis RN: The mitochondrial dynamism-mitophagy-cell death interactome: Multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res. 116:167–182. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dumesic PA, Wilensky SE, Bose S, Van Vranken JG, Gygi SP and Spiegelman BM: RBM43 controls PGC1α translation and a PGC1α-STING signaling axis. Cell Metab. 37:742–757 .e8. 2025. | |
|
Pernas L and Scorrano L: Mito-morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 78:505–531. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dorn GW: Evolving concepts of mitochondrial dynamics. Annu Rev Physiol. 81:1–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Garza-Lombó C, Pappa A, Panayiotidis MI and Franco R: Redox homeostasis, oxidative stress and mitophagy. Mitochondrion. 51:105–117. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW and Zhao G: The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 8:3042023. View Article : Google Scholar : PubMed/NCBI | |
|
Narendra D, Tanaka A, Suen DF and Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 183:795–803. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Han R, Liu Y, Li S, Li XJ and Yang W: PINK1-PRKN mediated mitophagy: Differences between in vitro and in vivo models. Autophagy. 19:1396–1405. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Harper JW, Ordureau A and Heo JM: Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol. 19:93–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI and Youle RJ: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 524:309–314. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR and Youle RJ: PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 8:e10002982010. View Article : Google Scholar : PubMed/NCBI | |
|
Wiedemann N and Pfanner N: Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 86:685–714. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rasool S, Veyron S, Soya N, Eldeeb MA, Lukacs GL, Fon EA and Trempe JF: Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex. Mol Cell. 82:44–59.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lysyk L, Brassard R, Touret N and Lemieux MJ: PARL protease: A glimpse at intramembrane proteolysis in the inner mitochondrial membrane. J Mol Biol. 432:5052–5062. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yamano K and Youle RJ: PINK1 is degraded through the N-end rule pathway. Autophagy. 9:1758–1769. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pickrell AM and Youle RJ: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron. 85:257–273. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang R, Zhu Y, Ren C, Yang S, Tian S, Chen H, Jin M and Zhou H: Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy. 17:496–511. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
McLelland GL, Goiran T, Yi W, Dorval G, Chen CX, Lauinger ND, Krahn AI, Valimehr S, Rakovic A, Rouiller I, et al: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife. 7:e328662018. View Article : Google Scholar : PubMed/NCBI | |
|
Gao XY, Yang T, Gu Y and Sun XH: Mitochondrial dysfunction in parkinson's disease: From mechanistic insights to therapy. Front Aging Neurosci. 14:8855002022. View Article : Google Scholar : PubMed/NCBI | |
|
Yamano K, Matsuda N and Tanaka K: The ubiquitin signal and autophagy: An orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17:300–316. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X and Hunter T: Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res. 23:886–897. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Malpartida AB, Williamson M, Narendra DP, Wade-Martins R and Ryan BJ: Mitochondrial dysfunction and mitophagy in Parkinson's disease: From mechanism to therapy. Trends Biochem Sci. 46:329–343. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuda N: Phospho-ubiquitin: Upending the PINK-parkin-ubiquitin cascade. J Biochem. 159:379–385. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Johansen T and Lamark T: Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J Mol Biol. 432:80–103. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Deretic V and Lazarou M: A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol. 221:e2022030832022. View Article : Google Scholar : PubMed/NCBI | |
|
