You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Mahler GJ and Butcher JT: Cardiac developmental toxicity. Birth Defects Res C Embryo Today. 93:291–297. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffman JI and Kaplan S: The incidence of congenital heart disease. J Am Coll Cardiol. 39:1890–1900. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffman JI: The global burden of congenital heart disease. Cardiovasc J Afr. 24:141–145. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffman JI: Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol. 16:155–165. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Sun R, Liu M, Lu L, Zheng Y and Zhang P: Congenital heart disease: Causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys. 72:857–860. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA and Webb CL; American Heart Association Council on Cardiovascular Disease in the Young, : Noninherited risk factors and congenital cardiovascular defects: Current knowledge: A scientific statement from the American heart association council on cardiovascular disease in the young: Endorsed by the American academy of pediatrics. Circulation. 115:2995–3014. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
de Oliveira DT and Guerra-Sá R: Uncovering epigenetic landscape: A new path for biomarkers identification and drug development. Mol Biol Rep. 47:9097–9122. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Maher N, Maiellaro F, Ghanej J, Rasi S, Moia R and Gaidano G: Unraveling the epigenetic landscape of mature B cell neoplasia: Mechanisms, biomarkers, and therapeutic opportunities. Int J Mol Sci. 26:81322025. View Article : Google Scholar : PubMed/NCBI | |
|
Leduque B, Edera A, Vitte C and Quadrana L: Simultaneous profiling of chromatin accessibility and DNA methylation in complete plant genomes using long-read sequencing. Nucleic Acids Res. 52:6285–6297. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Choi SW and Friso S: Epigenetics: A new bridge between nutrition and health. Adv Nutr. 1:8–16. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Samanta S, Rajasingh S, Cao T, Dawn B and Rajasingh J: Epigenetic dysfunctional diseases and therapy for infection and inflammation. Biochim Biophys Acta Mol Basis Dis. 1863:518–528. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Smith ZD and Meissner A: DNA methylation: Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Lang Z and Zhu JK: Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol. 19:489–506. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gowher H, Liebert K, Hermann A, Xu G and Jeltsch A: Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem. 280:13341–13348. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Hermann A, Goyal R and Jeltsch A: The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 279:48350–48359. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bansal A and Pinney SE: DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes. 18:167–177. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bochtler M, Kolano A and Xu GL: DNA demethylation pathways: Additional players and regulators. Bioessays. 39:1–13. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Strasenburg W, Borowczak J, Piątkowska D, Jóźwicki J and Grzanka D: The role of DNA methylation and demethylation in bladder cancer: A focus on therapeutic strategies. Front Oncol. 15:15672422025. View Article : Google Scholar : PubMed/NCBI | |
|
Yu F, Li K, Li S, Liu J, Zhang Y, Zhou M, Zhao H, Chen H, Wu N, Liu Z and Su J: CFEA: A cell-free epigenome atlas in human diseases. Nucleic Acids Res. 48((D1)): D40–D44. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu SC and Zhang Y: Active DNA demethylation: Many roads lead to rome. Nat Rev Mol Cell Biol. 11:607–620. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Cui J, Zhang X, Wu Y, Xu J, Zhao Y, Hussain S and Chen L: Integrated analysis of methylomic and transcriptomic profiles in fetal mouse hypothalamus in response to maternal gestational exposure to arsenic. Ecotoxicol Environ Saf. 299:1184002025. View Article : Google Scholar : PubMed/NCBI | |
|
