You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Zhang L, Long J, Jiang W, Shi Y, He X, Zhou Z, Li Y, Yeung RO, Wang J, Matsushita K, et al: Trends in chronic kidney disease in China. N Engl J Med. 375:905–906. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cybulsky AV: Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 13:681–696. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
American Diabetes Association: 11 Microvascular complications and foot care: Standards of medical care in diabetes-2020. Diabetes Care. 43 (Suppl 1):S135–S151. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pena MJ, Mischak H and Heerspink HJ: Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. Diabetologia. 59:1819–1831. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bustamante P, Tsering T, Coblentz J, Mastromonaco C, Abdouh M, Fonseca C, Proença RP, Blanchard N, Dugé CL, Andujar RAS, et al: Circulating tumor DNA tracking through driver mutations as a liquid biopsy-based biomarker for uveal melanoma. J Exp Clin Cancer Res. 40:1962021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang M, Sun J and Cai Z: PCK2 inhibits lung adenocarcinoma tumor cell immune escape through oxidative stress-induced senescence as a potential therapeutic target. J Thorac Dis. 15:2601–2615. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, et al: Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J. 286:241–278. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tilija Pun N, Lee N, Song SH and Jeong CH: pitavastatin induces cancer cell apoptosis by blocking autophagy flux. Front Pharmacol. 13:8545062022. View Article : Google Scholar : PubMed/NCBI | |
|
Çiftçi YC, Yurtsever Y and Akgül B: Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med. 28:e185612024. View Article : Google Scholar : PubMed/NCBI | |
|
Kober L, Zehe C and Bode J: Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng. 109:2599–2611. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hotamisligil GS: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 140:900–917. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Shahzad K, Ghosh S, Mathew A and Isermann B: Methods to detect endoplasmic reticulum stress and apoptosis in diabetic nephropathy. Methods Mol Biol. 2067:153–173. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hetz C and Papa FR: The unfolded protein response and cell fate control. Mol Cell. 69:169–181. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guzmán Mendoza NA, Homma K, Osada H, Toda E, Ban N, Nagai N, Negishi K, Tsubota K and Ozawa Y: Neuroprotective effect of 4-phenylbutyric acid against photo-stress in the Retina. Antioxidants (Basel). 10:11472021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YY, Peng XF, Liu GY, Liu JS, Sun L, Liu H, Xiao L and He LY: Protein arginine methyltranferase-1 induces ER stress and epithe-lial-mesenchymal transition in renal tubular epithelial cells and contributes to diabetic nephropathy. Biochim Biophys Acta Mol Basis Dis. 1865:2563–2575. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H and Sun HL: LncRNA TCF7 triggered endoplasmic reticulum stress through a sponge action with miR-200c in patients with diabetic nephropathy. Eur Rev Med Pharmacol Sci. 23:5912–5922. 2019.PubMed/NCBI | |
|
Chen N, Song S, Yang Z, Wu M, Mu L, Zhou T and Shi Y: ChREBP deficiency alleviates apoptosis by inhibiting TXNIP/oxidative stress in diabetic nephropathy. J Diabetes Complications. 35:1080502021. View Article : Google Scholar : PubMed/NCBI | |
|
Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, et al: Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 21:556–563. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Oshima M, Shimizu M, Yamanouchi M, Toyama T, Hara A, Furuichi K and Wada T: Trajectories of kidney function in diabetes: A clinicopathological update. Nat Rev Nephrol. 17:740–750. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Garg P: A review of podocyte biology. Am J Nephrol. 47 (Suppl 1):S3–S13. 2018. View Article : Google Scholar | |
|
O'Toole JF: Renal manifestations of genetic mitochondrial disease. Int J Nephrol Renovasc Dis. 7:57–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nath KA: Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis. 20:1–17. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Tang J, Yao D, Yan H, Chen X, Wang L and Zhan H: The role of MicroRNAs in the pathogenesis of diabetic nephropathy. Int J Endocrinol. 2019:87190602019. View Article : Google Scholar : PubMed/NCBI | |
|
Bazzi C, Bakoush O and Gesualdo L: Proteinuria: From molecular to clinical applications in glomerulonephritis. Int J Nephrol. 2012:4249682012. View Article : Google Scholar : PubMed/NCBI | |
|
Edirs S, Jiang L, Xin X and Aisa HA: Kursi Wufarikun Ziyabit improves the physiological changes by regulating endoplasmic reticulum stress in the type 2 diabetes db/db mice. Evid Based Complement Alternat Med. 2021:21001282021. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Cao A, Chu S, Wang Y, Zang Y, Mao X, Wang H, Wang Y, Liu C, Zhang X and Peng W: Astragaloside IV attenuates podocyte apoptosis mediated by endoplasmic reticulum stress through upregulating sarco/endoplasmic reticulum Ca2+-ATPase 2 expression in diabetic nephropathy. Front Pharmacol. 7:5002016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Wang YS, Zhao HM, Lu P, Li M, Li W, Cui HT, Zhang ZY and Lv SQ: Plantamajoside improves type 2 diabetes mellitus pancreatic β-cell damage by inhibiting endoplasmic reticulum stress through Dnajc1 up-regulation. World J Diabetes. 16:990532025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HX, Yuan J and Li RS: Thalidomide mitigates apoptosis via endoplasmic reticulum stress in diabetic nephropathy. Endocr Metab Immune Disord Drug Targets. 22:787–794. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Van Krieken R, Mehta N, Wang T, Zheng M, Li R, Gao B, Ayaub E, Ask K, Paton JC, Paton AW, et al: Cell surface expression of 78-kDa glucose-regulated protein (GRP78) mediates diabetic nephropathy. J Biol Chem. 294:7755–7768. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang MZ, Wang Y, Paueksakon P and Harris RC: Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes. 63:2063–2072. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Hou XF, Wang G, Zhong QX, Liu Y, Qiu HH, Yang N, Gu JF, Wang CF, Zhang L, et al: Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress related inflammatory responses. J Ethnopharmacol. 193:433–444. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yao F, Li Z, Ehara T, Yang L, Wang D, Feng L, Zhang Y, Wang K, Shi Y, Duan H and Zhang L: Fatty acid-binding protein 4 mediates apoptosis via endoplasmic reticulum stress in mesangial cells of diabetic nephropathy. Mol Cell Endocrinol. 411:232–242. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ge J, Miao JJ, Sun XY and Yu JY: Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, improves diabetic nephropathy via activating peroxisome proliferator-activated receptor (PPAR)-α/γ and attenuating endoplasmic reticulum stress in rats. J Ethnopharmacol. 189:238–249. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Park MJ, Han HJ and Kim DI: Lipotoxicity-Induced PRMT1 exacerbates mesangial cell apoptosis via endoplasmic reticulum stress. Int J Mol Sci. 18:14212017. View Article : Google Scholar : PubMed/NCBI | |
|
Khoi CS, Xiao CQ, Hung KY, Lin TY and Chiang CK: Oxidative stress-induced growth inhibitor (OSGIN1), a Target of X-Box-Binding Protein 1, protects palmitic acid-induced vascular lipotoxicity through maintaining autophagy. Biomedicines. 10:9922022. View Article : Google Scholar : PubMed/NCBI | |
|
