|
1
|
Ding Q, Hu W, Wang R, Yang Q, Zhu M, Li M,
Cai J, Rose P, Mao J and Zhu YZ: Signaling pathways in rheumatoid
arthritis: Implications for targeted therapy. Signal Transduct
Target Ther. 8:682023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kmiołek T and Paradowska-Gorycka A: miRNAs
as biomarkers and possible therapeutic strategies in rheumatoid
arthritis. Cells. 11:4522022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Payet M, Dargai F, Gasque P and Guillot X:
Epigenetic regulation (including micro-RNAs, DNA methylation and
histone modifications) of rheumatoid arthritis: A systematic
review. Int J Mol Sci. 22:121702021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nag S, Mitra O, Tripathi G, Samanta S,
Bhattacharya B, Chandane P, Mohanto S, Sundararajan V, Malik S,
Rustagi S, et al: Exploring the theranostic potentials of miRNA and
epigenetic networks in autoimmune diseases: A comprehensive review.
Immun Inflamm Dis. 11:e11212023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yao Q, Chen Y and Zhou X: The roles of
microRNAs in epigenetic regulation. Curr Opin Chem Biol. 51:11–17.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Diener C, Keller A and Meese E: The
miRNA-target interactions: An underestimated intricacy. Nucleic
Acids Res. 52:1544–1557. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sell MC, Ramlogan-Steel CA, Steel JC and
Dhungel BP: MicroRNAs in cancer metastasis: Biological and
therapeutic implications. Expert Rev Mol Med. 25:e142023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gao B, Sun G, Wang Y, Geng Y, Zhou L and
Chen X: microRNA-23 inhibits inflammation to alleviate rheumatoid
arthritis via regulating CXCL12. Exp Ther Med. 21:4592021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bao X, Ma L and He C: MicroRNA-23a-5p
regulates cell proliferation, migration and inflammation of
TNF-α-stimulated human fibroblast-like MH7A synoviocytes by
targeting TLR4 in rheumatoid arthritis. Exp Ther Med. 21:4792021.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang X, Liu D, Cui G and Shen H:
Circ_0088036 mediated progression and inflammation in
fibroblast-like synoviocytes of rheumatoid arthritis by
miR-1263/REL-activated NF-κB pathway. Transpl Immunol.
73:1016042022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhou Q, Haupt S, Kreuzer JT, Hammitzsch A,
Proft F, Neumann C, Leipe J, Witt M, Schulze-Koops H and Skapenko
A: Decreased expression of miR-146a and miR-155 contributes to an
abnormal treg phenotype in patients with rheumatoid arthritis. Ann
Rheum Dis. 74:1265–1274. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu N, Feng X, Wang W, Zhao X and Li X:
Paeonol protects against TNF-α-induced proliferation and cytokine
release of rheumatoid arthritis fibroblast-like synoviocytes by
upregulating FOXO3 through inhibition of miR-155 expression.
Inflamm Res. 66:603–610. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zisman D, Safieh M, Simanovich E, Feld J,
Kinarty A, Zisman L, Gazitt T, Haddad A, Elias M, Rosner I, et al:
Tocilizumab (TCZ) decreases angiogenesis in rheumatoid arthritis
through its regulatory effect on miR-146a-5p and EMMPRIN/CD147.
Front Immunol. 12:7395922021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kmiołek T, Rzeszotarska E, Wajda A,
Walczuk E, Kuca-Warnawin E, Romanowska-Próchnicka K, Stypinska B,
Majewski D, Jagodzinski PP, Pawlik A and Paradowska-Gorycka A: The
interplay between transcriptional factors and MicroRNAs as an
important factor for Th17/Treg balance in RA patients. Int J Mol
Sci. 21:71692020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Safari F, Damavandi E, Rostamian AR,
Movassaghi S, Imani-Saber Z, Saffari M, Kabuli M and Ghadami M:
Plasma levels of MicroRNA-146a-5p, MicroRNA-24-3p, and
MicroRNA-125a-5p as potential diagnostic biomarkers for rheumatoid
arthris. Iran J Allergy Asthma Immunol. 20:326–337. 2021.PubMed/NCBI
|
|
16
|
Wang C, Wang X, Cheng H and Fang J:
MiR-22-3p facilitates bone marrow mesenchymal stem cell
osteogenesis and fracture healing through the SOSTDC1-PI3K/AKT
pathway. Int J Exp Path. 105:52–63. 2024. View Article : Google Scholar
|
|
17
|
Wang S, Xiong G, Ning R, Pan Z, Xu M, Zha
Z and Liu N: LncRNA MEG3 promotes osteogenesis of hBMSCs by
regulating miR-21-5p/SOD3 axis. Acta Biochim Pol. 69:71–77.