Demond H, Khan S, Castillo-Fernandez J, Hanna CW and Kelsey G: Transcriptome and DNA methylation profiling during the NSN to SN transition in mouse oocytes. BMC Mol Cell Biol. 26:22025. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Li J, Ren F, Ji C, Aniagu S and Chen T: PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environ Pollut. 255:1133312019. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu M, Chen J, Liu M, Shi Y, Nie Z, Dong G, Li X, Chen J, Ou Y and Zhuang J: Reprogramming of DNA methylation patterns mediates perfluorooctane sulfonate-induced fetal cardiac dysplasia. Sci Total Environ. 919:1709052024. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, Song Q, Kan H and Zhang Y: Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ. 607–608. 1103–1108. 2017. | |
|
Heudorf U, Mersch-Sundermann V and Angerer J: Phthalates: Toxicology and exposure. Int J Hyg Environ Health. 210:623–634. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Qian H: Phthalates and their impacts on human health. Healthcare (Basel). 9:6032021. View Article : Google Scholar : PubMed/NCBI | |
|
Mu X, Chen X, Liu J, Yuan L, Wang D, Qian L, Qian Y, Shen G, Huang Y, Li X, et al: A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (danio rerio). Environ Pollut. 265((Pt B)): 1138762020. View Article : Google Scholar : PubMed/NCBI | |
|
Thangavel P, Park D and Lee YC: Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. Int J Environ Res Public Health. 19:75112022. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, Shen Y, Meng X, Zhao Y, Niu Y, Chen R, Du W, Quan G, Barnett AL, Jones G, et al: Association of developmental coordination disorder with early-life exposure to fine particulate matter in chinese preschoolers. Innovation (Camb). 4:1003472022.PubMed/NCBI | |
|
Lin CA, Pereira LA, Nishioka DC, Conceição GM, Braga AL and Saldiva PH: Air pollution and neonatal deaths in São Paulo, Brazil. Braz J Med Biol Res. 37:765–770. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Gouveia N, Bremner SA and Novaes HM: Association between ambient air pollution and birth weight in Sao Paulo, Brazil. J Epidemiol Community Health. 58:11–17. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zhang B, Li L and Borthwick AGL: Microbial selenate detoxification linked to elemental sulfur oxidation: Independent and synergic pathways. J Hazard Mater. 422:1269322022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JH, Liu CC, Liu CY, Hsu TW, Yeh YC, How CK, Hsu HS and Hung SC: Selenite selectively kills lung fibroblasts to treat bleomycin-induced pulmonary fibrosis. Redox Biol. 72:1031482024. View Article : Google Scholar : PubMed/NCBI | |
|
Hariharan S, Chauhan S, Marcharla E, Alphonse CRW, Rajaretinam RK and Ganesan S: Developmental toxicity and neurobehavioral effects of sodium selenite and selenium nanoparticles on zebrafish embryos. Aquat Toxicol. 266:1067912024. View Article : Google Scholar : PubMed/NCBI | |
|
Imai T, Kurihara T, Esaki N and Mihara H: Glutathione contributes to the efflux of selenium from hepatoma cells. Biosci Biotechnol Biochem. 78:1376–1380. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Wu M, Li D, Li XQ, Li P, Zhao J, Luo MN, Guo CL, Gao XB, Lu CL and Ma X: Embryonic developmental toxicity of selenite in zebrafish (Danio rerio) and prevention with folic acid. Food Chem Toxicol. 50:2854–2863. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ganie SY, Javaid D, Hajam YA and Reshi MS: Arsenic toxicity: Sources, pathophysiology and mechanism. Toxicol Res (Camb). 13:tfad1112023. View Article : Google Scholar : PubMed/NCBI | |
|
Cantoni O, Zito E, Fiorani M and Guidarelli A: Arsenite impinges on endoplasmic reticulum-mitochondria crosstalk to elicit mitochondrial ROS formation and downstream toxicity. Semin Cancer Biol. 76:132–138. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Lu C, Wang J, Hu W, Cao Z, Sun D, Xia H and Ma X: Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquat Toxicol. 91:229–237. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hrelia P, Vigagni F, Maffei F, Morotti M, Colacci A, Perocco P, Grilli S and Cantelli-Forti G: Genetic safety evaluation of pesticides in different short-term tests. Mutat Res. 321:219–228. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W and Rong H: Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. Chemosphere. 339:1397692023. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J and Choi J: Trans- and multigenerational effects of isothiazolinone biocide CMIT/MIT on genotoxicity and epigenotoxicity in daphnia magna. Toxics. 11:3882023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H, Kim Y, Cho Y, Jeon EJ, Jeong SH, Lee JH and Kim S: Nociceptive effects and gene alterations of CMIT/MIT mixture in zebrafish embryos and larvae. J Hazard Mater. 493:1383922025. View Article : Google Scholar : PubMed/NCBI | |
