Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2026 Volume 33 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2026 Volume 33 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review)

  • Authors:
    • Ziling Qin
    • Ranran Chen
    • Dianrong Song
  • View Affiliations / Copyright

    Affiliations: Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, P.R. China
    Copyright: © Qin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 66
    |
    Published online on: December 11, 2025
       https://doi.org/10.3892/mmr.2025.13776
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

As the first functional organ to form during vertebrate embryogenesis, the heart exhibits heightened susceptibility to developmental toxicity. Epigenetic regulatory mechanisms, including DNA methylation, histone modifications, non‑coding RNAs, N6‑methyladenosine methylation and chromatin accessibility alterations, mediate cardiac developmental toxicity induced by exogenous compounds including environmental chemicals and pharmaceuticals. The present review comprehensively summarizes the current understanding of the molecular mechanisms through which these compounds exert cardiac developmental toxicity through epigenetic regulation. An in‑depth analysis of research progress and technical challenges across diverse epigenetic pathways is provided. By summarizing recent evidence, the present review proposes candidate epigenetic biomarkers for cardiac developmental toxicity monitoring and explores potential intervention strategies targeting these pathways. Future research should prioritize multi‑omics integration technologies and clinical translation system development. These advances are anticipated to foster innovation in both mechanistic research and preventive strategy development for cardiac developmental toxicity.
View Figures

Figure 1

Exposure to potential toxicants
induces cardiac developmental toxicity through epigenetic
regulatory mechanisms in experimental models. The figure was
created using BioRender.com.

Figure 2

Integrative application of
multi-omics technologies and models in cardiac developmental
toxicity studies. (A) Multi-omics integration of epigenetic
regulation in cardiac developmental toxicity research. (B) Research
progress in experimental models of cardiac developmental toxicity.
(C) Epigenetic biomarkers identified in cardiac developmental
toxicity research. (D) Preliminary measures for preventing cardiac
developmental toxicity through epigenetic regulation. WGBS,
whole-genome bisulfite sequencing; MeDIP-Seq, methylated DNA
immunoprecipitation sequencing; ChIP-Seq, chromatin
immunoprecipitation followed by sequencing RNA-Seq, RNA sequencing;
MeRIP-Seq, methylated RNA immunoprecipitation followed by
sequencing; ATAC-Seq, Assay for Transposase-Accessible Chromatin
using sequencing; NPPA, natriuretic peptide A; cTnT, cardiac
troponin T2; TBX5b, T-box transcription factor 5b; miR, microRNA;
H3K, histone H3 lysine K. The figure was created using
BioRender.com.
View References

1 

Mahler GJ and Butcher JT: Cardiac developmental toxicity. Birth Defects Res C Embryo Today. 93:291–297. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Hoffman JI and Kaplan S: The incidence of congenital heart disease. J Am Coll Cardiol. 39:1890–1900. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Hoffman JI: The global burden of congenital heart disease. Cardiovasc J Afr. 24:141–145. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Hoffman JI: Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol. 16:155–165. 1995. View Article : Google Scholar : PubMed/NCBI

5 

Sun R, Liu M, Lu L, Zheng Y and Zhang P: Congenital heart disease: Causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys. 72:857–860. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA and Webb CL; American Heart Association Council on Cardiovascular Disease in the Young, : Noninherited risk factors and congenital cardiovascular defects: Current knowledge: A scientific statement from the American heart association council on cardiovascular disease in the young: Endorsed by the American academy of pediatrics. Circulation. 115:2995–3014. 2007. View Article : Google Scholar : PubMed/NCBI

7 

de Oliveira DT and Guerra-Sá R: Uncovering epigenetic landscape: A new path for biomarkers identification and drug development. Mol Biol Rep. 47:9097–9122. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Maher N, Maiellaro F, Ghanej J, Rasi S, Moia R and Gaidano G: Unraveling the epigenetic landscape of mature B cell neoplasia: Mechanisms, biomarkers, and therapeutic opportunities. Int J Mol Sci. 26:81322025. View Article : Google Scholar : PubMed/NCBI

9 

Leduque B, Edera A, Vitte C and Quadrana L: Simultaneous profiling of chromatin accessibility and DNA methylation in complete plant genomes using long-read sequencing. Nucleic Acids Res. 52:6285–6297. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Choi SW and Friso S: Epigenetics: A new bridge between nutrition and health. Adv Nutr. 1:8–16. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Samanta S, Rajasingh S, Cao T, Dawn B and Rajasingh J: Epigenetic dysfunctional diseases and therapy for infection and inflammation. Biochim Biophys Acta Mol Basis Dis. 1863:518–528. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Smith ZD and Meissner A: DNA methylation: Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Zhang H, Lang Z and Zhu JK: Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol. 19:489–506. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Gowher H, Liebert K, Hermann A, Xu G and Jeltsch A: Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem. 280:13341–13348. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Hermann A, Goyal R and Jeltsch A: The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 279:48350–48359. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Bansal A and Pinney SE: DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes. 18:167–177. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Bochtler M, Kolano A and Xu GL: DNA demethylation pathways: Additional players and regulators. Bioessays. 39:1–13. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Strasenburg W, Borowczak J, Piątkowska D, Jóźwicki J and Grzanka D: The role of DNA methylation and demethylation in bladder cancer: A focus on therapeutic strategies. Front Oncol. 15:15672422025. View Article : Google Scholar : PubMed/NCBI