Birgisdottir ÅB, Lamark T and Johansen T: The LIR motif-crucial for selective autophagy. J Cell Sci. 126:3237–3247. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Stolz A, Ernst A and Dikic I: Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 16:495–501. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sun D, Wu R, Zheng J, Li P and Yu L: Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 28:405–415. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ and Springer W: PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 12:119–131. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim S, Lamark T, Jauregui M, Law K, Lippincott-Schwartz J, et al: NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci. 126:939–952. 2013.PubMed/NCBI | |
|
Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, Motohashi H and Yamamoto M: Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci USA. 109:13561–13566. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, et al: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 12:213–223. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Martín P, Sou YS, Kageyama S, Koike M, Waguri S and Komatsu M: NBR1-mediated p62-liquid droplets enhance the Keap1-Nrf2 system. EMBO Rep. 21:e489022020. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu Y, Wang J, Li H, Yang B, Wang J, He Q and Weng Q: Emerging views of OPTN (optineurin) function in the autophagic process associated with disease. Autophagy. 18:73–85. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto G, Wada K, Okuno M, Kurosawa M and Nukina N: Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell. 44:279–289. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Heo JM, Ordureau A, Paulo JA, Rinehart J and Harper JW: The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell. 60:7–20. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yamano K and Kojima W: Molecular functions of autophagy adaptors upon ubiquitin-driven mitophagy. Biochim Biophys Acta Gen Subj. 1865:1299722021. View Article : Google Scholar : PubMed/NCBI | |
|
Vargas JNS, Wang C, Bunker E, Hao L, Maric D, Schiavo G, Randow F and Youle RJ: Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol Cell. 74:347–362.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein Á, Bloor S, Rutherford TJ, Freund SM, Komander D and Randow F: LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell. 48:329–342. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Turco E, Savova A, Gere F, Ferrari L, Romanov J, Schuschnig M and Martens S: Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Nat Commun. 12:52122021. View Article : Google Scholar : PubMed/NCBI | |
|
Ohnstad AE, Delgado JM, North BJ, Nasa I, Kettenbach AN, Schultz SW and Shoemaker CJ: Receptor-mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy. EMBO J. 39:e1049482020. View Article : Google Scholar : PubMed/NCBI | |
|
Uoselis L, Nguyen TN and Lazarou M: Mitochondrial degradation: Mitophagy and beyond. Mol Cell. 83:3404–3420. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Field JT and Gordon JW: BNIP3 and nix: Atypical regulators of cell fate. Biochim Biophys Acta Mol Cell Res. 1869:1193252022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Ray R, Dubik D, Shi L, Cizeau J, Bleackley RC, Saxena S, Gietz RD and Greenberg AH: The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med. 186:1975–1983. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Bruick RK: Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA. 97:9082–9087. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, et al: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27:433–446. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, Tan J, Tan Y, Han H, Tian R, et al: BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem. 291:21616–21629. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lee Y, Lee HY, Hanna RA and Gustafsson ÅB: Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol. 301:H1924–H1931. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Marinković M, Šprung M and Novak I: Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery. Autophagy. 17:1232–1243. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M and Wang J: Essential role for nix in autophagic maturation of erythroid cells. Nature. 454:232–235. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang G, Yang L, Long Q, Chen K, Tang H, Wu Y, Liu Z, Zhou Y, Qi J, Zheng L, et al: BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming. Autophagy. 13:1543–1555. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Esteban-Martínez L and Boya P: BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming. Autophagy. 14:915–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, et al: Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 17:719–730. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gao F, Chen D, Si J, Hu Q, Qin Z, Fang M and Wang G: The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet. 24:2528–2538. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Zheng J, Wan H, Sun Y, Fu S, Liu S, He B, Cai G, Cao Y, Huang H, et al: A mitochondrial SCF-FBXL4 ubiquitin E3 ligase complex degrades BNIP3 and NIX to restrain mitophagy and prevent mitochondrial disease. EMBO J. 42:e1130332023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A and Brady NR: Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem. 288:1099–1113. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rogov VV, Suzuki H, Marinković M, Lang V, Kato R, Kawasaki M, Buljubašić M, Šprung M, Rogova N, Wakatsuki S, et al: Phosphorylation of the mitochondrial autophagy receptor nix enhances its interaction with LC3 proteins. Sci Rep. 7:11312017. View Article : Google Scholar : PubMed/NCBI | |
|
Clague MJ and Urbé S: Diverse routes to mitophagy governed by ubiquitylation and mitochondrial import. Trends Cell Biol. 35:527–538. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W: The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): A promising biomarker and potential therapeutic target of human diseases. Genes Dis. 8:640–654. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, et al: Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 14:177–185. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen Q and Xia B: Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy. 12:2363–2373. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Zhu P, Wang J, Zhu H, Ren J and Chen Y: Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 25:1080–1093. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, et al: A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell. 54:362–377. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, et al: ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15:566–575. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tang C, Livingston MJ, Liu Z and Dong Z: Autophagy in kidney homeostasis and disease. Nat Rev Nephrol. 16:489–508. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wullschleger S, Loewith R and Hall MN: TOR signaling in growth and metabolism. Cell. 124:471–484. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Herzig S and Shaw RJ: AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 19:121–135. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Perico L, Remuzzi G and Benigni A: Sirtuins in kidney health and disease. Nat Rev Nephrol. 20:313–329. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Liu Y, Li J, Wang M, Chen X, Gan F, Wen L, Huang K and Liu D: Arsenic exposure-induced acute kidney injury by regulating SIRT1/PINK1/mitophagy axis in mice and in HK-2 cells. J Agric Food Chem. 71:15809–15820. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Yang Q, Zhang X, Qin R, Shan W, Zhang H and Chen X: Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci. 257:1181162020. View Article : Google Scholar : PubMed/NCBI | |
|
Jin L, Galonek H, Israelian K, Choy W, Morrison M, Xia Y, Wang X, Xu Y, Yang Y, Smith JJ, et al: Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Sci. 18:514–525. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Gao Y, Zhang Q, Wei S, Chen Z, Dai X, Zeng Z and Zhao KS: SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model. Oxid Med Cell Longev. 2016:72960922016. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Z, He M, Hu H, Zhang W, Zhang Y, Ge Y, Ma T, Wu J, Li L, Sun M, et al: Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation. Autophagy. 20:151–165. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, et al: SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 11:253–270. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cui X, Zhou Z, Tu H, Wu J, Zhou J, Yi Q, Liu O and Dai X: Mitophagy in fibrotic diseases: Molecular mechanisms and therapeutic applications. Front Physiol. 15:14302302024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu BC, Tang TT, Lv LL and Lan HY: Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 93:568–579. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ohashi R, Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Sugisaki Y and Yamanaka N: Peritubular capillary regression during the progression of experimental obstructive nephropathy. J Am Soc Nephrol. 13:1795–1805. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Lin Q, Shao X, Zhu X, Wu J, Wu B, Zhang M, Zhou W, Zhou Y, Jin H, et al: Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radic Biol Med. 152:632–649. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bhatia D, Chung KP, Nakahira K, Patino E, Rice MC, Torres LK, Muthukumar T, Choi AM, Akchurin OM and Choi ME: Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight. 4:e1328261328262019. View Article : Google Scholar : PubMed/NCBI | |
|
Chawla LS, Eggers PW, Star RA and Kimmel PL: Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 371:58–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Venkatachalam MA, Weinberg JM, Kriz W and Bidani AK: Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 26:1765–1776. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlović N, Križanac M, Kumrić M, Vukojević K and Božić J: Mitochondrial dysfunction: The silent catalyst of kidney disease progression. Cells. 14:7942025. View Article : Google Scholar : PubMed/NCBI | |
|
Bhat ZY, Cadnapaphornchai P, Ginsburg K, Sivagnanam M, Chopra S, Treadway CK, Lin HS, Yoo G, Sukari A and Doshi MD: Understanding the risk factors and long-term consequences of cisplatin-associated acute kidney injury: An observational cohort study. PLoS One. 10:e01422252015. View Article : Google Scholar : PubMed/NCBI | |
|
Mapuskar KA, Wen H, Holanda DG, Rastogi P, Steinbach E, Han R, Coleman MC, Attanasio M, Riley DP, Spitz DR, et al: Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biol. 20:98–106. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao C, Chen Z, Xu X, An X, Duan S, Huang Z, Zhang C, Wu L, Zhang B, Zhang A, et al: Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury. Exp Cell Res. 350:390–397. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ludwig-Portugall I, Bartok E, Dhana E, Evers BD, Primiano MJ, Hall JP, Franklin BS, Knolle PA, Hornung V, Hartmann G, et al: An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int. 90:525–539. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Lin Q, Shao X, Li S, Zhu X, Wu J, Mou S, Gu L, Wang Q, Zhang M, et al: HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome. Cell Death Dis. 14:2002023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y and Yang L: Regulation of pyroptosis and ferroptosis by mitophagy in chronic kidney disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 49:1769–1776. 2024.(In English, Chinese). PubMed/NCBI | |
|
Guo J, Yuan Z and Wang R: Zn2+ improves sepsis-induced acute kidney injury by upregulating SIRT7-mediated parkin acetylation. Am J Physiol Renal Physiol. 327:F184–F197. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao WT, Ma HK, Jiang MD, Xu TT, Xu J, et al: HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 36:1016712020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Zhang L, Zhang Y, Yu X, Sun X, Zhu T, Li X, Liang W, Han Y and Qin C: PINK1 deficiency ameliorates cisplatin-induced acute kidney injury in rats. Front Physiol. 10:12252019. View Article : Google Scholar : PubMed/NCBI | |
|
Li K, Xia X and Tong Y: Multiple roles of mitochondrial autophagy receptor FUNDC1 in mitochondrial events and kidney disease. Front Cell Dev Biol. 12:14533652024. View Article : Google Scholar : PubMed/NCBI | |
|
Bi Y, Liu S, Qin X, Abudureyimu M, Wang L, Zou R, Ajoolabady A, Zhang W, Peng H, Ren J and Zhang Y: FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner. J Adv Res. 55:45–60. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sies H and Cadenas E: Oxidative stress: Damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 311:617–631. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Sies H, Berndt C and Jones DP: Oxidative stress. Annu Rev Biochem. 86:715–748. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Forman HJ and Zhang H: Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 20:689–709. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Modlinger PS, Wilcox CS and Aslam S: Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin Nephrol. 24:354–365. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sies H and Jones DP: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 21:363–383. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sureshbabu A, Ryter SW and Choi ME: Oxidative stress and autophagy: Crucial modulators of kidney injury. Redox Biol. 4:208–214. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sedeek M, Nasrallah R, Touyz RM and Hébert RL: NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe. J Am Soc Nephrol. 24:1512–1518. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Leung JCK, Chan LYY, Tang SCW, Lam MF, Chow CW, Lim AI and Lai KN: Oxidative damages in tubular epithelial cells in IgA nephropathy: Role of crosstalk between angiotensin II and aldosterone. J Transl Med. 9:1692011. View Article : Google Scholar : PubMed/NCBI | |
|
Ursini F, Maiorino M and Forman HJ: Redox homeostasis: The golden mean of healthy living. Redox Biol. 8:205–215. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ruiz S, Pergola PE, Zager RA and Vaziri ND: Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 83:1029–1041. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto M, Kensler TW and Motohashi H: The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 98:1169–1203. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW and Talalay P: Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA. 101:2040–2045. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sykiotis GP and Bohmann D: Stress-activated Cap'n'collar transcription factors in aging and human disease. Sci Signal. 3:re32010. View Article : Google Scholar : PubMed/NCBI | |
|
Tretter V, Hochreiter B, Zach ML, Krenn K and Klein KU: Understanding cellular redox homeostasis: A challenge for precision medicine. Int J Mol Sci. 23:1062021. View Article : Google Scholar : PubMed/NCBI | |
|
Oyewole AO and Birch-Machin MA: Mitochondria-targeted antioxidants. FASEB J. 29:4766–4771. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kataura T, Otten EG, Rabanal-Ruiz Y, Adriaenssens E, Urselli F, Scialo F, Fan L, Smith GR, Dawson WM, Chen X, et al: NDP52 acts as a redox sensor in PINK1/parkin-mediated mitophagy. EMBO J. 42:e1113722023. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu SN, Stephen LA, Phadwal K, Dillon S, Carter R, Morton NM, Luijten I, Emelianova K, Amin AK, Macrae VE, et al: Mitochondrial dysfunction and mitophagy blockade contribute to renal osteodystrophy in chronic kidney disease-mineral bone disorder. Kidney Int. 107:1017–1036. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu D, Chen P, Wang B, Wang Y, Miao N, Yin F, Cheng Q, Zhou Z, Xie H, Zhou L, et al: NIX-mediated mitophagy protects against proteinuria-induced tubular cell apoptosis and renal injury. Am J Physiol Renal Physiol. 316:F382–F395. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Wang Y, Lao Y, Weng J, Deng R, Li S, Lu J, Yang S and Liu X: Effects of honokiol protects against chronic kidney disease via BNIP3/NIX and FUNDC1-mediated mitophagy and AMPK pathways. Mol Biol Rep. 50:6557–6568. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Li T, Geng Y, Zou X, Peng F and Gao W: The role of mitophagy in the development of chronic kidney disease. PeerJ. 12:e172602024. View Article : Google Scholar : PubMed/NCBI | |
|
Reyes-Fermín LM, Avila-Rojas SH, Aparicio-Trejo OE, Tapia E, Rivero I and Pedraza-Chaverri J: The protective effect of alpha-mangostin against cisplatin-induced cell death in LLC-PK1 cells is associated to mitochondrial function preservation. Antioxidants (Basel). 8:1332019. View Article : Google Scholar : PubMed/NCBI | |
|
Prieto-Carrasco R, García-Arroyo FE, Aparicio-Trejo OE, Rojas-Morales P, León-Contreras JC, Hernández-Pando R, Sánchez-Lozada LG, Tapia E and Pedraza-Chaverri J: Progressive reduction in mitochondrial mass is triggered by alterations in mitochondrial biogenesis and dynamics in chronic kidney disease induced by 5/6 nephrectomy. Biology (Basel). 10:3492021.PubMed/NCBI | |
|
Wen CP, Cheng TYD, Tsai MK, Chang YC, Chan HT, Tsai SP, Chiang PH, Hsu CC, Sung PK, Hsu YH and Wen SF: All-cause mortality attributable to chronic kidney disease: A prospective cohort study based on 462 293 adults in taiwan. Lancet. 371:2173–2182. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dwivedi S and Sikarwar MS: Diabetic nephropathy: Pathogenesis, mechanisms, and therapeutic strategies. Horm Metab Res. 57:7–17. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Han YC, Tang SQ, Liu YT, Li AM, Zhan M, Yang M, Song N, Zhang W, Wu XQ, Peng CH, et al: AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis. 12:9252021. View Article : Google Scholar : PubMed/NCBI | |