|
Molinari F, Tranchida N, Inferrera F, Fusco R, Faggio C, Impellitteri F, Cuzzocrea S, Cordaro M and Di Paola R: Biocide mixture (CMIT/MIT) induces neurotoxicity through the upregulation of the MAPKs signaling pathways. J Neurophysiol. 134:183–192. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Chatterjee N, Lee H, Kim J, Kim D, Lee S and Choi J: Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: multi-level endpoint and proteomics analysis. Environ Pollut. 268((Pt A)): 1157842021. View Article : Google Scholar : PubMed/NCBI | |
|
Kausar S, Abbas MN, Gul I, Liu R, Li Q, Zhao E, Lv M and Cui H: Molecular identification of two DNA methyltransferase genes and their functional characterization in the anti-bacterial immunity of antheraea pernyi. Front Immunol. 13:8558882022. View Article : Google Scholar : PubMed/NCBI | |
|
Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB and Goossens L: DNA methylation targeting: The DNMT/HMT crosstalk challenge. Biomolecules. 7:32017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Ni S, Zhang L, Chen Y, Xie M and Huang X: Molecular insights and clinical implications of DNA methylation in sepsis-associated acute kidney injury: A narrative review. BMC Nephrol. 26:2532025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zhang Q, Zhang Y and Han J: The role of histone modification in DNA replication-coupled nucleosome assembly and cancer. Int J Mol Sci. 24:49392023. View Article : Google Scholar : PubMed/NCBI | |
|
Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ and Perez-Pinzon MA: Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol. 13:9086892022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Liu H, Liu Y, Luo E and Liu S: Unlocking the potential of histone modification in regulating bone metabolism. Biochimie. 227:286–298. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Qi Q, Li L, Liang H and Zeng Y: Role and research progress of histone modification in cardiovascular diseases (Review). Exp Ther Med. 30:1322025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y and Luan Y, Yuan RX and Luan Y: Histone methylation related therapeutic challenge in cardiovascular diseases. Front Cardiovasc Med. 8:7100532021. View Article : Google Scholar : PubMed/NCBI | |
|
Mao W, Wang B, Huang R, Sun Z, Yan M and Dong P: Histone modifications in head and neck squamous cell carcinoma. Front Oncol. 14:14277252024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Li Y, Qiang T, Chen J and Wang X: Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res. 170:1057432021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Huang H, Ding B, Liu Z, Chen D, Li S, Shen T and Zhu Q: Histone demethylase KDM4A mediating macrophage polarization: A potential mechanism of trichloroethylene induced liver injury. Cell Biol Int. 48:1148–1159. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J and Choi J: Histone methylation-mediated reproductive toxicity to consumer product chemicals in caenorhabditis elegans: An epigenetic adverse outcome pathway (AOP). Environ Sci Technol. 58:19604–19616. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mehta I, Verma M, Quasmi MN, Kumar D and Jangra A: Emerging roles of histone modifications in environmental toxicants-induced neurotoxicity. Toxicology. 515:1541642025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Sun S, Sun G, Han B, Zhang S, Zheng X and Chen L: Histone modification inhibitors: an emerging frontier in thyroid cancer therapy. Cell Signal. 131:1117032025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Chen B, Pei L, Zhang Q, Zou Y, Xiao H, Zhou J, Chen L and Wang H: Decreased H3K9ac level of StAR mediated testicular dysplasia induced by prenatal dexamethasone exposure in Male offspring rats. Toxicology. 408:1–10. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Liu F, Yu L, Xu D, Li B, Zhang G, Huang W, Li L, Zhang Y, Zhang W and Wang H: nAChRs-ERK1/2-egr-1 signaling participates in the developmental toxicity of nicotine by epigenetically down-regulating placental 11β-HSD2. Toxicol Appl Pharmacol. 344:1–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pei LG, Zhang Q, Yuan C, Liu M, Zou YF, Lv F, Luo DJ, Zhong S and Wang H: The GC-IGF1 axis-mediated testicular dysplasia caused by prenatal caffeine exposure. J Endocrinol. 242:M17–M32. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X and Zheng Y: Environmental behavior of the chiral triazole fungicide fenbuconazole and its chiral metabolites: Enantioselective transformation and degradation in soils. Environ Sci Technol. 46:2675–2683. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Yang Q, Chen M, Zhang Y, Zuo Z and Wang C: Fenbuconazole exposure impacts the development of zebrafish embryos. Ecotoxicol Environ Saf. 158:293–299. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Guo J, Tang C, Xu K, Li Z and Wang C: Early life stage exposure to fenbuconazole causes multigenerational cardiac developmental defects in zebrafish and potential reasons. Environ Pollut. 349:1239382024. View Article : Google Scholar : PubMed/NCBI | |
