|
1
|
Guo Y, Lu C, Hu K, Cai C and Wang W:
Ferroptosis in cardiovascular diseases: Current status, challenges,
and future perspectives. Biomolecules. 12:3902022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bułdak Ł: Cardiovascular diseases-a focus
on atherosclerosis, its prophylaxis, complications and recent
advancements in therapies. Int J Mol Sci. 23:46952022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang R, Wang M, Ye J, Sun G and Sun X:
Mechanism overview and target mining of atherosclerosis:
Endothelial cell injury in atherosclerosis is regulated by
glycolysis (Review). Int J Mol Med. 47:65–76. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Duan H, Zhang Q, Liu J, Li R, Wang D, Peng
W and Wu C: Suppression of apoptosis in vascular endothelial cell,
the promising way for natural medicines to treat atherosclerosis.
Pharmacol Res. 168:1055992021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang Y, Yang Y, Zhang T, Jia S, Ma X,
Zhang M, Wang L and Ma A: LncRNA SNHG16 accelerates atherosclerosis
and promotes ox-LDL-induced VSMC growth via the miRNA-22-3p/HMGB2
axis. Eur J Pharmacol. 915:1746012022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pirillo A, Norata GD and Catapano AL:
LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm.
2013:1527862013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liu Y, Jiang G, Lv C and Yang C:
miR-222-5p promotes dysfunction of human vascular smooth muscle
cells by targeting RB1. Environ Toxicol. 37:683–694. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pan Z, Fan Z, Ma J, Liu H, Shen L, He B
and Zhang M: Profiling and functional characterization of
circulation LncRNAs that are associated with coronary
atherosclerotic plaque stability. Am J Transl Res. 11:3801–3815.
2019.PubMed/NCBI
|
|
9
|
Huang P: Potential new therapeutic
targets: Association of microRNA with atherosclerotic plaque
stability. Int J Immunopathol Pharmacol. 37:39463202311856572023.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Abulsoud AI, Elshaer SS, Rizk NI, Khaled
R, Abdelfatah AM, Aboelyazed AM, Waseem AM, Bashier D, Mohammed OA,
Elballal MS, et al: Unraveling the miRNA puzzle in atherosclerosis:
Revolutionizing diagnosis, prognosis, and therapeutic approaches.
Curr Atheroscler Rep. 26:395–410. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Piko N, Bevc S, Hojs R and Ekart R:
Atherosclerosis and epigenetic modifications in chronic kidney
disease. Nephron. 147:655–659. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gaál Z: Implication of microRNAs in
carcinogenesis with emphasis on hematological malignancies and
clinical translation. Int J Mol Sci. 23:58382022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Saetrom P, Snøve O Jr and Rossi JJ:
Epigenetics and microRNAs. Pediatr Res. 61((5 Pt 2)): 17R–23R.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang J, Xing Q, Zhou X, Li J, Li Y, Zhang
L, Zhou Q and Tang B: Circulating miRNA-21 is a promising biomarker
for heart failure. Mol Med Rep. 16:7766–7774. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen X, Cao Y, Guo Y, Liu J, Ye X, Li H,
Zhang L, Feng W, Xian S, Yang Z, et al: microRNA-125b-1-3p mediates
autophagy via the RRAGD/mTOR/ULK1 signaling pathway and mitigates
atherosclerosis progression. Cell Signal. 118:1111362024.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wei L, He Y, Bi S, Li X, Zhang J and Zhang
S: miRNA-199b-3p suppresses growth and progression of ovarian
cancer via the CHK1/E-cadherin/EMT signaling pathway by targeting
ZEB1. Oncol Rep. 45:569–581. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen Z, Zhong T, Zhong J, Tang Y, Ling B
and Wang L: MicroRNA-129 inhibits colorectal cancer cell
proliferation, invasion and epithelial-to-mesenchymal transition by
targeting SOX4. Oncol Rep. 45:612021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
He X, Liao S, Lu D, Zhang F, Sun Y and Wu
Y: MiR-125b promotes migration and invasion by targeting the
vitamin D receptor in renal cell carcinoma. Int J Med Sci.
18:150–156. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kuang X, Wei C, Zhang T, Yang Z, Chi J and
Wang L: miR-378 inhibits cell growth and enhances apoptosis in
human myelodysplastic syndromes. Int J Oncol. 49:1921–1930. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gorur A, Celik A, Yildirim DD, Gundes A
and Tamer L: Investigation of possible effects of microRNAs
involved in regulation of lipid metabolism in the pathogenesis of
atherosclerosis. Mol Biol Rep. 46:909–920. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Xu X, Shen L, Li W, Liu X, Yang P and Cai
J: ITGA5 promotes tumor angiogenesis in cervical cancer. Cancer
Med. 12:11983–11999. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang C, Yu Z, Yang S, Liu Y, Song J, Mao
J, Li M and Zhao Y: ZNF460-mediated circRPPH1 promotes TNBC
progression through ITGA5-induced FAK/PI3K/AKT activation in a
ceRNA manner. Mol Cancer. 23:332024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen Z, Chen CZ, Gong WR, Li JP and Xing
YQ: Integrin-alpha5 mediates epidermal growth factor-induced
retinal pigment epithelial cell proliferation and migration.
Pathobiology. 77:88–95. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Deng Y, Wan Q and Yan W: Integrin α5/ITGA5
promotes the proliferation, migration, invasion and progression of
oral squamous carcinoma by epithelial-mesenchymal transition.