Jeon HY, Moon CH, Kim EB, Sayyed ND, Lee AJ and Ha KS: Simultaneous attenuation of hyperglycemic memory-induced retinal, pulmonary, and glomerular dysfunctions by proinsulin C-peptide in diabetes. BMC Med. 21:492023. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao Y, Liu X, Shi J, An J, Yu T, Zou G, Li W and Zhuo L: Unraveling the interplay of ferroptosis and immune dysregulation in diabetic kidney disease: A comprehensive molecular analysis. Diabetol Metab Syndr. 16:862024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Yang Z, Li J, Wu T, Li X, Zhao L, Wang W, Yu W, Zhang G and Xu Y: Targeting programmed cell death in diabetic kidney disease: from molecular mechanisms to pharmacotherapy. Mol Med. 30:2652024. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Hao Y, Li H, Liu Q, Gao F, Liu W and Duan H: Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. Int J Mol Med. 33:809–816. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tian N, Gao Y, Wang X, Wu X, Zou D, Zhu Z, Han Z, Wang T and Shi Y: Emodin mitigates podocytes apoptosis induced by endoplasmic reticulum stress through the inhibition of the PERK pathway in diabetic nephropathy. Drug Des Devel Ther. 12:2195–2211. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Garner KL, Betin VMS, Pinto V, Graham M, Abgueguen E, Barnes M, Bedford DC, McArdle CA and Coward RJM: Enhanced insulin receptor, but not PI3K,signalling protects podocytes from ER stress. Sci Rep. 8:39022018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Gao X, Chen S, Zhao M, Chen J, Liu R, Cheng S, Qi M, Wang S and Liu W: Cyclin-dependent kinase 5 contributes to endoplasmic reticulum stress induced podocyte apoptosis via promoting MEKK1 phosphorylation at Ser280 in diabetic nephropathy. Cell Signal. 31:31–40. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cybulsky AV: The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 84:25–33. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Z, Liu N and Sun M: The distinct biological role of JAML positions it as a promising target for treating human cancers and a range of other diseases. Front Immunol. 16:15584882025. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Z, Tang L, Wu L, Cui S, Hong Q, Cai G, Wu D, Fu B, Wei R and Chen X: Na+/H+ exchanger-1 reduces podocyte injury caused by endoplasmic reticulum stress via autophagy activation. Lab Invest. 94:439–454. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fang L, Li X, Luo Y, He W, Dai C and Yang J: Autophagy inhibition induces podocyte apoptosis by activating the proapoptotic pathway of endoplasmic reticulum stress. Exp Cell Res. 322:290–301. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Wang Y, Zhang X, Zang Y, Zhang Y, Wang L, Wang H, Wang Y, Cao A and Peng W: Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep. 7:68522017. View Article : Google Scholar : PubMed/NCBI | |
|
Kato M: Intercellular transmission of endoplasmic reticulum stress through gap junction targeted by microRNAs as a keystep of diabetic kidney diseases? Ann Transl Med. 9:8272021. View Article : Google Scholar : PubMed/NCBI | |
|
Liang X, Duan N, Wang Y, Shu S, Xiang X, Guo T, Yang L, Zhang S, Tang X and Zhang J: Advanced oxidation protein products induce endothelial-to-mesenchymal transition in human renal glomerular endothelial cellsthrough induction of endoplasmic reticulum stress. J Diabetes Complications. 30:573–579. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q and Shen T: Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail. 45:21465122023. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Chen Z, Hu J, Feng J, Zhu Z, Fan Y, Lin Q and Ding G: Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway. Front Cell Dev Biol. 9:7692132021. View Article : Google Scholar : PubMed/NCBI | |
|
Mega C, Teixeira-de-Lemos E, Fernandes R and Reis F: Renoprotective effects of the dipeptidyl peptidase-4 inhibitor sitagliptin: A review in type 2 diabetes. J Diabetes Res. 2017:51642922017. View Article : Google Scholar : PubMed/NCBI | |
|
Feng A, Yin R, Xu R, Zhang B and Yang L: An update on renal tubular injury as related to glycolipid metabolism in diabetic kidney disease. Front Pharmacol. 16:15590262025. View Article : Google Scholar : PubMed/NCBI | |
|
Bondue T, van den Heuvel L, Levtchenko E and Brock R: The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol. 38:327–344. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Dong XJ, Ding MR, You CY, Lin X, Wang Y, Wu MJ, Xu GF and Wang GD: Resveratrol decreases high glucose-induced apoptosis in renal tubular cells via suppressing endoplasmic reticulum stress. Mol Med Rep. 22:4367–4375. 2020.PubMed/NCBI | |
|
Zhang J, Cao P, Gui J, Wang X, Han J, Wang Y and Wang G: Arc-tigenin ameliorates renal impairment and inhibits endoplasmic reticulum stress in diabetic db/db mice. Life Sci. 223:194–201. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Pang X, Shi X, Zhang Y, Peng Z and Xing Y: Ginkgo biloba extract EGB761 ameliorates the extracellular matrix accumulation and mesenchymal transformation of renal tubules in diabetic kidney disease by inhibiting endoplasmic reticulum stress. Biomed Res Int. 2021:66572062021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang KH, Guan SS, Lin WH, Wu CT, Sheu ML, Chiang CK and Liu SH: Role of calbindin-D28k in diabetes-associated advanced glycation end-products-induced renal proximal tubule cell injury. Cells. 8:6602019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Sun Y, Lin S, Xu Y and Zhao D: Histone deacetylase inhibitor valproic acid attenuates high glucoseinduced endoplas-mic reticulum stress and apoptosis in NRK52E cells. Mol Med Rep. 22:4041–4047. 2020.PubMed/NCBI | |
|
Shibusawa R, Yamada E, Okada S, Nakajima Y, Bastie CC, Maeshima A. Kaira K and Yamada M: Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci Rep. 9:98872019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Wang Q, Guo F, Ma X, Wang J, Zhao Y, Yan Y and Qin G: Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. J Cell Physiol. 236:1454–1468. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fang L, Xie D, Wu X, Cao H, Su W and Yang J: Involvement of endoplasmic reticulum stress in albuminuria induced inflam-masome activation in renal proximal tubular cells. PLoS One. 8:e723442013. View Article : Google Scholar : PubMed/NCBI | |
|
Kang JM, Lee HS, Kim J, Yang DH, Jeong HY, Lee YH, Kim DJ, Park SH, Sung M, Kim J, et al: Beneficial effect of Chloroquine and Amodiaquine on type 1 Diabetic Tubulopathy by attenuating mitochondrial Nox4 and endoplasmic reticulum stress. J Korean Med Sci. 35:e3052020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun H, Yuan Y and Sun Z: Update on mechanisms of renal tubule injury caused by advanced glycation end products. Biomed Res Int. 2016:54751202019.PubMed/NCBI | |
|
Iwai T, Kume S, Chin-Kanasaki M, Kuwagata S, Araki H, Takeda N, Sugaya T, Uzu T, Maegawa H and Araki SI: Stearoyl-CoA Desaturase-1 protects cells against lipotoxicity-mediated apoptosis in proximal tubular cells. Int J Mol Sci. 17:18682016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Yang JR, Chen XM, Cai GY, Lin LR and He YN: Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy. Am J Physiol Cell Physiol. 308:C621–C630. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Barati MT, Powell DW, Kechavarzi BD, Isaacs SM, Zheng S, Epstein PN, Cai L, Coventry S, Rane MJ and Klein JB: Differential expression of endoplasmic reticulum stress-response proteins in different renal tubule subtypes of OVE26 diabetic mice. Cell Stress Chaperones. 21:155–166. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Chen DQ, Han JX, Zhao TT and Li SJ: A review of traditional Chinese medicine in treating renal interstitial fibrosis via endoplasmic reticulum stress-mediated apoptosis. Biomed Res Int. 2021:66677912021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Lu L, Chen S, Xie J, Lu S, Zhou Y and Jiang H: PERK overexpression-mediated Nrf2/HO-1 pathway alleviates hypoxia/reoxygenation-induced injury in neonatal murine cardiomyocytes via improving endoplasmic reticulum stress. Biomed Res Int. 2020:64580602020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Feng H, Peng C, Zhang Z, Yuan Q, Gao H, Tang S and Xie C: Renoprotective effects of tanshinone IIA: A literature review. Molecules. 28:19902023. View Article : Google Scholar : PubMed/NCBI | |
|