21 

Yu F, Li K, Li S, Liu J, Zhang Y, Zhou M, Zhao H, Chen H, Wu N, Liu Z and Su J: CFEA: A cell-free epigenome atlas in human diseases. Nucleic Acids Res. 48((D1)): D40–D44. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Wu SC and Zhang Y: Active DNA demethylation: Many roads lead to rome. Nat Rev Mol Cell Biol. 11:607–620. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Li X, Cui J, Zhang X, Wu Y, Xu J, Zhao Y, Hussain S and Chen L: Integrated analysis of methylomic and transcriptomic profiles in fetal mouse hypothalamus in response to maternal gestational exposure to arsenic. Ecotoxicol Environ Saf. 299:1184002025. View Article : Google Scholar : PubMed/NCBI

24 

Demond H, Khan S, Castillo-Fernandez J, Hanna CW and Kelsey G: Transcriptome and DNA methylation profiling during the NSN to SN transition in mouse oocytes. BMC Mol Cell Biol. 26:22025. View Article : Google Scholar : PubMed/NCBI

25 

Jiang Y, Li J, Ren F, Ji C, Aniagu S and Chen T: PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environ Pollut. 255:1133312019. View Article : Google Scholar : PubMed/NCBI

26 

Qiu M, Chen J, Liu M, Shi Y, Nie Z, Dong G, Li X, Chen J, Ou Y and Zhuang J: Reprogramming of DNA methylation patterns mediates perfluorooctane sulfonate-induced fetal cardiac dysplasia. Sci Total Environ. 919:1709052024. View Article : Google Scholar : PubMed/NCBI

27 

Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, Song Q, Kan H and Zhang Y: Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ. 607–608. 1103–1108. 2017.

28 

Heudorf U, Mersch-Sundermann V and Angerer J: Phthalates: Toxicology and exposure. Int J Hyg Environ Health. 210:623–634. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Wang Y and Qian H: Phthalates and their impacts on human health. Healthcare (Basel). 9:6032021. View Article : Google Scholar : PubMed/NCBI

30 

Mu X, Chen X, Liu J, Yuan L, Wang D, Qian L, Qian Y, Shen G, Huang Y, Li X, et al: A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (danio rerio). Environ Pollut. 265((Pt B)): 1138762020. View Article : Google Scholar : PubMed/NCBI

31 

Thangavel P, Park D and Lee YC: Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. Int J Environ Res Public Health. 19:75112022. View Article : Google Scholar : PubMed/NCBI

32 

Cai J, Shen Y, Meng X, Zhao Y, Niu Y, Chen R, Du W, Quan G, Barnett AL, Jones G, et al: Association of developmental coordination disorder with early-life exposure to fine particulate matter in chinese preschoolers. Innovation (Camb). 4:1003472022.PubMed/NCBI

33 

Lin CA, Pereira LA, Nishioka DC, Conceição GM, Braga AL and Saldiva PH: Air pollution and neonatal deaths in São Paulo, Brazil. Braz J Med Biol Res. 37:765–770. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Gouveia N, Bremner SA and Novaes HM: Association between ambient air pollution and birth weight in Sao Paulo, Brazil. J Epidemiol Community Health. 58:11–17. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Li L, Zhang B, Li L and Borthwick AGL: Microbial selenate detoxification linked to elemental sulfur oxidation: Independent and synergic pathways. J Hazard Mater. 422:1269322022. View Article : Google Scholar : PubMed/NCBI

36 

Lin JH, Liu CC, Liu CY, Hsu TW, Yeh YC, How CK, Hsu HS and Hung SC: Selenite selectively kills lung fibroblasts to treat bleomycin-induced pulmonary fibrosis. Redox Biol. 72:1031482024. View Article : Google Scholar : PubMed/NCBI

37 

Hariharan S, Chauhan S, Marcharla E, Alphonse CRW, Rajaretinam RK and Ganesan S: Developmental toxicity and neurobehavioral effects of sodium selenite and selenium nanoparticles on zebrafish embryos. Aquat Toxicol. 266:1067912024. View Article : Google Scholar : PubMed/NCBI

38 

Imai T, Kurihara T, Esaki N and Mihara H: Glutathione contributes to the efflux of selenium from hepatoma cells. Biosci Biotechnol Biochem. 78:1376–1380. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Ma Y, Wu M, Li D, Li XQ, Li P, Zhao J, Luo MN, Guo CL, Gao XB, Lu CL and Ma X: Embryonic developmental toxicity of selenite in zebrafish (Danio rerio) and prevention with folic acid. Food Chem Toxicol. 50:2854–2863. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Ganie SY, Javaid D, Hajam YA and Reshi MS: Arsenic toxicity: Sources, pathophysiology and mechanism. Toxicol Res (Camb). 13:tfad1112023. View Article : Google Scholar : PubMed/NCBI

41 

Cantoni O, Zito E, Fiorani M and Guidarelli A: Arsenite impinges on endoplasmic reticulum-mitochondria crosstalk to elicit mitochondrial ROS formation and downstream toxicity. Semin Cancer Biol. 76:132–138. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Li D, Lu C, Wang J, Hu W, Cao Z, Sun D, Xia H and Ma X: Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquat Toxicol. 91:229–237. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Hrelia P, Vigagni F, Maffei F, Morotti M, Colacci A, Perocco P, Grilli S and Cantelli-Forti G: Genetic safety evaluation of pesticides in different short-term tests. Mutat Res. 321:219–228. 1994. View Article : Google Scholar : PubMed/NCBI