|
Madrid JV, Vera-Colón MKM and zur Nieden NI: Perturbations in osteogenic cell fate following exposure to constituents present in tobacco: A combinatorial study. Toxics. 11:9982023. View Article : Google Scholar : PubMed/NCBI | |
|
Prasad S, Kaisar MA and Cucullo L: Unhealthy smokers: Scopes for prophylactic intervention and clinical treatment. BMC Neurosci. 18:702017. View Article : Google Scholar : PubMed/NCBI | |
|
Sabbagh HJ, Baghlaf KK, Jamalellail HMH, Bakhuraybah AS, AlGhamdi SM, Alharbi OA, AlHarbi KM and Hassan MHA: Environmental tobacco smoke exposure and non-syndromic orofacial cleft: Systematic review and meta-analysis. Tob Induc Dis. 21:762023. View Article : Google Scholar : PubMed/NCBI | |
|
Kharrazi M, DeLorenze GN, Kaufman FL, Eskenazi B, Bernert JT Jr, Graham S, Pearl M and Pirkle J: Environmental tobacco smoke and pregnancy outcome. Epidemiology. 15:660–670. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Deng C, Pu J, Deng Y, Xie L, Yu L, Liu L, Guo X, Sandin S, Liu H and Dai L: Association between maternal smoke exposure and congenital heart defects from a case-control study in China. Sci Rep. 12:149732022. View Article : Google Scholar : PubMed/NCBI | |
|
Macdonald-Wallis C, Tobias JH, Davey Smith G and Lawlor DA: Parental smoking during pregnancy and offspring bone mass at age 10 years: Findings from a prospective birth cohort. Osteoporos Int. 22:1809–1819. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng W, Zhou R, Feng Y and Wang Y: Mainstream smoke and sidestream smoke affect the cardiac differentiation of mouse embryonic stem cells discriminately. Toxicology. 357–358. 1–10. 2016.PubMed/NCBI | |
|
Rahbari A, Esmaielpour B, Azarmi R, Fatemi H, Lajayer HM, Panahirad S, Gohari G and Vita F: Symbiotic fungus serendipita indica as a natural bioenhancer against cadmium toxicity in chinese cabbage. Plants (Basel). 14:27732025.PubMed/NCBI | |
|
Zhu Y, Guan H, Zhu X, Cai J, Jiao X, Shan J, Li Y, Wu Q and Zhang Z: Astilbin antagonizes developmental cardiotoxicity after cadmium exposure in chicken embryos by inhibiting endoplasmic reticulum stress and maintaining calcium homeostasis. Ecotoxicol Environ Saf. 270:1158472024. View Article : Google Scholar : PubMed/NCBI | |
|
Vasanthakumaran M, Ramesh M, Murugan K, Hema T, Rajaganesh R and Hwang JS: Developmental toxicity, biochemical and biomarker in the zebrafish (Danio rerio) embryo exposed to biosynthesized cadmium oxide nanoparticles. Chemosphere. 369:1438512024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Chen Y, Luz A, Hu G and Tokar EJ: Cardiac development in the presence of cadmium: An in vitro study using human embryonic stem cells and cardiac organoids. Environ Health Perspect. 130:1170022022. View Article : Google Scholar : PubMed/NCBI | |
|
Dasgupta A, Nandi S, Gupta S, Roy S and Das C: To ub or not to ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. Biochim Biophys Acta Gene Regul Mech. 1867:1950332024. View Article : Google Scholar : PubMed/NCBI | |
|
Ghate NB, Nadkarni KS, Barik GK, Tat SS, Sahay O and Santra MK: Histone ubiquitination: role in genome integrity and chromatin organization. Biochim Biophys Acta Gene Regul Mech. 1867:1950442024. View Article : Google Scholar : PubMed/NCBI | |
|
Shu Q, Liu Y and Ai H: The emerging role of the histone H2AK13/15 ubiquitination: mechanisms of writing, reading, and erasing in DNA damage repair and disease. Cells. 14:3072025. View Article : Google Scholar : PubMed/NCBI | |
|
Zambrano-Carrasco J, Zou J, Wang W, Sun X, Li J and Su H: Emerging roles of cullin-RING ubiquitin ligases in cardiac development. Cells. 13:2352024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Jiang B, Hu H, Mao F, Mi J, Li Z, Liu Q, Shao C and Gong Y: Zebrafish cul4a, but not cul4b, modulates cardiac and forelimb development by upregulating tbx5a expression. Hum Mol Genet. 24:853–864. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Xu X and Su X: Noncoding RNAs in cancer immunity: Functions, regulatory mechanisms, and clinical application. Mol Cancer. 19:482020. View Article : Google Scholar : PubMed/NCBI | |