Nakka VP, Prakash-Babu P and Vemuganti R: Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: Potential therapeutic targets for acute CNS injuries. Mol Neurobiol. 53:532–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu M, Li S, Jin L, Feng P, Kong Y, Zhao X, Lin Y, Xu Y, Li C and Wang W: Combination of chymostatin and aliskiren attenuates ER stress induced by lipid overload in kidney tubular cells. Lipids Health Dis. 17:1832018. View Article : Google Scholar : PubMed/NCBI | |
|
Chai H, Yao S, Gao Y, Hu Q and Su W: Developments in the connection between epithelial-mesenchymal transition and endoplasmic reticulum stress (Review). Int J Mol Med. 56:1022025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang WW, Liu YL, Wang MZ, Li H, Liu BH, Tu Y, Yuan CC, Fang QJ, Chen JX, Wang J, et al: Inhibition of renal tubular epithelial mesenchymal transition and endoplasmic reticulum stress-induced apoptosis with shenkang injection attenuates diabetic tubulopathy. Front Pharmacol. 12:6627062021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Ke B, Wang C, Xiong X, Feng X and Yan H: Targeting ion channel networks in diabetic kidney disease: from molecular crosstalk to precision therapeutics and clinical innovation. Front Med (Lausanne). 12:16077012025. View Article : Google Scholar : PubMed/NCBI | |
|
Jo HJ, Yang JW, Park JH, Choi ES, Lim CS, Lee S and Han CY: Endoplasmic reticulum stress increases DUSP5 expression via PERK-CHOP pathway, leading to hepatocyte death. Int J Mol Sci. 20:43692019. View Article : Google Scholar : PubMed/NCBI | |
|
Hu H, Tian M, Ding C and Yu S: The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum Stress-Induced apoptosis and microbial infection. Front Immunol. 9:30832019. View Article : Google Scholar : PubMed/NCBI | |
|
Jin R, Zhao A, Han S, Zhang D, Sun H, Li M, Su D and Liang X: The interaction of S100A16 and GRP78 actives endoplasmic reticulum stress-mediated through the IRE1α/XBP1 pathway in renal tubulointerstitial fibrosis. Cell Death Dis. 12:9422021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y, Zhang J, Xiao W, Lee K, Li Z, Wen J, He L, Gui D, Xue R, Jian G, et al: Rtn1a-Mediated endoplasmic reticulum stress in podocyte injury and diabetic nephropathy. Sci Rep. 7:3232017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang GQ, Tao YK, Bai YP, Yan ST and Zhao SP: Inhibitory effects of simvastatin on oxidized low-density lipoprotein-induced endoplasmic reticulum stress and apoptosis in vascular endothelial cells. Chin Med J (Engl). 131:950–955. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ni L, Yang L and Lin Y: Recent progress of endoplasmic reticulum stress in the mechanism of atherosclerosis. Front Cardiovasc Med. 11:14134412024. View Article : Google Scholar : PubMed/NCBI | |
|
Li HY, Huang LF, Huang XR, Wu D, Chen XC, Tang JX, An N, Liu HF and Yang C: Endoplasmic reticulum stress in systemic lupus erythematosus and lupus nephritis: Potential therapeutic target. J Immunol Res. 2023:76258172023. View Article : Google Scholar : PubMed/NCBI | |
|
Shu S, Wang H, Zhu J, Liu Z, Yang D, Wu W, Cai J, Chen A, Tang C and Dong Z: Reciprocal regulation between ER stress and autophagy in renal tubular fibrosis and apoptosis. Cell Death Dis. 12:10162021. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Zhang J, Su X, Yang Y, Lai J, Wei X, Chen H, Liu Y, Wang H and Sun L: Calpain1 inhibition enhances autophagy-lysosomal pathway and ameliorates tubulointerstitial fibrosis in Nephronophthisis. Mol Med. 31:1662025. View Article : Google Scholar : PubMed/NCBI | |
|
Laorodphun P, Cherngwelling R, Panya A and Arjinajarn P: Curcumin protects rats against gentamicin-induced nephrotoxicity by amelioration of oxidative stress, endoplasmic reticulum stress and apoptosis. Pharm Biol. 60:491–500. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma N, Xu N, Yin D, Zheng P, Liu W, Wang G, Hui Y, Han G, Yang C and Cheng X: Levels of circulating GRP78 and CHOP in endoplasmic reticulum stress pathways in Chinese type 2 diabetic kidney disease patients. Medicine (Baltimore). 100:e268792021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao DM, Zhong R, Wang XT and Yan ZH: Mitochondrial dysfunction in diabetic nephropathy: Insights and therapeutic avenues from traditional Chinese medicine. Front Endocrinol (Lausanne). 15:14294202024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan DY and Xu B: The role of autophagy in manganese-induced neurotoxicity. Front Neurosci. 14:5747502020. View Article : Google Scholar : PubMed/NCBI | |
|
Abo-Zaid OA, Moawed FS, Taha EF, Ahmed ESA and Kawara RS: Melissa officinalis extract suppresses endoplasmic reticulum stress-induced apoptosis in the brain of hypothyroidism-induced rats exposed to γ-radiation. Cell Stress Chaperones. 28:709–720. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kong FJ, Ma LL, Guo JJ, Xu LH, Li Y and Qu S: Endoplasmic reticulum stress/autophagy pathway is involved in diabetes induced neuronal apoptosis and cognitive decline in mice. Clin Sci (Lond). 132:111–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tomicic MT, Meise R, Aasland D, Berte N, Kitzinger R, Krämer OH, Kaina B and Christmann M: Apoptosis induced by temozolomide and nimustine in glioblastoma cells is supported by JNK/c-Jun-mediated induction of the BH3-only protein BIM. Oncotarget. 6:33755–33768. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Z, Liu G, Hu Z, Shi W, Chen B, Zou P and Li X: Grape seed proanthocyanidins protect against streptozotocin-induced diabetic nephropathy by attenuating endoplasmic reticulum stress-induced apoptosis. Mol Med Rep. 18:1447–1454. 2018.PubMed/NCBI | |
|
Sun XY, Qin HJ, Zhang Z, Xu Y, Yang XC, Zhao DM, Li XN and Sun LK: Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stress-induced apoptosis. Mol Med Rep. 13:661–668. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki Y, Inoue T, Murai M, Suzuki-Karasaki M, Ochiai T and Ra C: Depolarization potentiates TRAIL-induced apoptosis in human melanoma cells: role for ATP-sensitive K+ channels and endoplasmic reticulum stress. Int J Oncol. 41:465–475. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hibi M, Lin A, Smeal T, Minden A and Karin M: Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7:2135–2148. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Shang H, Cao Z, Zhao J, Guan J, Liu J, Peng J, Chen Y, Joseph Sferra T, Sankararaman S and Lin J: Babao Dan induces gastric cancer cell apoptosis via regulating MAPK and NF-κB signaling pathways. J Int Med Res. 47:5106–5119. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Long Y, Xing Z and Zhang D: C-Jun recruits the NSL complex to regulate its target gene expression by modulating H4K16 acetylation and promoting the release of the repressive NuRD complex. Oncotarget. 6:14497–14506. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F and Carpinelli AR: Lipotoxicity and β-Cell failure in type 2 diabetes: Oxidative stress linked to NADPH oxidase and ER stress. Cells. 10:33282021. View Article : Google Scholar : PubMed/NCBI | |
|
Chhabra R, Dubey R and Saini N: Gene expression profiling indicate role of ER stress in miR-23a ~ 27a ~ 24 - 2 cluster induced apoptosis in HEK293T cells. RNA Biol. 8:648–664. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Hernández MA, González R, de la Rosa ÁJ, Gallego P, Ordóñez R, Navarro-Villarán E, Contreras L, Rodríguez-Arribas M, González-Gallego J, Álamo-Martínez JM, et al: Molecular characterisation of autophagic and apoptotic signalling induced by sorafenib in liver cancer cells. J Cell Physiol. 234:692–708. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng T, Peng L, Chao H, Xi H, Fu B, Wang Y, Zhu Z and Wang G: IRE1α-TRAF2-ASK1 complex-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to CXC195-induced apoptosis in human bladder carcinoma T24 cells. Biochem Biophys Res Commun. 460:530–536. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Liang Y, Lin Y, Liu Y and YouYou Yin W: IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells. Biomed Pharmacother. 82:281–289. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ha J, Kang E, Seo J and Cho S: Phosphorylation dynamics of JNK signaling: Effects of dual-specificity phosphatases (DUSPs) on the JNK pathway. Int J Mol Sci. 20:61572019. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Chen J, Lin L, Pan G, Zhang S, Chen H, Zhang M, Xuan Y, Wang Y and You Z: Quzhou Fructus Aurantii Extract suppresses inflammation via regulation of MAPK, NF-κB, and AMPK signaling pathway. Sci Rep. 10:15932020. View Article : Google Scholar : PubMed/NCBI | |