|
Czajka A, Ajaz S, Gnudi L, Parsade CK, Jones P, Reid F and Malik AN: Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy. EBioMedicine. 2:499–512. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Holterman CE, Thibodeau JF, Towaij C, Gutsol A, Montezano AC, Parks RJ, Cooper ME, Touyz RM and Kennedy CR: Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J Am Soc Nephrol. 25:784–797. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sang XY, Xiao JJ, Liu Q, Zhu R, Dai JJ, Zhang C, Yu H, Yang SJ and Zhang BF: Regulators of calcineurin 1 deficiency attenuates tubulointerstitial fibrosis through improving mitochondrial fitness. FASEB J. doi: 10.1096/fj.202000781RRR. | |
|
Li Y, Song B, Ruan C, Xue W and Zhao J: AdipoRon attenuates hypertension-induced epithelial-mesenchymal transition and renal fibrosis via promoting epithelial autophagy. J Cardiovasc Transl Res. 14:538–545. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Long Y, Li Y, Ma Z, Xie Y, Zhao H, Zhang M and Liu R: Epimedii folium and ligustri lucidi fructus synergistically delay renal aging through AMPK/ULK1/Bcl2L13-mediated mitophagy. J Ethnopharmacol. 346:1196682025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Ma Y, Ke Y, Jiang X, Liu J, Xiao Y, Zheng H, Wang C, Chen X and Shi M: Fangji huangqi decoction ameliorates membranous nephropathy through the upregulation of BNIP3-mediated mitophagy. J Ethnopharmacol. 324:1177342024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Shen M, Ma Y, Lan L, Jiang X, Cen X, Guo G, Zhou Q, Yuan M, Chen J, et al: Novel mitophagy inducer alleviates lupus nephritis by reducing myeloid cell activation and autoantigen presentation. Kidney Int. 105:759–774. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Lu M, Xiong L, Fan J, Zhou Y, Li H, Peng X, Zhong Z, Wang Y, Huang F, et al: Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis. Cell Death Dis. 11:292020. View Article : Google Scholar : PubMed/NCBI | |
|
Dröge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Dounousi E, Papavasiliou E, Makedou A, Ioannou K, Katopodis KP, Tselepis A, Siamopoulos KC and Tsakiris D: Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis. 48:752–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Miao M, Xu X, Bai M, Wu M and Zhang A: From physiology to pathology: The role of mitochondria in acute kidney injuries and chronic kidney diseases. Kidney Dis (Basel). 9:342–357. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Lu Z, Mao T, Song Y, Qu Y, Chen X, Chen K, Liu K and Zhang C: Magnoflorine ameliorates chronic kidney disease in high-fat and high-fructose-fed mice by promoting parkin/PINK1-dependent mitophagy to inhibit NLRP3/caspase-1-mediated pyroptosis. J Agric Food Chem. 72:12775–12787. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Meng P, Meng Y, Yang Y, Zheng W, Huang H and Zhao Z: Mechanism of ruxolitinib enhancing mitophagy against renal fibrosis via PINK1/parkin pathway. Biochim Biophys Acta Mol Basis Dis. 1871:1679782025. View Article : Google Scholar : PubMed/NCBI | |
|
Ding XQ, Jian TY, Gai YN, Niu GT, Liu Y, Meng XH, Li J, Lyu H, Ren BR and Chen J: Chicoric acid attenuated renal tubular injury in HFD-induced chronic kidney disease mice through the promotion of mitophagy via the Nrf2/PINK/parkin pathway. J Agric Food Chem. 70:2923–2935. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Xiong J, Guan X, Yin S, Chen J, Yuan S, Liu H, Lin S, Zhou Y, Qiu J, et al: Paeoniflorin suppresses kidney inflammation by regulating macrophage polarization via KLF4-mediated mitophagy. Phytomedicine. 116:1549012023. View Article : Google Scholar : PubMed/NCBI | |
|
Jia Q, Han L, Zhang X, Yang W, Gao Y, Shen Y, Li B, Wang S, Qin M, Lowe S, et al: Tongluo yishen decoction ameliorates renal fibrosis via regulating mitochondrial dysfunction induced by oxidative stress in unilateral ureteral obstruction rats. Front Pharmacol. 12:7627562021. View Article : Google Scholar : PubMed/NCBI | |
|
Ren H, Shao Y, Wu C, Ma X, Lv C and Wang Q: Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol. 500:1106282020. View Article : Google Scholar : PubMed/NCBI | |
|