|
Song Z, Suo C, Liu Y, Jin L, Xie X, Liu J, Yu B, Wang Y, Zhang Z and Xie D: Comprehensive evaluation of non-coding RNA-mediated autophagy regulation in myocardial ischemia-reperfusion injury. Front Pharmacol. 16:15813412025. View Article : Google Scholar : PubMed/NCBI | |
|
Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Yuan J, Zhang Y, Ma T, Ji Q, Tian S and Liu C: Non-coding RNA as a key regulator and novel target of apoptosis in diabetic cardiomyopathy: Current status and future prospects. Cell Signal. 128:1116322025. View Article : Google Scholar : PubMed/NCBI | |
|
Aghaei-Zarch SM, Alipourfard I, Rasoulzadeh H, Najafi S, Aghaei-Zarch F, Partov S, Movafagh A, Jahanara A, Toolabi A, Sheikhmohammadi A, et al: Non-coding RNAs: an emerging player in particulate matter 2.5-mediated toxicity. Int J Biol Macromol. 235:1237902023. View Article : Google Scholar : PubMed/NCBI | |
|
Sanjari Nia AH, Reyhani Ardabili M, Sheikhvand M, Bagheri-Mohammadi S, Niknejad H, Rasoulzadeh H, Movafagh A, Kharazi Neghad S, Baniasadi M, Ashrafi Asgarabad A, et al: Non-coding RNAs: A new frontier in benzene-mediated toxicity. Toxicology. 500:1536602023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Jiang B, Xia Y, Wang J, Ji C, Tong J, Chen T and Jiang Y: Downregulation of miR-133a contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish. Chemosphere. 251:1266102020. View Article : Google Scholar : PubMed/NCBI | |
|
Smirnova L, Block K, Sittka A, Oelgeschläger M, Seiler AE and Luch A: MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: The case of sodium valproate. PLoS One. 9:e988922014. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao H, Zhang F, Zou Y, Li J, Liu Y and Huang W: The function and mechanism of long non-coding RNA-ATB in cancers. Front Physiol. 9:3212018. View Article : Google Scholar : PubMed/NCBI | |
|
D'Angelo E and Agostini M: Long non-coding RNA and extracellular matrix: The hidden players in cancer-stroma cross-talk. Noncoding RNA Res. 3:174–177. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ghorbanzadeh S, Poor-Ghassem N, Afsa M, Nikbakht M and Malekzadeh K: Long non-coding RNA NR2F2-AS1: Its expanding oncogenic roles in tumor progression. Hum Cell. 35:1355–1363. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ye D, Bao Z, Yu Y, Han Z, Yu Y, Xu Z, Ma W, Yuan Y, Zhang L, Xu Y, et al: Inhibition of cardiomyocyte differentiation of human induced pluripotent stem cells by ribavirin: Implication for its cardiac developmental toxicity. Toxicology. 435:1524222020. View Article : Google Scholar : PubMed/NCBI | |
|
Ronzoni L, Aghemo A, Rumi MG, Prati G, Colancecco A, Porretti L, Monico S, Colombo M and Cappellini MD: Ribavirin suppresses erythroid differentiation and proliferation in chronic hepatitis C patients. J Viral Hepat. 21:416–423. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Vishnoi A and Rani S: miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol Biol. 2595:1–12. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ye J, Xu M, Tian X, Cai S and Zeng S: Research advances in the detection of miRNA. J Pharm Anal. 9:217–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Mu J, Ni S, Pei W, Wan L, Wu X, Zhu J, Zhang Z and Li L: Pentachlorophenol exposure delays the recovery of colitis in association with altered gut microbiota and purine metabolism. Environ Toxicol. 40:101–110. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu EG, Khursigara AJ, Li S, Esbaugh AJ, Dasgupta S, Volz DC and Schlenk D: mRNA-miRNA-seq reveals neuro-cardio mechanisms of crude oil toxicity in red drum (Sciaenops ocellatus). Environ Sci Technol. 53:3296–3305. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu EG, Magnuson JT, Diamante G, Mager E, Pasparakis C, Grosell M, Roberts AP and Schlenk D: Changes in microRNA-mRNA signatures agree with morphological, physiological, and behavioral changes in larval mahi-mahi treated with deepwater horizon oil. Environ Sci Technol. 52:13501–13510. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Deng H, Bai Z, Huangfu C, Wang N, Chen M, Li G, Huang C, Ao T, Tang X, Xia T, et al: Gremlin1 repression-mediated mitochondrial network hyperfunction contributes to TCE-induced zebrafish cardiac defects. Cell Commun Signal. 23:3182025. View Article : Google Scholar : PubMed/NCBI | |