|
Muraleva NA, Tikhonov DI, Zhdankina AA, Plotnikov MB, Khlebnikov AI, Logvinov SV and Kolosova NG: Alterations of JNK signaling pathway activity in the rat retina: Effects of age, age-related macular degeneration-like pathology, and a JNK inhibitor (IQ-1S). Cells. 14:8962025. View Article : Google Scholar : PubMed/NCBI | |
|
Bain J, Later L, Elliot M, Shpiro N, Hastie CJ, Mclauchlan H, Klevernic I, Arthur JS, Alessi DR and Cohen P: The selectivity of protein kinase inhibitors: A further update. Biochem J. 408:297–315. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, et al: SP600125, an anthrapyrazolone inhibitor of Jun N-Terminal kinase. Proc Natl Acad Sci USA. 98:136812021. View Article : Google Scholar | |
|
Inesta-Vaquera FA, Campbell DG, Arthur JS and Cuenda A: ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis. Biochem Biophy Res Commun. 399:84–90. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Inesta-Vaquera F, Niepel M, Zhang J, Ficarro SB, Machleidt T, Xie T, Marto JA, Kim N, Sim T, et al: Discovery of potent and selective covalent inhibitors of JNK. Chem Biol. 19:140–154. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lupachyk S, Watcho P, Stavniichuk R, Shevalye H and Obrosova IG: Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes. 62:944–952. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mei Y, Thompson MD, Cohen RA and Tong X: Endoplasmic reticulum stress and related pathological processes. J Pharmacol Biomed Anal. 1:10001072013.PubMed/NCBI | |
|
Zhang SX, Sanders E, Fliesler SJ and Wang JJ: Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res. 125:30–40. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Faria JA, Reis PA, Reis MT, Rosado GL, Pinheiro GL, Mendes GC and Fontes EP: The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress- and osmotic stress-induced NRP-mediated cell-death signaling pathway. BMC Plant Biol. 11:1292011. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai TC, Lai KH, Su JH, Wu YJ and Sheu JH: 7-Acetylsinumaximol B induces apoptosis and autophagy in human gastric carcinoma cells through Mitochondria Dysfunction and activation of the PERK/eIF2α/ATF4/CHOP signalling pathway. Mar Drugs. 16:1042018. View Article : Google Scholar : PubMed/NCBI | |
|
Narasimhan M and Rajasekaran NS: Reductive potential-a savior turns stressor in protein aggregation cardiomyopathy. Biochim Biophys Acta. 1852:53–60. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu K, Li B, Zhang X, Fang Y, Zeng S, Hu W, Liu X, Liu X, Lu Z, Li X, et al: Correction for Wu et al., ‘CSFV restricts necroptosis to sustain infection by inducing autophagy/mitophagy-targeted degradation of RIPK3’. Microbiol Spectr. 13:e03188242025. View Article : Google Scholar : PubMed/NCBI | |
|
Koniari I, Velissaris D, Kounis NG, Koufou E, Artopoulou E, de Gregorio C, Mplani V, Paraskevas T, Tsigkas G, Hung MY, et al: Anti-diabetic therapy, heart failure and oxidative stress: An update. J Clin Med. 11:46602022. View Article : Google Scholar : PubMed/NCBI | |
|
Gonen N, Sabath N, Burge CB and Shalgi R: Widespread PERK-dependent repression of ER targets in response to ER stress. Sci Rep. 9:43302019. View Article : Google Scholar : PubMed/NCBI | |
|
Nita M and Grzybowski A: Antioxidative role of heterophagy, autophagy, and mitophagy in the retina and their association with the age-related macular degeneration (AMD) etiopathogenesis. Antioxidants (Basel). 12:13682023. View Article : Google Scholar : PubMed/NCBI | |
|
Bae D, Jones RE, Piscopo KM, Tyagi M, Shepherd JD and Hollien J: Regulation of Blos1 by IRE1 prevents the accumulation of Huntingtin protein aggregates. Mol Biol Cell. 33:ar1252022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin B, Ishikawa T, Taniguchi M, Ninagawa S, Okada T, Kagaya S and Mori K: Development of a rapid in vivo assay to evaluate the efficacy of IRE1-specific inhibitors of the unfolded protein response using medaka fish. Cell Struct Funct. 45:23–31. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y and Qian L: β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res. 62:71–89. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Flintoaca Alexandru PR, Chiritoiu GN, Lixandru D, Zurac S, Ionescu-Targoviste C and Petrescu SM: EDEM1 regulates the insulin mRNA level by inhibiting the endoplasmic reticulum stress-induced IRE1/JNK/c-Jun pathway. iScience. 26:1079562023. View Article : Google Scholar : PubMed/NCBI | |
|
Flores-Santibáñez F, Medel B, Bernales JI and Osorio F: Understanding the role of the unfolded protein response sensor IRE1 in the biology of antigen presenting cells. Cells. 8:15632019. View Article : Google Scholar : PubMed/NCBI | |
|
Arunagiri A, Haataja L, Cunningham CN, Shrestha N, Tsai B, Qi L, Liu M and Arvan P: Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann NY Acad Sci. 1418:5–19. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Figueroa-Juárez E, Noriega LG, Pérez-Monter C, Alemán G, Hernández-Pando R, Correa-Rotter R, Ramírez V, Tovar AR, Torre-Villalvazo I and Tovar-Palacio C: The role of the unfolded protein response on renal lipogenesis in C57BL/6 mice. Biomolecules. 11:732021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, He S, Ye W, Shen J, Zhao K, Zhang Y, Zhang R, Wei J, Cao S, Chen K, et al: Surf4 facilitates reprogramming by activating the cellular response to endoplasmic reticulum stress. Cell Prolif. 54:e131332021. View Article : Google Scholar : PubMed/NCBI | |
|
Fu YL, Han DY, Wang YJ, Di XJ, Yu HB and Mu TW: Remodeling the endoplasmic reticulum proteostasis network restores proteostasis of pathogenic GABAA receptors. PLoS One. 13:e02079482018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Qu S, Zhang Z, Tan L, Chen X, Zhong HJ and Chong CM: Strategies targeting endoplasmic reticulum stress to improve Parkinson's disease. Front Pharmacol. 14:12888942023. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez-Martí A, Ramakrishnan S, Li J, Dugourd A, Molenaar MR, De La Motte LR, Grand K, Mansouri A, Parisot M, Lienkamp SS, et al: Reducing lipid bilayer stress by monounsaturated fatty acids protects renal proximal tubules in diabetes. Elife. 11:e743912022. View Article : Google Scholar : PubMed/NCBI | |
|
Hollien J and Weissman JS: Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 313:104–107. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Huang M, Cai S and Su J: The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 20:53762019. View Article : Google Scholar : PubMed/NCBI | |
|
Wise R, Duhachek-Muggy S, Qi Y, Zolkiewski M and Zolkiewska A: Protein disulfide isomerases in the endoplasmic reticulum promote anchorage-independent growth of breast cancer cells. Breast Cancer Res Treat. 157:241–252. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schäffer DE, Iyer LM, Burroughs AM and Aravind L: Functional innovation in the evolution of the calcium-dependent system of the eukaryotic endoplasmic reticulum. Front Genet. 11:342020. View Article : Google Scholar : PubMed/NCBI | |
|
AlBashtawi J, Al-Jaber H, Ahmed S and Al-Mansoori L: Impact of obesity-related endoplasmic reticulum stress on cancer and associated molecular targets. Biomedicines. 12:7932024. View Article : Google Scholar : PubMed/NCBI | |
|