44 

Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W and Rong H: Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. Chemosphere. 339:1397692023. View Article : Google Scholar : PubMed/NCBI

45 

Kim J and Choi J: Trans- and multigenerational effects of isothiazolinone biocide CMIT/MIT on genotoxicity and epigenotoxicity in daphnia magna. Toxics. 11:3882023. View Article : Google Scholar : PubMed/NCBI

46 

Lee H, Kim Y, Cho Y, Jeon EJ, Jeong SH, Lee JH and Kim S: Nociceptive effects and gene alterations of CMIT/MIT mixture in zebrafish embryos and larvae. J Hazard Mater. 493:1383922025. View Article : Google Scholar : PubMed/NCBI

47 

Molinari F, Tranchida N, Inferrera F, Fusco R, Faggio C, Impellitteri F, Cuzzocrea S, Cordaro M and Di Paola R: Biocide mixture (CMIT/MIT) induces neurotoxicity through the upregulation of the MAPKs signaling pathways. J Neurophysiol. 134:183–192. 2025. View Article : Google Scholar : PubMed/NCBI

48 

Chatterjee N, Lee H, Kim J, Kim D, Lee S and Choi J: Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: multi-level endpoint and proteomics analysis. Environ Pollut. 268((Pt A)): 1157842021. View Article : Google Scholar : PubMed/NCBI

49 

Kausar S, Abbas MN, Gul I, Liu R, Li Q, Zhao E, Lv M and Cui H: Molecular identification of two DNA methyltransferase genes and their functional characterization in the anti-bacterial immunity of antheraea pernyi. Front Immunol. 13:8558882022. View Article : Google Scholar : PubMed/NCBI

50 

Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB and Goossens L: DNA methylation targeting: The DNMT/HMT crosstalk challenge. Biomolecules. 7:32017. View Article : Google Scholar : PubMed/NCBI

51 

Liu L, Ni S, Zhang L, Chen Y, Xie M and Huang X: Molecular insights and clinical implications of DNA methylation in sepsis-associated acute kidney injury: A narrative review. BMC Nephrol. 26:2532025. View Article : Google Scholar : PubMed/NCBI

52 

Zhang Y, Zhang Q, Zhang Y and Han J: The role of histone modification in DNA replication-coupled nucleosome assembly and cancer. Int J Mol Sci. 24:49392023. View Article : Google Scholar : PubMed/NCBI

53 

Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ and Perez-Pinzon MA: Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol. 13:9086892022. View Article : Google Scholar : PubMed/NCBI

54 

Zhang J, Liu H, Liu Y, Luo E and Liu S: Unlocking the potential of histone modification in regulating bone metabolism. Biochimie. 227:286–298. 2024. View Article : Google Scholar : PubMed/NCBI

55 

Qi Q, Li L, Liang H and Zeng Y: Role and research progress of histone modification in cardiovascular diseases (Review). Exp Ther Med. 30:1322025. View Article : Google Scholar : PubMed/NCBI

56 

Yang Y and Luan Y, Yuan RX and Luan Y: Histone methylation related therapeutic challenge in cardiovascular diseases. Front Cardiovasc Med. 8:7100532021. View Article : Google Scholar : PubMed/NCBI

57 

Mao W, Wang B, Huang R, Sun Z, Yan M and Dong P: Histone modifications in head and neck squamous cell carcinoma. Front Oncol. 14:14277252024. View Article : Google Scholar : PubMed/NCBI

58 

Wang K, Li Y, Qiang T, Chen J and Wang X: Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res. 170:1057432021. View Article : Google Scholar : PubMed/NCBI

59 

Zhang J, Huang H, Ding B, Liu Z, Chen D, Li S, Shen T and Zhu Q: Histone demethylase KDM4A mediating macrophage polarization: A potential mechanism of trichloroethylene induced liver injury. Cell Biol Int. 48:1148–1159. 2024. View Article : Google Scholar : PubMed/NCBI

60 

Kim J and Choi J: Histone methylation-mediated reproductive toxicity to consumer product chemicals in caenorhabditis elegans: An epigenetic adverse outcome pathway (AOP). Environ Sci Technol. 58:19604–19616. 2024. View Article : Google Scholar : PubMed/NCBI

61 

Mehta I, Verma M, Quasmi MN, Kumar D and Jangra A: Emerging roles of histone modifications in environmental toxicants-induced neurotoxicity. Toxicology. 515:1541642025. View Article : Google Scholar : PubMed/NCBI

62 

Wang Q, Sun S, Sun G, Han B, Zhang S, Zheng X and Chen L: Histone modification inhibitors: an emerging frontier in thyroid cancer therapy. Cell Signal. 131:1117032025. View Article : Google Scholar : PubMed/NCBI