|
Drake VJ, Koprowski SL, Lough J, Hu N and Smith SM: Trichloroethylene exposure during cardiac valvuloseptal morphogenesis alters cushion formation and cardiac hemodynamics in the avian embryo. Environ Health Perspect. 114:842–847. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Jin H, Ji C, Ren F, Aniagu S, Tong J, Jiang Y and Chen T: AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos. J Hazard Mater. 385:1215212020. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson PD, Goldberg SJ, Mays MZ and Dawson BV: Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat. Environ Health Perspect. 111:289–292. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Long SM and Holdway DA: Acute toxicity of crude and dispersed oil to octopus pallidus (Hoyle, 1885) hatchlings. Water Res. 36:2769–2776. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Sørhus E, Donald CE, Nakken CL, Perrichon P, Durif CMF, Shema S, Browman HI, Skiftesvik AB, Lie KK, Rasinger JD, et al: Co-exposure to UV radiation and crude oil increases acute embryotoxicity and sublethal malformations in the early life stages of atlantic haddock (Melanogrammus aeglefinus). Sci Total Environ. 859:1600802023. View Article : Google Scholar : PubMed/NCBI | |
|
Khursigara AJ, Ackerly KL and Esbaugh AJ: Oil toxicity and implications for environmental tolerance in fish. Comp Biochem Physiol C Toxicol Pharmacol. 220:52–61. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Magnuson JT, Qian L, McGruer V, Cheng V, Volz DC and Schlenk D: Relationship between miR-203a inhibition and oil-induced toxicity in early life stage zebrafish (danio rerio). Toxicol Rep. 9:373–381. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo M, Li X, Choi M, Zhang J, Yan S, Ma D, Zeng J, Ding W, Wen Y, Li D, et al: Microcystin-LR prenatal exposure induces coronary heart disease through macrophage polarization imbalance mediated by trophoblast-derived extracellular vesicles. Sci Total Environ. 948:1749792024. View Article : Google Scholar : PubMed/NCBI | |
|
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI | |
|
An Y and Duan H: The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI | |
|
Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y and Tang C: Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med. 46:1958–1972. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y, Lv X, Chen Z, Peng Y and Zhang M: m6A methylation: Critical roles in aging and neurological diseases. Front Mol Neurosci. 16:11021472023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zou S, Toh JD, Wong KH, Gao YG, Hong W and Woon EC: N(6)-Methyladenosine: A conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci Rep. 6:256772016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Qi G, Rao W, Cen Y, Chen L, Li W and Pang Y: Aluminum causes irreversible damage to the development of hippocampal neurons by regulating m6A RNA methylation. Toxicol Lett. 399:34–42. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Qian Q, Pu Q, Li X, Liu X, Ni A, Han X, Wang Z, Wang X, Yan J and Wang H: Acute/chronic triclosan exposure induces downregulation of m6A-RNA methylation modification via mettl3 suppression and elicits developmental and immune toxicity to zebrafish. Chemosphere. 352:1413952024. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Li A, Zhang W, Pang S, Liang Y and Song M: Assessing the toxicity of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat Toxicol. 246:1061542022. View Article : Google Scholar : PubMed/NCBI | |
|
Rezg R, El-Fazaa S, Gharbi N and Mornagui B: Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives. Environ Int. 64:83–90. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Lin J, Chen J, Maimaitiyiming Y, Su K, Sun S, Zhan G and Hsu CH: Bisphenol C induces developmental defects in liver and intestine through mTOR signaling in zebrafish (Danio rerio). Chemosphere. 322:1381952023. View Article : Google Scholar : PubMed/NCBI | |
|
Su K, Liu J, Chen J, Wu H, Tang W, Sun S, Lin J, Zhan G and Hsu CH: Bisphenol C induces cardiac developmental defects by disrupting m6A homeostasis. Environ Sci Technol. 58:17259–17269. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ji C, Tao Y, Li X, Wang J, Chen J, Aniagu S, Jiang Y and Chen T: AHR-mediated m6A RNA methylation contributes to PM2.5-induced cardiac malformations in zebrafish larvae. J Hazard Mater. 457:1317492023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zou J and Zhou H: N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne). 15:14621462024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q and Song G: Chromatin accessibility: Biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther. 9:3402024. View Article : Google Scholar : PubMed/NCBI | |