Park SJ, Li C and Chen YM: Endoplasmic reticulum calcium homeostasis in kidney disease: Pathogenesis and therapeutic targets. Am J Pathol. 191:256–265. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Krebs J, Agellon LB and Michalak M: Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem. Biophys Res Commun. 460:114–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lim W, Yang C, Jeong M, Bazer FW and Song G: Coumestrol induces mitochondrial dysfunction by stimulating ROS production and calcium ion influx into mitochondria in human placental choriocarcinoma cells. Mol Hum Reprod. 23:786–802. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bahar E, Kim H and Yoon H: ER stress-mediated signaling: Action potential and ca(2+) as key players. Int J Mol Sci. 17:15582016. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Q, Chen Y, Chen D, Zhao H, Feng Y, Meng Q, Zhao Y and Zhang H: Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell. 185:4082–4098.e22. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al: Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 25:193–205. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
La Rovere RM, Roest G, Bultynck G and Parys JB: Intracellular ca(2+) signalling and ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium. 60:74–87. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sakaki K, Wu J and Kaufman RJ: Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem. 283:15370–15380. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Levin-Salomon V, Bialik S and Kimchi A: DAP-kinase and autophagy. Apoptosis. 19:346–356. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong Y, Jin C, Han J, Zhu J, Liu Q, Sun D, Xia X, Zhang Y and Peng X: Diosgenin protects against kidney Injury and mitochondrial apoptosis Induced by 3-MCPD through the regulation of ER stress, Ca(2+) homeostasis, and Bcl2 expression. Mol Nutr Food Res. 65:e20012022021. View Article : Google Scholar : PubMed/NCBI | |
|
Pu Q, Yu L, Wang X, Yan H, Xie Y, Jiang Y and Yang Z: Immunomodulatory effect of traditional Chinese medicine combined with systemic therapy on patients with liver cancer: A systemic review and network meta-analysis. J Cancer. 13:3280–3296. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wan CP, Gao LX, Hou LF, Yang XQ, He PL, Yang YF, Tang W, Yue JM, Li J and Zuo JP: Astragaloside II triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity. Acta Pharmacol Sin. 34:522–530. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shen L, Luo H, Fan L, Tian X, Tang A, Wu X, Dong K and Su Z: Potential immunoregulatory mechanism of plant saponins: A review. Molecules. 29:1132023. View Article : Google Scholar : PubMed/NCBI | |
|
Nalbantsoy A, Nesil T, Yılmaz-Dilsiz O, Aksu G, Khan S and Bedir E: Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. J Ethnopharmacol. 139:574–581. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ju Y, Su Y, Chen Q, Ma K, Ji T, Wang Z and Li W and Li W: Protective effects of astragaloside IV on endoplasmic reticulum stress-induced renal tubular epithelial cells apoptosis in type 2 diabetic nephropathy rats. Biomed Pharmacother. 109:84–92. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Gui D, Chen J, He D, Luo Y and Wang N: Down-regulation of PERK-ATF4-CHOP pathway by astragaloside IV is associated with the inhibition of endoplasmic reticulum stress-induced podocyte apoptosis in diabetic rats. Cell Physiol Biochem. 33:1975–1987. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang ZS, Xiong F, Xie XH, Chen D, Pan JH and Cheng L: Astragaloside IV attenuates proteinuria in streptozotocin-induced diabetic nephropathy via the inhibition of endoplasmic reticulum stress. BMC Nephrol. 16:442015. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Wang W, Xue J, Gu Y and Lin S: Meta-analysis of the clinical value of Astragalus membranaceus in diabetic nephropathy. J Ethnopharmacol. 133:412–419. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Xue HZ, Chen Y, Wang SD, Yang YM, Cai LQ, Zhao JX, Huang WJ and Xiao YH: Radix astragali and its representative extracts for diabetic nephropathy: Efficacy and molecular mechanism. J Diabetes Res. 2024:52161132024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y and Wang J: Possible mechanism for the protective effect of active ingredients of astragalus membranaceus on diabetes nephropathy. J Asian Nat Prod Res. 26:1276–1284. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Shergis JL, Yang L, Zhang AL, Guo X, Zhang L, Zhou S, Zeng L, Mao W and Xue CC: Astragalus membranaceus (Huang Qi) as adjunctive therapy for diabetic kidney disease: an updated systematic review and meta-analysis. J Ethnopharmacol. 239:1119212019. View Article : Google Scholar : PubMed/NCBI | |
|
Guo JC, Pan HC, Yeh BY, Lu YC, Chen JL, Yang CW, Chen YC, Lin YH and Chen HY: Associations between using Chinese herbal medicine and long-term outcome among pre-dialysis diabetic nephropathy patients: A retrospective population-based cohort study. Front Pharmacol. 12:6165222021. View Article : Google Scholar : PubMed/NCBI | |
|
Cao JL, Liang LY, Liu YH, Xu ZM, Wang X, Wei WX, Wan HJ, Lyu XH, Li WX, Zhang YX, et al: Medication rules of Astragali Radix in ancient Chinese medical books based on ‘disease-medicine-dose’ pattern. Zhongguo Zhong Yao Za Zhi. 50:798–811. 2025.(In Chinese). PubMed/NCBI | |
|
Hassanpour Fard M, Naseh G, Lotfi N, Hosseini SM and Hosseini M: Effects of aqueous extract of turnip leaf (Brassica rapa) in alloxan-induced diabetic rats. Avicenna J Phytomed. 5:148–156. 2015.PubMed/NCBI | |
|
Santos M, Fortunato RH and Spotorno VG: Analysis of flavonoid glycosides with potential medicinal properties on Bauhinia uruguayensis and Bauhinia forficate subspecies pruinosa. Nat Prod Res. 33:2574–2578. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chhatre S, Nesari T, Somani G, Kanchan D and Sathaye S: Phytopharmacological overview of Tribulus terrestris. Pharmacogn Rev. 8:45–51. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Abdou HM and Abd Elkader HAE: The potential therapeutic effects of Trifolium alexandrinum extract, hesperetin and quercetin against diabetic nephropathy via attenuation of oxidative stress, inflammation, GSK-3β and apoptosis in male rats. Chem Biol Interact. 352:1097812022. View Article : Google Scholar : PubMed/NCBI | |
|
Alshehri AS: Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch Physiol Biochem. 129:984–997. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Luo W, Chen X, Ye L, Chen X, Jia W, Zhao Y, Samorodov AV, Zhang Y, Hu X, Zhuang F, et al: Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. J Ethnopharmacol. 268:1135532021. View Article : Google Scholar : PubMed/NCBI | |
|
Li K, Wang YJ, Chen C, Wang XJ and Li W: Targeting pyroptosis: A novel strategy of ginseng for the treatment of diabetes and its chronic complications. Phytomedicine. 138:1564302025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Hu W, Han WB, Liu YL, Tu Y, Yang HM, Fang QJ, Zhou MY, Wan ZY, Tang RM, et al: Inhibition of Akt/mTOR/p70S6K signaling activity with Huangkui capsule alleviates the early glomerular pathological changes in diabetic nephropathy. Front Pharmacol. 9:4432018. View Article : Google Scholar : PubMed/NCBI | |
|
Han W, Ma Q, Liu Y, Wu W, Tu Y, Huang L, Long Y, Wang W, Yee H, Wan Z, et al: Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling. Phytomedicine. 57:203–214. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Z, Luan G, Peng S, Fang Y, Fang Q, Shen S, Wu K, Qian S, Jia W, Ye J and Wei L: Huangkui capsule attenuates diabetic kidney disease through the induction of mitophagy mediated by STING1/ PINK1 signaling in tubular cells. Phytomedicine. 119:1549752023. View Article : Google Scholar : PubMed/NCBI | |
|
Shi R, Tao Y, Tang H, Wu C, Fei J, Ge H, Gu HF and Wu J: Abelmoschus Manihot ameliorates the levels of circulating metabolites in diabetic nephropathy by modulating gut microbiota in non-obese diabetes mice. Microb Biotechnol. 16:813–826. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Li P, Xing CY, Zhao JY, He YN, Wang JQ, Wu XF, Liu ZS, Zhang AP, Lin HL, et al: Efficacy and safety of Abelmoschus manihot for primary glomerular disease: A prospective, multicenter randomized controlled clinical trial. Am J Kidney Dis. 64:57–65. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Yu Y, Xiao C, Li S, Wu T, Wu H, Li X, Lin C, Chen X, Guo X and Liu S: Huangkui capsules for diabetic nephropathy: Comprehensive review of efficacy and molecular mechanisms. Phytomedicine. 147:1572072025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Zhang C, Fu Y, Dai J, Lu J, Liu G and Yang X: Huangkui capsule combined with finerenone attenuates diabetic nephropathy by regulating the JAK2/STAT3 signaling pathway based on network pharmacology, molecular docking, and experimental verification. Front Pharmacol. 16:16252862025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, He X, Xue M, Yu H, He Q and Jin J: Integrated 16S rRNA sequencing and metabolomic analysis reveals the potential protective mechanism of Germacrone on diabetic nephropathy in mice. Acta Biochim Biophys Sin (Shanghai). 56:414–426. 2024.PubMed/NCBI | |