Hong Q, Zhang L, Das B, Li Z, Liu B, Cai G, Chen X, Chuang PY, He JC and Lee K: Increased podocyte sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93:1330–1343. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR and Kroemer G: Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 16:487–511. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bonekamp NA, Jiang M, Motori E, Garcia Villegas R, Koolmeister C, Atanassov I, Mesaros A, Park CB and Larsson NG: High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo. Life Sci Alliance. 4:e2021010342021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang R, Yuan W, Li L, Lu F, Zhang L, Gong H and Huang X: Resveratrol ameliorates muscle atrophy in chronic kidney disease via the axis of SIRT1/FoxO1. Phytother Res. 36:3265–3275. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Guo C, Li Y, Wang H, Wang H, Wang Y, Wu T, Wang H, Cheng G, Man J, et al: Mitophagy mediated by HIF-1α/FUNDC1 signaling in tubular cells protects against renal ischemia/reperfusion injury. Ren Fail. 46:23324922024. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma GN, Gupta G and Sharma P: A comprehensive review of free radicals, antioxidants, and their relationship with human ailments. Crit Rev Eukaryot Gene Expr. 28:139–154. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Harden TK, Sesma JI, Fricks IP and Lazarowski ER: Signalling and pharmacological properties of the P2Y receptor. Acta Physiol (Oxf). 199:149–160. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bai X, Huang D, Xie P, Sun R, Zhou H and Liu Y: Effect of uridine on mitochondrial function. Sheng Wu Gong Cheng Xue Bao. 39:3695–3709. 2023.(In Chinese). PubMed/NCBI | |
|
Krylova IB, Selina EN, Bulion VV, Rodionova OM, Evdokimova NR, Belosludtseva NV, Shigaeva MI and Mironova GD: Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Sci Rep. 11:169992021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang N and Zhao Z: Intestinal aging is alleviated by uridine via regulating inflammation and oxidative stress in vivo and in vitro. Cell Cycle. 21:1519–1531. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Ping Z, Gao H, Liu Z, Xv Q, Jiang X and Yu W: LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy. 20:1114–1133. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Smith RAJ, Hartley RC and Murphy MP: Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal. 15:3021–3038. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA and Murphy MP: Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem. 276:4588–4596. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
James AM, Cochemé HM, Smith RAJ and Murphy MP: Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem. 280:21295–21312. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hamed M, Logan A, Gruszczyk AV, Beach TE, James AM, Dare AJ, Barlow A, Martin J, Georgakopoulos N, Gane AM, et al: Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia-reperfusion injury in kidney transplantation models. Br J Surg. 108:1072–1081. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Z, Liang W, Chen Z, Hu J, Feng J, Cao Y, Ma Y and Ding G: Mitoquinone protects podocytes from angiotensin II-induced mitochondrial dysfunction and injury via the Keap1-Nrf2 signaling pathway. Oxid Med Cell Longev. 2021:13944862021. View Article : Google Scholar : PubMed/NCBI | |
|
Reddy PH, Manczak M and Kandimalla R: Mitochondria-targeted small molecule SS31: A potential candidate for the treatment of Alzheimer's disease. Hum Mol Genet. 26:15972017. View Article : Google Scholar : PubMed/NCBI | |
|
Hou Y, Li S, Wu M, Wei J, Ren Y, Du C, Wu H, Han C, Duan H and Shi Y: Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol. 310:F547–F559. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang SK, Han YC, He JR, Yang M, Zhang W, Zhan M, Li AM, Li L, Na-Song, Liu YT, et al: Mitochondria targeted peptide SS-31 prevent on cisplatin-induced acute kidney injury via regulating mitochondrial ROS-NLRP3 pathway. Biomed Pharmacother. 130:1105212020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Luo M, Bai X, Li J, Nie P, Li B and Luo P: SS-31, a mitochondria-targeting peptide, ameliorates kidney disease. Oxid Med Cell Longev. 2022:12955092022. View Article : Google Scholar : PubMed/NCBI | |
|
Lan T, Guo H, Lu X, Geng K, Wu L, Luo Y, Zhu J, Shen X, Guo Q and Wu S: Dual-responsive curcumin-loaded nanoparticles for the treatment of cisplatin-induced acute kidney injury. Biomacromolecules. 23:5253–5266. 2022. View Article : Google Scholar : PubMed/NCBI |