|
Fyodorov DV, Zhou BR, Skoultchi AI and Bai Y: Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol. 19:192–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Routh A, Sandin S and Rhodes D: Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci USA. 105:8872–8877. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
McBryant SJ, Adams VH and Hansen JC: Chromatin architectural proteins. Chromosome Res. 14:39–51. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Eustermann S, Patel AB, Hopfner KP, He Y and Korber P: Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol. 25:309–332. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Struhl K: Non-canonical functions of enhancers: Regulation of RNA polymerase III transcription, DNA replication, and V(D)J recombination. Trends Genet. 40:471–479. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wilkinson AL, Zorzan I and Rugg-Gunn PJ: Epigenetic regulation of early human embryo development. Cell Stem Cell. 30:1569–1584. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cao L, Luo Y, Guo X, Liu S, Li S, Li J, Zhang Z, Zhao Y, Zhang Q, Gao F, et al: SAFA facilitates chromatin opening of immune genes through interacting with anti-viral host RNAs. PLoS Pathog. 18:e10105992022. View Article : Google Scholar : PubMed/NCBI | |
|
Lopes-Paciencia S and Ferbeyre G: Increased chromatin accessibility underpins senescence. FEBS J. 292:4112–4132. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Grandi FC, Modi H, Kampman L and Corces MR: Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 17:1518–1552. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang L, Song S, Hu C, Liu M, Lam PKS, Zhou B, Lam JCW and Chen L: Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and offspring embryonic development in zebrafish. Chemosphere. 256:1271692020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Van Bortle K, Zhang Y, Zhao MT, Zhang JZ, Geller BS, Gruber JJ, Jiang C, Wu JC and Snyder MP: Disruption of mesoderm formation during cardiac differentiation due to developmental exposure to 13-cis-retinoic acid. Sci Rep. 8:129602018. View Article : Google Scholar : PubMed/NCBI | |
|
Guan G, Abulaiti A, Qu C, Chen CC, Gu Z, Yang J, Zhang T and Chen X, Zhou Z, Lu F and Chen X: Multi-omics panoramic analysis of HBV integration, transcriptional regulation, and epigenetic modifications in PLC/PRF/5 cell line. J Med Virol. 96:e296142024. View Article : Google Scholar : PubMed/NCBI | |
|
Qi C, Jin X, Wang H and Xu D: Crosstalk between N6-methyladenosine and other epigenetic mechanisms in central nervous system development and disorders. Biomolecules. 15:10922025. View Article : Google Scholar : PubMed/NCBI | |
|
Tan RZ, Jia J, Li T, Wang L and Kantawong F: A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother. 176:1169222024. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Luo P, Chen Q, Cheng L, Gan L, Zhang F, Zhong H, Zheng L and Qian B: Epigenetic modifications in bladder cancer: Crosstalk between DNA methylation and miRNAs. Front Immunol. 16:15181442025. View Article : Google Scholar : PubMed/NCBI | |
|
Buscariollo DL, Fang X, Greenwood V, Xue H, Rivkees SA and Wendler CC: Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice. PLoS One. 9:e875472014. View Article : Google Scholar : PubMed/NCBI | |
|
Buscariollo DL, Breuer GA, Wendler CC and Rivkees SA: Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function. PLoS One. 6:e282962011. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Mei W, Barbazuk WB, Rivkees SA and Wendler CC: Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes. Am J Physiol Regul Integr Comp Physiol. 307:R1471–1487. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rohweder R, de Oliveira Schmalfuss T, Dos Santos Borniger D, Ferreira CZ, Zanardini MK, Lopes GPTF, Barbosa CP, Moreira TD, Schuler-Faccini L, Sanseverino MTV, et al: Caffeine intake during pregnancy and adverse outcomes: An integrative review. Reprod Toxicol. 123:1085182024. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez-Martinez A, Vuorinen EM, Shcherban A, Uusi-Mäkelä J, Rajala NKM, Nykter M and Kallioniemi A: Novel ZNF414 activity characterized by integrative analysis of ChIP-exo, ATAC-seq and RNA-seq data. Biochim Biophys Acta Gene Regul Mech. 1865:1948112022. View Article : Google Scholar : PubMed/NCBI | |