|
Lee HS, Suh JY, Kang BC and Lee E: Lipotoxicity dysregulates the immunoproteasome in podocytes and kidneys in type 2 diabetes. Am J Physiol Renal Physiol. 320:F548–F558. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Nemecz M, Constantin A, Dumitrescu M, Alexandru N, Filippi A, Tanko G and Georgescu A: The distinct effects of palmitic and oleic acid on pancreatic beta cell function: The elucidation of associated mechanisms and effector molecules. Front Pharmacol. 9:15542021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Jia Z, Liu S, Downton M, Liu G, Du Y and Yang T: Combined losartan and nitro-oleic acid remarkably improves diabetic nephropathy in mice. Am J Physiol Renal Physiol. 305:F1555–F1562. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Hu Z, Xing H, Kang L, Chen X, Liu B and Niu K: Renoprotective effects of oleanolic acid and its possible mechanisms in rats with diabetic kidney disease. Biochem Biophys Res Commun. 636((Pt 1)): 1–9. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee ES, Kim HM, Kang JS, Lee EY, Yadav D, Kwon MH, Kim YM, Kim HS and Chung CH: Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol Dial Transplant. 31:391–400. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gao D, Li Q, Li Y, Liu Z, Liu Z, Fan Y, Han Z, Li J and Li K: Antidiabetic potential of oleanolic acid from Ligustrum lucidum Ait. Can J Physiol Pharmacol. 85:1076–1083. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sultana N and Ata A: Oleanolic acid and related derivatives as medicinally important compounds. J Enzyme Inhib Med Chem. 23:739–756. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Abudoureyimu A, Chen C, Hu Y, Nuermaimaiti D and Liu T: Quercetin alleviates diabetic nephropathy by inhibiting M1 macrophage polarization via targeting NLRC5/NLRP3 pathway. Cell Immunol. 414:1049972025. View Article : Google Scholar : PubMed/NCBI | |
|
Yan X, Li P, Liu C, Yin F, Han J, Sun H, Zheng Y, Chen X, Guan S and Wang X: Exploring the molecular mechanisms for renoprotective effects of Huangkui capsule on diabetic nephropathy mice by comprehensive serum metabolomics analysis. J Ethnopharmacol. 340:1192232025. View Article : Google Scholar : PubMed/NCBI | |
|
Brito JCM, Lima WG, Cordeiro LPB and da Cruz Nizer WS: Effectiveness of supplementation with quercetin-type flavonols for treatment of viral lower respiratory tract infections: Systematic review and meta-analysis of preclinical studies. Phytother Res. 35:4930–4942. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Q, Qu C, Xiao X, Zhang W, Jiang Y, Wu Z, Song D, Peng X, Ma X and Zhao Y: Flavonoids on diabetic nephropathy: Advances and therapeutic opportunities. Chin Med. 16:742021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu T, Yue J, Tang Q, Cheng KW, Chen F, Peng M, Zhou Q and Wang M: The effect of quercetin on diabetic nephropathy (DN): A systematic review and meta-analysis of animal studies. Food Funct. 13:4789–4803. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lai WF and Wong WT: Design and optimization of quercetin-based functional foods. Crit Rev Food Sci Nutr. 62:7319–7335. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Albadrani GM, Binmowyna MN, Bin-Jumah MN, El-Akabawy G, Aldera H and Al-Farga AM: Quercetin protects against experimentally-induced myocardial infarction in rats by an antioxidant potential and concomitant activation of signal transducer and activator of transcription 3. J Physiol Pharmacol. Apri 22–2020.(Epub ahead of print). PubMed/NCBI | |
|
Dini S, Zakeri M, Ebrahimpour S, Dehghanian F and Esmaeili A: Quercetin-conjugated superparamagnetic iron oxide nanoparticles modulate glucose metabolism-related genes and miR-29 family in the hippocampus of diabetic rats. Sci Rep. 11:86182021. View Article : Google Scholar : PubMed/NCBI | |
|
Suganya N, Dornadula S, Chatterjee S and Mohanram RK: Quercetin improves endothelial function in diabetic rats through inhibition of endoplasmic reticulum stress-mediated oxidative stress. Eur J Pharmacol. 819:80–88. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong Y, Lee K, Deng Y, Ma Y, Chen Y, Li X, Wei C, Yang S, Wang T, Wong J, et al: Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun. 10:45232019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Wang J, Yan J, He JC, Li Y and Zhong Y: Additive renal protective effects between arctigenin and puerarin in diabetic kidney disease. Biomed Pharmacother. 171:1161072024. View Article : Google Scholar : PubMed/NCBI | |
|
Medras ZJH, Mostafa YM, Ahmed AAM and El-Sayed NM: Arctigenin improves neuropathy via ameliorating apoptosis and modulating autophagy in streptozotocin-induced diabetic mice. CNS Neurosci Ther. 29:3068–3080. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Qiu L, Howard A, Solis N, Li C, Wang X, Kopp JB and Levi M: Protective effects of aliskiren and valsartan in mice with diabetic nephropathy. J Renin Angiotensin Aldosterone Syst. 15:384–395. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
López V, Martin M, Cobelo C, Aranda P, Cabello M, Sola E, Gutierrez C, Burgos D, Martínez D and Hernandez D: Renin-angiotensin system dual blockade using angiotensin receptor plus aliskiren decreases severe proteinuria in kidney transplant recipients. Transplant Proc. 42:2883–2885. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Peng PA, Ma Y, Liu XL, Yu Y, Jia S, Xu XH, Wu SJ and Zhou YJ: Valsartan protects against contrast-induced acute kidney injury in rats by inhibiting endoplasmic reticulum stress-induced apoptosis. Curr Vasc Pharmacol. 15:174–183. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, Levi M, Yang T and Wang W: Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. Am J Physiol Renal Physiol. 310:F351–F363. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group: KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 98((4S)): S1–S115. 2020. | |
|
Chang TT, Wu TC, Huang PH, Lin CP, Chen JS, Lin LY, Lin SJ and Chen JW: Direct renin inhibition with aliskiren improves ischemia-induced neovasculogenesis in diabetic animals via the SDF-1 related mechanism. PLoS One. 10:e01366272015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Yuan A, Liu C, Liu Y, Qiao L, Xu Z, Bi S, Tian J, Yu B, Lin Z, et al: Identification of key antifibrotic targets FPR1, TAS2R5, and LRP2BP of valsartan in diabetic nephropathy: A transcriptomics-driven study integrating machine learning, molecular docking, and dynamics simulations. Int J Biol Macromol. 297:1398422025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Liu G, Zhou W, Zhang W, Wang K and Zhang J: Neprilysin inhibitor-angiotensin II receptor blocker combination therapy (Sacubitril/valsartan) suppresses atherosclerotic plaque formation and inhibits inflammation in apolipoprotein E-deficient mice. Sci Rep. 9:65092019. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Xie D, Liu J, Han X, Xu H and Chen Y: Angiopoietin-like protein 3 deficiency combined with valsartan administration protects better against podocyte damage in streptozotocin-induced diabetic nephropathy mice. Int Immunopharmacol. 115:1097152023. View Article : Google Scholar : PubMed/NCBI | |
|