63 

Liu M, Chen B, Pei L, Zhang Q, Zou Y, Xiao H, Zhou J, Chen L and Wang H: Decreased H3K9ac level of StAR mediated testicular dysplasia induced by prenatal dexamethasone exposure in Male offspring rats. Toxicology. 408:1–10. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Zhou J, Liu F, Yu L, Xu D, Li B, Zhang G, Huang W, Li L, Zhang Y, Zhang W and Wang H: nAChRs-ERK1/2-egr-1 signaling participates in the developmental toxicity of nicotine by epigenetically down-regulating placental 11β-HSD2. Toxicol Appl Pharmacol. 344:1–12. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Pei LG, Zhang Q, Yuan C, Liu M, Zou YF, Lv F, Luo DJ, Zhong S and Wang H: The GC-IGF1 axis-mediated testicular dysplasia caused by prenatal caffeine exposure. J Endocrinol. 242:M17–M32. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X and Zheng Y: Environmental behavior of the chiral triazole fungicide fenbuconazole and its chiral metabolites: Enantioselective transformation and degradation in soils. Environ Sci Technol. 46:2675–2683. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Wu Y, Yang Q, Chen M, Zhang Y, Zuo Z and Wang C: Fenbuconazole exposure impacts the development of zebrafish embryos. Ecotoxicol Environ Saf. 158:293–299. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Zhang Y, Guo J, Tang C, Xu K, Li Z and Wang C: Early life stage exposure to fenbuconazole causes multigenerational cardiac developmental defects in zebrafish and potential reasons. Environ Pollut. 349:1239382024. View Article : Google Scholar : PubMed/NCBI

69 

Madrid JV, Vera-Colón MKM and zur Nieden NI: Perturbations in osteogenic cell fate following exposure to constituents present in tobacco: A combinatorial study. Toxics. 11:9982023. View Article : Google Scholar : PubMed/NCBI

70 

Prasad S, Kaisar MA and Cucullo L: Unhealthy smokers: Scopes for prophylactic intervention and clinical treatment. BMC Neurosci. 18:702017. View Article : Google Scholar : PubMed/NCBI

71 

Sabbagh HJ, Baghlaf KK, Jamalellail HMH, Bakhuraybah AS, AlGhamdi SM, Alharbi OA, AlHarbi KM and Hassan MHA: Environmental tobacco smoke exposure and non-syndromic orofacial cleft: Systematic review and meta-analysis. Tob Induc Dis. 21:762023. View Article : Google Scholar : PubMed/NCBI

72 

Kharrazi M, DeLorenze GN, Kaufman FL, Eskenazi B, Bernert JT Jr, Graham S, Pearl M and Pirkle J: Environmental tobacco smoke and pregnancy outcome. Epidemiology. 15:660–670. 2004. View Article : Google Scholar : PubMed/NCBI

73 

Deng C, Pu J, Deng Y, Xie L, Yu L, Liu L, Guo X, Sandin S, Liu H and Dai L: Association between maternal smoke exposure and congenital heart defects from a case-control study in China. Sci Rep. 12:149732022. View Article : Google Scholar : PubMed/NCBI

74 

Macdonald-Wallis C, Tobias JH, Davey Smith G and Lawlor DA: Parental smoking during pregnancy and offspring bone mass at age 10 years: Findings from a prospective birth cohort. Osteoporos Int. 22:1809–1819. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Cheng W, Zhou R, Feng Y and Wang Y: Mainstream smoke and sidestream smoke affect the cardiac differentiation of mouse embryonic stem cells discriminately. Toxicology. 357–358. 1–10. 2016.PubMed/NCBI

76 

Rahbari A, Esmaielpour B, Azarmi R, Fatemi H, Lajayer HM, Panahirad S, Gohari G and Vita F: Symbiotic fungus serendipita indica as a natural bioenhancer against cadmium toxicity in chinese cabbage. Plants (Basel). 14:27732025.PubMed/NCBI

77 

Zhu Y, Guan H, Zhu X, Cai J, Jiao X, Shan J, Li Y, Wu Q and Zhang Z: Astilbin antagonizes developmental cardiotoxicity after cadmium exposure in chicken embryos by inhibiting endoplasmic reticulum stress and maintaining calcium homeostasis. Ecotoxicol Environ Saf. 270:1158472024. View Article : Google Scholar : PubMed/NCBI

78 

Vasanthakumaran M, Ramesh M, Murugan K, Hema T, Rajaganesh R and Hwang JS: Developmental toxicity, biochemical and biomarker in the zebrafish (Danio rerio) embryo exposed to biosynthesized cadmium oxide nanoparticles. Chemosphere. 369:1438512024. View Article : Google Scholar : PubMed/NCBI

79 

Wu X, Chen Y, Luz A, Hu G and Tokar EJ: Cardiac development in the presence of cadmium: An in vitro study using human embryonic stem cells and cardiac organoids. Environ Health Perspect. 130:1170022022. View Article : Google Scholar : PubMed/NCBI

80 

Dasgupta A, Nandi S, Gupta S, Roy S and Das C: To ub or not to ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. Biochim Biophys Acta Gene Regul Mech. 1867:1950332024. View Article : Google Scholar : PubMed/NCBI

81 

Ghate NB, Nadkarni KS, Barik GK, Tat SS, Sahay O and Santra MK: Histone ubiquitination: role in genome integrity and chromatin organization. Biochim Biophys Acta Gene Regul Mech. 1867:1950442024. View Article : Google Scholar : PubMed/NCBI

82 

Shu Q, Liu Y and Ai H: The emerging role of the histone H2AK13/15 ubiquitination: mechanisms of writing, reading, and erasing in DNA damage repair and disease. Cells. 14:3072025. View Article : Google Scholar : PubMed/NCBI

83 

Zambrano-Carrasco J, Zou J, Wang W, Sun X, Li J and Su H: Emerging roles of cullin-RING ubiquitin ligases in cardiac development. Cells. 13:2352024. View Article : Google Scholar : PubMed/NCBI