2022.PubMed/NCBI
|
|
18
|
Lian F, Zhao C, Qu J, Lian Y, Cui Y, Shan
L and Yan J: Icariin attenuates titanium particle-induced
inhibition of osteogenic differentiation and matrix mineralization
via miR-21-5p. Cell Biol Int. 42:931–939. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chang C, Xu L, Zhang R, Jin Y, Jiang P,
Wei K, Xu L, Shi Y, Zhao J, Xiong M, et al: MicroRNA-Mediated
epigenetic regulation of rheumatoid arthritis susceptibility and
pathogenesis. Front Immunol. 13:8388842022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Scalavino V, Piccinno E, Labarile N,
Armentano R, Giannelli G and Serino G: Anti-inflammatory effects of
miR-369-3p via PDE4B in intestinal inflammatory response. Int J Mol
Sci. 25:84632024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rawal S, Randhawa V, Rizvi SHM, Sachan M,
Wara AK, Pérez-Cremades D, Weisbrod RM, Hamburg NM and Feinberg MW:
miR-369-3p ameliorates diabetes-associated atherosclerosis by
regulating macrophage succinate-GPR91 signalling. Cardiovasc Res.
120:1693–1712. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mahmoud DE, Kaabachi W, Sassi N, Tarhouni
L, Rekik S, Jemmali S, Sehli H, Kallel-Sellami M, Cheour E and
Laadhar L: The synovial fluid fibroblast-like synoviocyte: A
long-neglected piece in the puzzle of rheumatoid arthritis
pathogenesis. Front Immunol. 13:9424172022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xin PL, Jie LF, Cheng Q, Bin DY and Dan
CW: Pathogenesis and function of interleukin-35 in rheumatoid
arthritis. Front Pharmacol. 12:6551142021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Waltereit-Kracke V, Wehmeyer C, Beckmann
D, Werbenko E, Reinhardt J, Geers F, Dienstbier M, Fennen M,
Intemann J, Paruzel P, et al: Deletion of activin a in mesenchymal
but not myeloid cells ameliorates disease severity in experimental
arthritis. Ann Rheum Dis. 81:1106–1118. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Nygaard G and Firestein GS: Restoring
synovial homeostasis in rheumatoid arthritis by targeting
fibroblast-like synoviocytes. Nat Rev Rheumatol. 16:316–333. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mirzaei R, Zamani F, Hajibaba M,
Rasouli-Saravani A, Noroozbeygi M, Gorgani M, Hosseini-Fard SR,
Jalalifar S, Ajdarkosh H, Abedi SH, et al: The pathogenic,
therapeutic and diagnostic role of exosomal microRNA in the
autoimmune diseases. J Neuroimmunol. 358:5776402021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Peng Y, Zhang M and Hu J: Non-coding RNAs
involved in fibroblast-like synoviocyte functioning in arthritis
rheumatoid: From pathogenesis to therapy. Cytokine. 173:1564182024.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Scalavino V, Liso M, Cavalcanti E, Gigante
I, Lippolis A, Mastronardi M, Chieppa M and Serino G: miR-369-3p
modulates inducible nitric oxide synthase and is involved in
regulation of chronic inflammatory response. Sci Rep. 10:159422020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Galleggiante V, De Santis S, Liso M, Verna
G, Sommella E, Mastronardi M, Campiglia P, Chieppa M and Serino G:
Quercetin-induced miR-369-3p suppresses chronic inflammatory
response targeting C/EBP-β. Mol Nutr Food Res. 63:e18013902019.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Scalavino V, Piccinno E, Valentini AM,
Schena N, Armentano R, Giannelli G and Serino G: miR-369-3p
modulates intestinal inflammatory response via BRCC3/NLRP3
inflammasome axis. Cells. 12:21842023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Susuki K, Zollinger DR, Chang KJ, Zhang C,
Huang CY, Tsai CR, Galiano MR, Liu Y, Benusa SD, Yermakov LM, et
al: Glial βII spectrin contributes to paranode formation and
maintenance. J Neurosci. 38:6063–6075. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xu X, Yang J, Ye Y, Chen G, Zhang Y, Wu H,
Song Y, Feng M, Feng X, Chen X, et al: SPTBN1 prevents primary
osteoporosis by modulating osteoblasts proliferation and
differentiation and blood vessels formation in bone. Front Cell Dev
Biol. 9:6537242021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen M, Zeng J, Chen S, Li J, Wu H, Dong
X, Lei Y, Zhi X and Yao L: SPTBN1 suppresses the progression of
epithelial ovarian cancer via SOCS3-mediated blockade of the
JAK/STAT3 signaling pathway. Aging (Albany NY). 12:10896–10911.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhi X, Lin L, Yang S, Bhuvaneshwar K, Wang
H, Gusev Y, Lee MH, Kallakury B, Shivapurkar N, Cahn K, et al:
βII-Spectrin (SPTBN1) suppresses progression of hepatocellular
carcinoma and Wnt signaling by regulation of Wnt inhibitor
kallistatin. Hepatology. 61:598–612. 2015. View Article : Google Scholar : PubMed/NCBI
|