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group: KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 105:S117–S314. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mori K, Togo A, Ohta K, Asahi T, Nozaki C and Kataoka K: CB1 receptor agonist ACEA Resists ER stress-mediated apoptosis via CB1R-independent mechanism. Biol Pharm Bull. 48:769–781. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W and Bild V: Exploring the therapeutic potential of cannabinoid receptor antagonists in inflammation, diabetes mellitus, and obesity. Biomedicines. 11:16672023. View Article : Google Scholar : PubMed/NCBI | |
|
Aguirre CA, Castillo VA and Llanos MN: Excess of the endocannabinoid anandamide during lactation induces overweight, fat accumulation and insulin resistance in adult mice. Diabetol Metab Syndr. 4:352012. View Article : Google Scholar : PubMed/NCBI | |
|
Kumawat VS and Kaur G: Cannabinoid receptor 2 (CB2) agonists and L-arginine ameliorate diabetic nephropathy in rats by suppressing inflammation and fibrosis through NF-κβ pathway. Naunyn Schmiedebergs Arch Pharmacol. 397:381–393. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jourdan T, Park JK, Varga ZV, Pálóczi J, Coffey NJ, Rosenberg AZ, Godlewski G, Cinar R, Mackie K, Pacher P and Kunos G: Cannabinoid-1 receptor deletion in podocytes mitigates both glomerular and tubular dysfunction in a mouse model of diabetic nephropathy. Diabetes Obes Metab. 20:698–708. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P and Gruden G: Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes. 60:2386–2396. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yang HM, Kim J, Kim BK, Seo HJ, Kim JY, Lee JE, Lee J, You J, Jin S, Kwon YW, et al: Resistin regulates inflammation and insulin resistance in humans via the endocannabinoid system. Research (Wash D C). 7:03262024.PubMed/NCBI | |
|
Lim JC, Lim SK, Park MJ, Kim GY, Han HJ and Park SH: Cannabinoid receptor 1 mediates high glucose induced apoptosis via endoplasmic reticulum stress in primary cultured rat mesangial cells. Am J Physiol Renal Physiol. 301:F179–F188. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lim JC, Lim SK, Han HJ and Park SH: Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol. 225:654–663. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Panlilio LV, Goldberg SR and Justinova Z: Cannabinoid abuse and addiction: Clinical and preclinical findings. Clin Pharmacol Ther. 97:616–627. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cinar R, Iyer MR and Kunos G: The therapeutic potential of second and third generation CB1R antagonists. Pharmacol Ther. 208:1074772020. View Article : Google Scholar : PubMed/NCBI | |
|
Mińczuk K, Baranowska-Kuczko M, Krzyżewska A, Schlicker E and Malinowska B: Cross-Talk between the (Endo)cannabinoid and renin-angiotensin systems: Basic evidence and potential therapeutic significance. Int J Mol Sci. 23:63502022. View Article : Google Scholar : PubMed/NCBI | |
|
Jourdan T, Szanda G, Cinar R, Godlewski G, Holovac DJ, Park JK, Nicoloro S, Shen Y, Liu J, Rosenberg AZ, et al: Developmental role of macrophage cannabinoid-1 receptor signaling in type 2 diabetes. Diabetes. 66:994–1007. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jourdan T, Szanda G, Rosenberg AZ, Tam J, Earley BJ, Godlewski G, Cinar R, Liu Z, Liu J, Ju C, et al: Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci USA. 111:E5420–E5428. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosh A, Peyot ML, Leung YH, Ravenelle F, Madiraju SRM and Prentki M: A peripherally restricted cannabinoid-1 receptor inverse agonist promotes insulin secretion and protects from cytokine toxicity in human pancreatic islets. Eur J Pharmacol. 944:1755892023. View Article : Google Scholar : PubMed/NCBI | |
|
Rajesh M, Bátkai S, Kechrid M, Mukhopadhyay P, Lee WS, Horváth B, Holovac E, Cinar R, Liaudet L, Mackie K, et al: Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes. 61:716–727. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Haspula D and Clark MA: Cannabinoid receptors: An update on cell signaling, pathophysiological roles and therapeutic opportunities in neurological, cardiovascular, and inflammatory diseases. Int J Mol Sci. 21:76932020. View Article : Google Scholar : PubMed/NCBI | |
|
Pointeau O, Ba AI, Geissler A, Barbosa R, Basu A, Muhammad A, Nivot M, Loriot M, Leemput J, Passilly-Degrace P, et al: Blockade of cannabinoid CB receptors potentiates the anti-fibrotic effects mediated by SGLT2 inhibition in a mouse model of diabetic nephropathy. Br J Pharmacol. 182:5355–5377. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Dagon Y, Avraham Y, Link G, Zolotarev O, Mechoulam R and Berry EM: The synthetic cannabinoid HU-210 attenuates neural damage in diabetic mice and hyperglycemic pheochromocytoma PC12 cells. Neurobiol Dis. 27:174–181. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Navas-Madroñal M, Almendra-Pegueros R, Puertas-Umbert L, Jiménez-Altayó F, Julve J, Pérez B, Consegal-Pérez M, Kassan M, Martínez-González J, Rodriguez C and Galán M: Targeting mitochondrial stress with szeto-schiller 31 prevents experimental abdominal aortic aneurysm: Crosstalk with endoplasmic reticulum stress. Br J Pharmacol. 180:2230–2249. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hinden L, Udi S, Drori A, Gammal A, Nemirovski A, Hadar R, Baraghithy S, Permyakova A, Geron M, Cohen M, et al: Modulation of renal GLUT2 by the cannabinoid-1 receptor: Implications for the treatment of diabetic nephropathy. J Am Soc Nephrol. 29:434–448. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kusaczuk M: Tauroursodeoxycholate-bile acid with chaperoning activity: Molecular and cellular effects and therapeutic perspectives. Cell. 8:14712019. View Article : Google Scholar | |
|
Zheng P, Lin Y, Wang F, Luo R, Zhang T, Hu S, Feng P, Liang X, Li C and Wang W: 4-PBA improves lithiuminduced nephrogenic diabetes insipidus by attenuating ER stress. Am J Physiol Renal Physiol. 311:F763–F776. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Q, Xu L, Li H, Sun H, Wu S and Zhou B: 4-PBA reverses autophagic dysfunction and improves insulin sensitivity in adipose tissue of obese mice via Akt/mTOR signaling. Biochem Biophys Res Commun. 484:529–535. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ji X, Yao L, Wang M, Liu X, Peng S, Li K, Xu M, Shen N, Luo L and Sun C: Cystatin C attenuates insulin signaling transduction by promoting endoplasmic reticulum stress in hepatocytes. FEBS Lett. 589((24 Part B)): 3938–3944. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cao AL, Wang L, Chen X, Wang YM, Guo HJ, Chu S, Liu C, Zhang XM and Peng W: Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stressinduced podocyte apoptosis in diabetic nephropathy. Lab Invest. 96:610–622. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qin L, Wang Z, Tao L and Wang Y: ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy. 6:239–247. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ni L, Yuan C and Wu X: Endoplasmic reticulum stress in diabetic nephrology: Regulation, pathological role, and therapeutic potential. Oxid Med Cell Longev. 2021:72779662021. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YC, Hee SW, Hsieh ML, Jeng YM and Chuang LM: The role of organelle stresses in diabetes mellitus and obesity: Implication for treatment. Anal Cell Pathol (Amst). 2015:9728912015.PubMed/NCBI | |
|
De Miguel C, Sedaka R, Kasztan M, Lever JM, Sonnenberger M, Abad A, Jin C, Carmines PK, Pollock DM and Pollock JS: Tauroursodeoxycholic acid (TUDCA) abolishes chronic high salt-induced renal injury and inflammation. Acta Physiol (Oxf). 226:e132272019. View Article : Google Scholar : PubMed/NCBI | |
|
Microvascular Complications Group of Chinese Diabetes Society, . Clinical guideline for the prevention and treatment of diabetic kidney disease in China (2021 edition). Chin J Diabetes Mellitus. 13:762–784. 2021.(In Chinese). | |
|