84 

Zhao X, Jiang B, Hu H, Mao F, Mi J, Li Z, Liu Q, Shao C and Gong Y: Zebrafish cul4a, but not cul4b, modulates cardiac and forelimb development by upregulating tbx5a expression. Hum Mol Genet. 24:853–864. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Zhang L, Xu X and Su X: Noncoding RNAs in cancer immunity: Functions, regulatory mechanisms, and clinical application. Mol Cancer. 19:482020. View Article : Google Scholar : PubMed/NCBI

86 

Song Z, Suo C, Liu Y, Jin L, Xie X, Liu J, Yu B, Wang Y, Zhang Z and Xie D: Comprehensive evaluation of non-coding RNA-mediated autophagy regulation in myocardial ischemia-reperfusion injury. Front Pharmacol. 16:15813412025. View Article : Google Scholar : PubMed/NCBI

87 

Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Liu Y, Yuan J, Zhang Y, Ma T, Ji Q, Tian S and Liu C: Non-coding RNA as a key regulator and novel target of apoptosis in diabetic cardiomyopathy: Current status and future prospects. Cell Signal. 128:1116322025. View Article : Google Scholar : PubMed/NCBI

89 

Aghaei-Zarch SM, Alipourfard I, Rasoulzadeh H, Najafi S, Aghaei-Zarch F, Partov S, Movafagh A, Jahanara A, Toolabi A, Sheikhmohammadi A, et al: Non-coding RNAs: an emerging player in particulate matter 2.5-mediated toxicity. Int J Biol Macromol. 235:1237902023. View Article : Google Scholar : PubMed/NCBI

90 

Sanjari Nia AH, Reyhani Ardabili M, Sheikhvand M, Bagheri-Mohammadi S, Niknejad H, Rasoulzadeh H, Movafagh A, Kharazi Neghad S, Baniasadi M, Ashrafi Asgarabad A, et al: Non-coding RNAs: A new frontier in benzene-mediated toxicity. Toxicology. 500:1536602023. View Article : Google Scholar : PubMed/NCBI

91 

Huang Y, Jiang B, Xia Y, Wang J, Ji C, Tong J, Chen T and Jiang Y: Downregulation of miR-133a contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish. Chemosphere. 251:1266102020. View Article : Google Scholar : PubMed/NCBI

92 

Smirnova L, Block K, Sittka A, Oelgeschläger M, Seiler AE and Luch A: MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: The case of sodium valproate. PLoS One. 9:e988922014. View Article : Google Scholar : PubMed/NCBI

93 

Xiao H, Zhang F, Zou Y, Li J, Liu Y and Huang W: The function and mechanism of long non-coding RNA-ATB in cancers. Front Physiol. 9:3212018. View Article : Google Scholar : PubMed/NCBI

94 

D'Angelo E and Agostini M: Long non-coding RNA and extracellular matrix: The hidden players in cancer-stroma cross-talk. Noncoding RNA Res. 3:174–177. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Ghorbanzadeh S, Poor-Ghassem N, Afsa M, Nikbakht M and Malekzadeh K: Long non-coding RNA NR2F2-AS1: Its expanding oncogenic roles in tumor progression. Hum Cell. 35:1355–1363. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Ye D, Bao Z, Yu Y, Han Z, Yu Y, Xu Z, Ma W, Yuan Y, Zhang L, Xu Y, et al: Inhibition of cardiomyocyte differentiation of human induced pluripotent stem cells by ribavirin: Implication for its cardiac developmental toxicity. Toxicology. 435:1524222020. View Article : Google Scholar : PubMed/NCBI

97 

Ronzoni L, Aghemo A, Rumi MG, Prati G, Colancecco A, Porretti L, Monico S, Colombo M and Cappellini MD: Ribavirin suppresses erythroid differentiation and proliferation in chronic hepatitis C patients. J Viral Hepat. 21:416–423. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Vishnoi A and Rani S: miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol Biol. 2595:1–12. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Ye J, Xu M, Tian X, Cai S and Zeng S: Research advances in the detection of miRNA. J Pharm Anal. 9:217–226. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Li W, Mu J, Ni S, Pei W, Wan L, Wu X, Zhu J, Zhang Z and Li L: Pentachlorophenol exposure delays the recovery of colitis in association with altered gut microbiota and purine metabolism. Environ Toxicol. 40:101–110. 2025. View Article : Google Scholar : PubMed/NCBI

101 

Xu EG, Khursigara AJ, Li S, Esbaugh AJ, Dasgupta S, Volz DC and Schlenk D: mRNA-miRNA-seq reveals neuro-cardio mechanisms of crude oil toxicity in red drum (Sciaenops ocellatus). Environ Sci Technol. 53:3296–3305. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Xu EG, Magnuson JT, Diamante G, Mager E, Pasparakis C, Grosell M, Roberts AP and Schlenk D: Changes in microRNA-mRNA signatures agree with morphological, physiological, and behavioral changes in larval mahi-mahi treated with deepwater horizon oil. Environ Sci Technol. 52:13501–13510. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Deng H, Bai Z, Huangfu C, Wang N, Chen M, Li G, Huang C, Ao T, Tang X, Xia T, et al: Gremlin1 repression-mediated mitochondrial network hyperfunction contributes to TCE-induced zebrafish cardiac defects. Cell Commun Signal. 23:3182025. View Article : Google Scholar : PubMed/NCBI