|
Eisa-Beygi S, Benslimane FM, El-Rass S, Prabhudesai S, Abdelrasoul MKA, Simpson PM, Yalcin HC, Burrows PE and Ramchandran R: Characterization of endothelial cilia distribution during cerebral-vascular development in zebrafish (Danio rerio). Arterioscler Thromb Vasc Biol. 38:2806–2818. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L and Zhou J: Zebrafish: A smart tool for heart disease research. J Fish Biol. 105:1487–1500. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Stainier DY, Kontarakis Z and Rossi A: Making sense of anti-sense data. Dev Cell. 32:7–8. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Poon KL and Brand T: The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract. 2013:9–28. 2013.PubMed/NCBI | |
|
Glickman NS and Yelon D: Cardiac development in zebrafish: Coordination of form and function. Semin Cell Dev Biol. 13:507–513. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Salman HE and Yalcin HC: Computational modeling of blood flow hemodynamics for biomechanical investigation of cardiac development and disease. J Cardiovasc Dev Dis. 8:142021.PubMed/NCBI | |
|
Wafer LN, Jensen VB, Whitney JC, Gomez TH, Flores R and Goodwin BS: Effects of environmental enrichment on the fertility and fecundity of zebrafish (Danio rerio). J Am Assoc Lab Anim Sci. 55:291–294. 2016.PubMed/NCBI | |
|
Ducharme NA, Reif DM, Gustafsson JA and Bondesson M: Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing. Reprod Toxicol. 55:3–10. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Khabib MNH, Sivasanku Y, Lee HB, Kumar S and Kue CS: Alternative animal models in predictive toxicology. Toxicology. 465:1530532022. View Article : Google Scholar : PubMed/NCBI | |
|
Bambino K and Chu J: Zebrafish in toxicology and environmental health. Curr Top Dev Biol. 124:331–367. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Evans T: Embryonic stem cells as a model for cardiac development and disease. Drug Discov Today Dis Models. 5:147–155. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Keller G: Embryonic stem cell differentiation: Emergence of a new era in biology and medicine. Genes Dev. 19:1129–1155. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG, Quaife-Ryan GA, Voges HK, Hodson MP, Ferguson C, Drowley L, et al: Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA. 114:E8372–E8381. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mills RJ, Parker BL, Quaife-Ryan GA, Voges HK, Needham EJ, Bornot A, Ding M, Andersson H, Polla M, Elliott DA, et al: Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell. 24:895–907.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Aronson JK and Ferner RE: Biomarkers-A general review. Curr Protoc Pharmacol. Mar 17–2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Imbard A, Benoist JF and Blom HJ: Neural tube defects, folic acid and methylation. Int J Environ Res Public Health. 10:4352–4389. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Movendane Y, Sipalo MG and Chan LCZ: Advances in folic acid biosensors and their significance in maternal, perinatal, and paediatric preventive medicine. Biosensors (Basel). 13:9122023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Zhang C, Gao XB, Luo HY, Chen Y, Li HH, Ma X and Lu CL: Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1. Sci Rep. 5:160932015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao G, He F, Wu C, Li P, Li N, Deng J, Zhu G, Ren W and Peng Y: Betaine in inflammation: Mechanistic aspects and applications. Front Immunol. 9:10702018. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffmann L, Brauers G, Gehrmann T, Häussinger D, Mayatepek E, Schliess F and Schwahn BC: Osmotic regulation of hepatic betaine metabolism. Am J Physiol Gastrointest Liver Physiol. 304:G835–G846. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Barak AJ, Beckenhauer HC and Tuma DJ: Betaine, ethanol, and the liver: A review. Alcohol. 13:395–398. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Luo J, Yang L, Guo Y, Fan Y, Liu J, Sun J, Zhang Y, Jiang Q, Chen T and Xi Q: miR-143-mediated responses to betaine supplement repress lipogenesis and hepatic gluconeogenesis by targeting MAT1a and MAPK11. J Agric Food Chem. 70:7981–7992. 2022. View Article : Google Scholar : PubMed/NCBI |