Li Z, Li Y, Overstreet JM, Chung S, Niu A, Fan X, Wang S, Wang Y, Zhang MZ and Harris RC: Inhibition of epidermal growth factor receptor activation is associated with improved diabetic nephropathy and insulin resistance in type 2 diabetes. Diabetes. 67:1847–1857. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rao VRA/LBV, Tan SH, Candasamy M and Bhattamisra SK: Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab Syndr. 13:754–762. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shih JY, Lin YW, Fisch S, Cheng JT, Kang NW, Hong CS, Chen ZC and Chang WT: Dapagliflozin suppresses ER stress and improves subclinical myocardial function in diabetes. From bedside to bench. Diabetes. 70:262–267. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Xia X, Li H, Zhang Y, Zhou X and Jiang H: A new rhodopsin R135W mutation induces endoplasmic reticulum stress and apoptosis in retinal pigment epithelial cells. J Cell Physiol. 234:14100–14108. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Q, Zou C, Zhong P, Lin F, Li W, Wang L, Zhang Y, Zheng C, Wang Y, Li X and Liang G: EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: The detrimental role and mechanism of EGFR activation. Oncotarget. 7:24361–24373. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Martín-Pérez R, Palacios C, Yerbes R, Cano-González A, Iglesias-Serret D, Gil J, Reginato MJ and López-Rivas A: Activated ERBB2/HER2 licenses sensitivity to apoptosis upon endoplasmic reticulum stress through a PERK-dependent pathway. Cancer Res. 74:1766–1777. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou K, Zi X, Song J, Zhao Q, Liu J, Bao H and Li L: Molecular mechanistic pathways targeted by natural compounds in the prevention and treatment of diabetic kidney disease. Molecules. 27:62212022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Li C, Fu L, Yu Z, Xu G, Zhou J, Shen M, Feng Z, Zhu H, Xie T, et al: Protection of catalpol against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. PeerJ. 10:e127592022. View Article : Google Scholar : PubMed/NCBI | |
|
Itoh T, Hatano R, Horimoto Y, Yamada T, Song D, Otsuka H, Shirakawa Y, Mastuoka S, Iwao N, Aune TM, et al: IL-26 mediates epidermal growth factor receptor-tyrosine kinase inhibitor resistance through endoplasmic reticulum stress signaling pathway in triple-negative breast cancer cells. Cell Death Dis. 12:5202021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Ding S, Hu Y, Su J, Zhu G, Hong H, Hou B, Dong Z, Xue Z, Wang J, et al: Targeting programmed cell death pathways: Emerging therapeutic strategies for diabetic kidney disease. Front Endocrinol (Lausanne). 16:15138952025. View Article : Google Scholar : PubMed/NCBI | |
|
Mima A: A narrative review of diabetic kidney disease: Previous and current evidence-based therapeutic approaches. Adv Ther. 39:3488–3500. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kume S and Maegawa H: Lipotoxicity, nutrient-sensing signals, and autophagy in diabetic nephropathy. JMA J. 3:87–94. 2020.PubMed/NCBI | |
|
Beal B, Buizen L, Yeung EK, Heath L, Houston L, Cherney DZI, Jardine M, Pollock C, Arnott C, Kotwal SS, et al: Effects of SGLT2 inhibition on insulin use in CKD and type 2 diabetes: Insights from the CREDENCE trial. Nephrol Dial Transplant. 40:1727–1735. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group: KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102((5S)): S1–S127. 2022. | |
|
Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC and Zinman B; EMPA-REG OUTCOME Investigators, : Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 375:323–334. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M and Matthews DR; CANVAS Program Collaborative Group, : Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 377:644–657. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wiviott SD, Razl Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al: Dapagliflozinand cardiovascular outcomes in type 2 diabetes. N Engl J Med. 380:347–357. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, et al: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 380:2295–2306. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Barreiro E, Salazar-Degracia A, Sancho-Muñoz A and Gea J: Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J Cell Physiol. 234:11315–11329. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bohnert KR, McMillan JD and Kumar A: Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol. 233:67–78. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu CY, Hsu CC, Huang TT, Lee CH, Chen JL, Yang SH, Jiang JK, Chen WS, Lee KD and Teng HW: ER stress-related ATF6 upregulates CIP2A and contributes to poor prognosis of colon cancer. Mol Oncol. 12:1706–1717. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ryu D, Seo WY, Yoon YS, Kim YN, Kim SS, Kim HJ, Park TS, Choi CS and Koo SH: Endoplasmic reticulum stress promotes LIPIN2-dependent hepatic insulin resistance. Diabetes. 60:1072–1081. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Toma L, Stancu CS and Sima AV: Endothelial dysfunction in diabetes is aggravated by glycated lipoproteins; Novel molecular therapies. Biomedicines. 9:182020. View Article : Google Scholar : PubMed/NCBI | |
|
Marciniak SJ, Chambers JE and Ron D: Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 21:115–140. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Anumas S and Inagi R: Mitigating lipotoxicity: A potential mechanism to delay chronic kidney disease progression using current pharmacological therapies. Nephrology (Carlton). 30:e700982025. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng T, Luo L, Wang X, Deng X and Xue M: Canagliflozin ameliorates diabetic podocyte damage via enriching mitochondria-associated endoplasmic reticulum membranes. Cell Signal. 135:1120382025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu S, Zhu F, Wang X, Wang H, Long L, Xiao J and Guo C: Improved bioavailability and anti-nephrotoxicity efficacy of polydatin on cisplatin-induced AKI via a dual-targeting fucoidan delivery system. Int J Pharm X. 10:1004222025.PubMed/NCBI | |
|
Fang Z, Liu R, Xie J and He JC: Molecular mechanism of renal lipid accumulation in diabetic kidney disease. J Cell Mol Med. 28:e183642024. View Article : Google Scholar : PubMed/NCBI | |
|
Ye S, Cheng Z, Zhuo D and Liu S: Different types of cell death in diabetic neuropathy: A focus on mechanisms and therapeutic strategies. Int J Mol Sci. 25:81262024. View Article : Google Scholar : PubMed/NCBI | |
|
Ghemrawi R, Battaglia-Hsu SF and Arnold C: Endoplasmic reticulum stress in metabolic disorders. Cells. 7:632018. View Article : Google Scholar : PubMed/NCBI | |
|
Chattopadhyay A, Kwartler CS, Kaw K, Li Y, Kaw A, Chen J, LeMaire SA, Shen YH and Milewicz DM: Cholesterol-induced phenotypic modulation of smooth muscle cells to macrophage/fibroblast-like cells is driven by an unfolded protein response. Arterioscler Thromb Vasc Biol. 41:302–316. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dong L, Xu M, Li Y, Xu W, Wu C, Zheng H, Xiao Z, Sun G, Ding L, Li X, et al: SMURF1 attenuates endoplasmic reticulum stress by promoting the degradation of KEAP1 to activate NRF2 antioxidant pathway. Cell Death Dis. 14:3612023. View Article : Google Scholar : PubMed/NCBI | |
|
Rabhi N, Denechaud PD, Gromada X, Hannou SA, Zhang H, Rashid T, Salas E, Durand E, Sand O, Bonnefond A, et al: KAT2B is required for pancreatic beta cell adaptation to metabolic stress by controlling the unfolded protein response. Cell Rep. 15:1051–1061. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhou X, Zhao D, Wang X, Gurley EC, Liu R, Li X, Hylemon PB, Chen W and Zhou H: Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes. PLoS One. 15:e02326302020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, et al: Endoplasmic reticulum homeostasis: A potential target for diabetic nephropathy. Front Endocrinol (Lausanne). 14:11828482023. View Article : Google Scholar : PubMed/NCBI | |
|
Pennell JP: Optimizing medical management of patients with pre-end-stage renal disease. Am J Med. 111:559–568. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SH, Yoo JH, Lee WJ and Park CY: Gemigliptin: An update of its clinical use in the management of type 2 diabetes mellitus. Diabetes Metab J. 40:339–353. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Frățilă VG, Lupușoru G, Sorohan BM, Obrișcă B, Mocanu V, Lupușoru M and Ismail G: Nephrotic Syndrome: From pathophysiology to novel therapeutic approaches. Biomedicines. 12:5692024. View Article : Google Scholar : PubMed/NCBI |