104 

Drake VJ, Koprowski SL, Lough J, Hu N and Smith SM: Trichloroethylene exposure during cardiac valvuloseptal morphogenesis alters cushion formation and cardiac hemodynamics in the avian embryo. Environ Health Perspect. 114:842–847. 2006. View Article : Google Scholar : PubMed/NCBI

105 

Jin H, Ji C, Ren F, Aniagu S, Tong J, Jiang Y and Chen T: AHR-mediated oxidative stress contributes to the cardiac developmental toxicity of trichloroethylene in zebrafish embryos. J Hazard Mater. 385:1215212020. View Article : Google Scholar : PubMed/NCBI

106 

Johnson PD, Goldberg SJ, Mays MZ and Dawson BV: Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat. Environ Health Perspect. 111:289–292. 2003. View Article : Google Scholar : PubMed/NCBI

107 

Long SM and Holdway DA: Acute toxicity of crude and dispersed oil to octopus pallidus (Hoyle, 1885) hatchlings. Water Res. 36:2769–2776. 2002. View Article : Google Scholar : PubMed/NCBI

108 

Sørhus E, Donald CE, Nakken CL, Perrichon P, Durif CMF, Shema S, Browman HI, Skiftesvik AB, Lie KK, Rasinger JD, et al: Co-exposure to UV radiation and crude oil increases acute embryotoxicity and sublethal malformations in the early life stages of atlantic haddock (Melanogrammus aeglefinus). Sci Total Environ. 859:1600802023. View Article : Google Scholar : PubMed/NCBI

109 

Khursigara AJ, Ackerly KL and Esbaugh AJ: Oil toxicity and implications for environmental tolerance in fish. Comp Biochem Physiol C Toxicol Pharmacol. 220:52–61. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Magnuson JT, Qian L, McGruer V, Cheng V, Volz DC and Schlenk D: Relationship between miR-203a inhibition and oil-induced toxicity in early life stage zebrafish (danio rerio). Toxicol Rep. 9:373–381. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Guo M, Li X, Choi M, Zhang J, Yan S, Ma D, Zeng J, Ding W, Wen Y, Li D, et al: Microcystin-LR prenatal exposure induces coronary heart disease through macrophage polarization imbalance mediated by trophoblast-derived extracellular vesicles. Sci Total Environ. 948:1749792024. View Article : Google Scholar : PubMed/NCBI

112 

Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI

113 

An Y and Duan H: The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI

114 

Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y and Tang C: Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med. 46:1958–1972. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Fan Y, Lv X, Chen Z, Peng Y and Zhang M: m6A methylation: Critical roles in aging and neurological diseases. Front Mol Neurosci. 16:11021472023. View Article : Google Scholar : PubMed/NCBI

116 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Zou S, Toh JD, Wong KH, Gao YG, Hong W and Woon EC: N(6)-Methyladenosine: A conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci Rep. 6:256772016. View Article : Google Scholar : PubMed/NCBI

120 

Yang L, Qi G, Rao W, Cen Y, Chen L, Li W and Pang Y: Aluminum causes irreversible damage to the development of hippocampal neurons by regulating m6A RNA methylation. Toxicol Lett. 399:34–42. 2024. View Article : Google Scholar : PubMed/NCBI

121 

Qian Q, Pu Q, Li X, Liu X, Ni A, Han X, Wang Z, Wang X, Yan J and Wang H: Acute/chronic triclosan exposure induces downregulation of m6A-RNA methylation modification via mettl3 suppression and elicits developmental and immune toxicity to zebrafish. Chemosphere. 352:1413952024. View Article : Google Scholar : PubMed/NCBI

122 

Gao Y, Li A, Zhang W, Pang S, Liang Y and Song M: Assessing the toxicity of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat Toxicol. 246:1061542022. View Article : Google Scholar : PubMed/NCBI

123 

Rezg R, El-Fazaa S, Gharbi N and Mornagui B: Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives. Environ Int. 64:83–90. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Liu J, Lin J, Chen J, Maimaitiyiming Y, Su K, Sun S, Zhan G and Hsu CH: Bisphenol C induces developmental defects in liver and intestine through mTOR signaling in zebrafish (Danio rerio). Chemosphere. 322:1381952023. View Article : Google Scholar : PubMed/NCBI

125 

Su K, Liu J, Chen J, Wu H, Tang W, Sun S, Lin J, Zhan G and Hsu CH: Bisphenol C induces cardiac developmental defects by disrupting m6A homeostasis. Environ Sci Technol. 58:17259–17269. 2024. View Article : Google Scholar : PubMed/NCBI

126 

Ji C, Tao Y, Li X, Wang J, Chen J, Aniagu S, Jiang Y and Chen T: AHR-mediated m6A RNA methylation contributes to PM2.5-induced cardiac malformations in zebrafish larvae. J Hazard Mater. 457:1317492023. View Article : Google Scholar : PubMed/NCBI

127 

Wang Y, Zou J and Zhou H: N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne). 15:14621462024. View Article : Google Scholar : PubMed/NCBI

128 

Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q and Song G: Chromatin accessibility: Biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther. 9:3402024. View Article : Google Scholar : PubMed/NCBI

129 

Fyodorov DV, Zhou BR, Skoultchi AI and Bai Y: Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol. 19:192–206. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Routh A, Sandin S and Rhodes D: Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci USA. 105:8872–8877. 2008. View Article : Google Scholar : PubMed/NCBI

131 

McBryant SJ, Adams VH and Hansen JC: Chromatin architectural proteins. Chromosome Res. 14:39–51. 2006. View Article : Google Scholar : PubMed/NCBI

132 

Eustermann S, Patel AB, Hopfner KP, He Y and Korber P: Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol. 25:309–332. 2024. View Article : Google Scholar : PubMed/NCBI

133 

Struhl K: Non-canonical functions of enhancers: Regulation of RNA polymerase III transcription, DNA replication, and V(D)J recombination. Trends Genet. 40:471–479. 2024. View Article : Google Scholar : PubMed/NCBI

134 

Wilkinson AL, Zorzan I and Rugg-Gunn PJ: Epigenetic regulation of early human embryo development. Cell Stem Cell. 30:1569–1584. 2023. View Article : Google Scholar : PubMed/NCBI

135 

Cao L, Luo Y, Guo X, Liu S, Li S, Li J, Zhang Z, Zhao Y, Zhang Q, Gao F, et al: SAFA facilitates chromatin opening of immune genes through interacting with anti-viral host RNAs. PLoS Pathog. 18:e10105992022. View Article : Google Scholar : PubMed/NCBI

136 

Lopes-Paciencia S and Ferbeyre G: Increased chromatin accessibility underpins senescence. FEBS J. 292:4112–4132. 2025. View Article : Google Scholar : PubMed/NCBI

137 

Grandi FC, Modi H, Kampman L and Corces MR: Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 17:1518–1552. 2022. View Article : Google Scholar : PubMed/NCBI

138 

Tang L, Song S, Hu C, Liu M, Lam PKS, Zhou B, Lam JCW and Chen L: Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and offspring embryonic development in zebrafish. Chemosphere. 256:1271692020. View Article : Google Scholar : PubMed/NCBI

139 

Liu Q, Van Bortle K, Zhang Y, Zhao MT, Zhang JZ, Geller BS, Gruber JJ, Jiang C, Wu JC and Snyder MP: Disruption of mesoderm formation during cardiac differentiation due to developmental exposure to 13-cis-retinoic acid. Sci Rep. 8:129602018. View Article : Google Scholar : PubMed/NCBI

140 

Guan G, Abulaiti A, Qu C, Chen CC, Gu Z, Yang J, Zhang T and Chen X, Zhou Z, Lu F and Chen X: Multi-omics panoramic analysis of HBV integration, transcriptional regulation, and epigenetic modifications in PLC/PRF/5 cell line. J Med Virol. 96:e296142024. View Article : Google Scholar : PubMed/NCBI

141 

Qi C, Jin X, Wang H and Xu D: Crosstalk between N6-methyladenosine and other epigenetic mechanisms in central nervous system development and disorders. Biomolecules. 15:10922025. View Article : Google Scholar : PubMed/NCBI

142 

Tan RZ, Jia J, Li T, Wang L and Kantawong F: A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother. 176:1169222024. View Article : Google Scholar : PubMed/NCBI

143 

Li W, Luo P, Chen Q, Cheng L, Gan L, Zhang F, Zhong H, Zheng L and Qian B: Epigenetic modifications in bladder cancer: Crosstalk between DNA methylation and miRNAs. Front Immunol. 16:15181442025. View Article : Google Scholar : PubMed/NCBI

144 

Buscariollo DL, Fang X, Greenwood V, Xue H, Rivkees SA and Wendler CC: Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice. PLoS One. 9:e875472014. View Article : Google Scholar : PubMed/NCBI

145 

Buscariollo DL, Breuer GA, Wendler CC and Rivkees SA: Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function. PLoS One. 6:e282962011. View Article : Google Scholar : PubMed/NCBI

146 

Fang X, Mei W, Barbazuk WB, Rivkees SA and Wendler CC: Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes. Am J Physiol Regul Integr Comp Physiol. 307:R1471–1487. 2014. View Article : Google Scholar : PubMed/NCBI

147 

Rohweder R, de Oliveira Schmalfuss T, Dos Santos Borniger D, Ferreira CZ, Zanardini MK, Lopes GPTF, Barbosa CP, Moreira TD, Schuler-Faccini L, Sanseverino MTV, et al: Caffeine intake during pregnancy and adverse outcomes: An integrative review. Reprod Toxicol. 123:1085182024. View Article : Google Scholar : PubMed/NCBI

148 

Rodriguez-Martinez A, Vuorinen EM, Shcherban A, Uusi-Mäkelä J, Rajala NKM, Nykter M and Kallioniemi A: Novel ZNF414 activity characterized by integrative analysis of ChIP-exo, ATAC-seq and RNA-seq data. Biochim Biophys Acta Gene Regul Mech. 1865:1948112022. View Article : Google Scholar : PubMed/NCBI

149 

Eisa-Beygi S, Benslimane FM, El-Rass S, Prabhudesai S, Abdelrasoul MKA, Simpson PM, Yalcin HC, Burrows PE and Ramchandran R: Characterization of endothelial cilia distribution during cerebral-vascular development in zebrafish (Danio rerio). Arterioscler Thromb Vasc Biol. 38:2806–2818. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Zhang L and Zhou J: Zebrafish: A smart tool for heart disease research. J Fish Biol. 105:1487–1500. 2024. View Article : Google Scholar : PubMed/NCBI

151 

Stainier DY, Kontarakis Z and Rossi A: Making sense of anti-sense data. Dev Cell. 32:7–8. 2015. View Article : Google Scholar : PubMed/NCBI

152 

Poon KL and Brand T: The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract. 2013:9–28. 2013.PubMed/NCBI

153 

Glickman NS and Yelon D: Cardiac development in zebrafish: Coordination of form and function. Semin Cell Dev Biol. 13:507–513. 2002. View Article : Google Scholar : PubMed/NCBI

154 

Salman HE and Yalcin HC: Computational modeling of blood flow hemodynamics for biomechanical investigation of cardiac development and disease. J Cardiovasc Dev Dis. 8:142021.PubMed/NCBI

155 

Wafer LN, Jensen VB, Whitney JC, Gomez TH, Flores R and Goodwin BS: Effects of environmental enrichment on the fertility and fecundity of zebrafish (Danio rerio). J Am Assoc Lab Anim Sci. 55:291–294. 2016.PubMed/NCBI

156 

Ducharme NA, Reif DM, Gustafsson JA and Bondesson M: Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing. Reprod Toxicol. 55:3–10. 2015. View Article : Google Scholar : PubMed/NCBI

157 

Khabib MNH, Sivasanku Y, Lee HB, Kumar S and Kue CS: Alternative animal models in predictive toxicology. Toxicology. 465:1530532022. View Article : Google Scholar : PubMed/NCBI

158 

Bambino K and Chu J: Zebrafish in toxicology and environmental health. Curr Top Dev Biol. 124:331–367. 2017. View Article : Google Scholar : PubMed/NCBI

159 

Evans T: Embryonic stem cells as a model for cardiac development and disease. Drug Discov Today Dis Models. 5:147–155. 2008. View Article : Google Scholar : PubMed/NCBI

160 

Keller G: Embryonic stem cell differentiation: Emergence of a new era in biology and medicine. Genes Dev. 19:1129–1155. 2005. View Article : Google Scholar : PubMed/NCBI

161 

Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG, Quaife-Ryan GA, Voges HK, Hodson MP, Ferguson C, Drowley L, et al: Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA. 114:E8372–E8381. 2017. View Article : Google Scholar : PubMed/NCBI

162 

Mills RJ, Parker BL, Quaife-Ryan GA, Voges HK, Needham EJ, Bornot A, Ding M, Andersson H, Polla M, Elliott DA, et al: Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell. 24:895–907.e6. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Aronson JK and Ferner RE: Biomarkers-A general review. Curr Protoc Pharmacol. Mar 17–2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

164 

Imbard A, Benoist JF and Blom HJ: Neural tube defects, folic acid and methylation. Int J Environ Res Public Health. 10:4352–4389. 2013. View Article : Google Scholar : PubMed/NCBI

165 

Movendane Y, Sipalo MG and Chan LCZ: Advances in folic acid biosensors and their significance in maternal, perinatal, and paediatric preventive medicine. Biosensors (Basel). 13:9122023. View Article : Google Scholar : PubMed/NCBI

166 

Ma Y, Zhang C, Gao XB, Luo HY, Chen Y, Li HH, Ma X and Lu CL: Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1. Sci Rep. 5:160932015. View Article : Google Scholar : PubMed/NCBI

167 

Zhao G, He F, Wu C, Li P, Li N, Deng J, Zhu G, Ren W and Peng Y: Betaine in inflammation: Mechanistic aspects and applications. Front Immunol. 9:10702018. View Article : Google Scholar : PubMed/NCBI

168 

Hoffmann L, Brauers G, Gehrmann T, Häussinger D, Mayatepek E, Schliess F and Schwahn BC: Osmotic regulation of hepatic betaine metabolism. Am J Physiol Gastrointest Liver Physiol. 304:G835–G846. 2013. View Article : Google Scholar : PubMed/NCBI

169 

Barak AJ, Beckenhauer HC and Tuma DJ: Betaine, ethanol, and the liver: A review. Alcohol. 13:395–398. 1996. View Article : Google Scholar : PubMed/NCBI

170 

Chen X, Luo J, Yang L, Guo Y, Fan Y, Liu J, Sun J, Zhang Y, Jiang Q, Chen T and Xi Q: miR-143-mediated responses to betaine supplement repress lipogenesis and hepatic gluconeogenesis by targeting MAT1a and MAPK11. J Agric Food Chem. 70:7981–7992. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qin Z, Chen R and Song D: Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review). Mol Med Rep 33: 66, 2026.
APA
Qin, Z., Chen, R., & Song, D. (2026). Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review). Molecular Medicine Reports, 33, 66. https://doi.org/10.3892/mmr.2025.13776
MLA
Qin, Z., Chen, R., Song, D."Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review)". Molecular Medicine Reports 33.2 (2026): 66.
Chicago
Qin, Z., Chen, R., Song, D."Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review)". Molecular Medicine Reports 33, no. 2 (2026): 66. https://doi.org/10.3892/mmr.2025.13776
Copy and paste a formatted citation
x
Spandidos Publications style
Qin Z, Chen R and Song D: Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review). Mol Med Rep 33: 66, 2026.
APA
Qin, Z., Chen, R., & Song, D. (2026). Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review). Molecular Medicine Reports, 33, 66. https://doi.org/10.3892/mmr.2025.13776
MLA
Qin, Z., Chen, R., Song, D."Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review)". Molecular Medicine Reports 33.2 (2026): 66.
Chicago
Qin, Z., Chen, R., Song, D."Deciphering epigenetic regulation in cardiac developmental toxicity: Mechanisms and implications (Review)". Molecular Medicine Reports 33, no. 2 (2026): 66. https://doi.org/10.3892/mmr.2025.13776
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team