Cancer Manag Res. 11:9609–9620. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang X, Mao W and Ma X: TLN1 synergizes
with ITGA5 to ameliorate cardiac microvascular endothelial cell
dysfunction. Folia Morphol (Warsz). 83:92–101. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Falk E: Pathogenesis of atherosclerosis. J
Am Coll Cardiol. 47 (8 Suppl):C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hansson GK and Hermansson A: The immune
system in atherosclerosis. Nat Immunol. 12:204–212. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cheng J, Huang H, Chen Y and Wu R:
Nanomedicine for diagnosis and treatment of atherosclerosis. Adv
Sci (Weinh). 10:e23042942023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bian W, Jing X, Yang Z, Shi Z, Chen R, Xu
A, Wang N, Jiang J, Yang C, Zhang D, et al: Downregulation of
LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell
injury and atherosclerosis. Aging (Albany NY). 12:6385–6400. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lin F, Yang Y, Wei S, Huang X, Peng Z, Ke
X, Zeng Z and Song Y: Hydrogen sulfide protects against high
glucose-induced human umbilical vein endothelial cell injury
through activating PI3K/Akt/eNOS pathway. Drug Des Devel Ther.
14:621–633. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zheng D, Liu J, Piao H, Zhu Z, Wei R and
Liu K: ROS-triggered endothelial cell death mechanisms: Focus on
pyroptosis, parthanatos, and ferroptosis. Front Immunol.
13:10392412022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mao J, Yang R, Yuan P, Wu F, Wei Y, Nie Y,
Zhang C and Zhou X: Different stimuli induce endothelial
dysfunction and promote atherosclerosis through the Piezo1/YAP
signaling axis. Arch Biochem Biophys. 747:1097552023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Winn RK and Harlan JM: The role of
endothelial cell apoptosis in inflammatory and immune diseases. J
Thromb Haemost. 3:1815–1824. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sessa F, Salerno M, Esposito M, Cocimano G
and Pomara C: miRNA dysregulation in cardiovascular diseases:
Current opinion and future perspectives. Int J Mol Sci.
24:51922023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lozano-Velasco E, Inácio JM, Sousa I,
Guimarães AR, Franco D, Moura G and Belo JA: miRNAs in heart
development and disease. Int J Mol Sci. 25:16732024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Madrigal-Matute J, Rotllan N, Aranda JF
and Fernández-Hernando C: MicroRNAs and atherosclerosis. Curr
Atheroscler Rep. 15:3222013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang
L and Wang Y: Exosomes from nicotine-stimulated macrophages
accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC
migration and proliferation. Theranostics. 9:6901–6919. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tang Y, Yang LJ, Liu H, Song YJ, Yang QQ,
Liu Y, Qian SW and Tang QQ: Exosomal miR-27b-3p secreted by
visceral adipocytes contributes to endothelial inflammation and
atherogenesis. Cell Rep. 42:1119482023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang F, Ge J, Huang S, Zhou C, Sun Z, Song
Y, Xu Y and Ji Y: KLF5/LINC00346/miR-148a-3p axis regulates
inflammation and endothelial cell injury in atherosclerosis. Int J
Mol Med. 48:1522021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Peng N, Meng N, Wang S, Zhao F, Zhao J, Su
L, Zhang S, Zhang Y, Zhao B and Miao J: An activator of mTOR
inhibits oxLDL-induced autophagy and apoptosis in vascular
endothelial cells and restricts atherosclerosis in apolipoprotein
E−/− mice. Sci Rep. 4:55192014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jensen HA and Mehta JL: Endothelial cell
dysfunction as a novel therapeutic target in atherosclerosis.
Expert Rev Cardiovasc Ther. 14:1021–1033. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Suciu CF, Prete M, Ruscitti P, Favoino E,
Giacomelli R and Perosa F: Oxidized low density lipoproteins: The
bridge between atherosclerosis and autoimmunity. Possible
implications in accelerated atherosclerosis and for immune
intervention in autoimmune rheumatic disorders. Autoimmun Rev.
17:366–375. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang K, Zhang H, Luo Y, Zhang J, Wang M,
Liao P, Cao L, Guo P, Sun G and Sun X: Gypenoside XVII prevents
atherosclerosis by attenuating endothelial apoptosis and oxidative
stress: Insight into the ERα-Mediated PI3K/Akt pathway. Int J Mol
Sci. 18:772017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ali Syeda Z, Langden SSS, Munkhzul C, Lee
M and Song SJ: Regulatory mechanism of MicroRNA expression in
cancer. Int J Mol Sci. 21:17232020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sun B, Ding B, Chen Y, Peng C and Chen X:
AFAP1L1 promotes gastric cancer progression by interacting with
VAV2 to facilitate CDC42-mediated activation of ITGA5 signaling
pathway. J Transl Med. 21:182023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xiao Y, Tao P, Zhang K, Chen L, Lv J, Chen
Z, He L, Jia H, Sun J, Cao M, et al: Myofibroblast-derived
extracellular vesicles facilitate cancer stemness of hepatocellular
carcinoma via transferring ITGA5 to tumor cells. Mol Cancer.
23:2622024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Desgrosellier JS and Cheresh DA: Integrins
in cancer: Biological implications and therapeutic opportunities.
Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Elmoselhi AB, Seif Allah M, Bouzid A,
Ibrahim Z, Venkatachalam T, Siddiqui R, Khan NA and Hamoudi RA:
Circulating microRNAs as potential biomarkers of early vascular
damage in vitamin D deficiency, obese, and diabetic patients. PLoS
One. 18:e02836082023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mir R, Elfaki I, Khullar N, Waza AA, Jha
C, Mir MM, Nisa S, Mohammad B, Mir TA, Maqbool M, et al: Role of
selected miRNAs as diagnostic and prognostic biomarkers in
cardiovascular diseases, including coronary artery disease,
myocardial infarction and atherosclerosis. J Cardiovasc Dev Dis.
8:222021.PubMed/NCBI
|
|
51
|
Su X, Nie M, Zhang G and Wang B: MicroRNA
in cardio-metabolic disorders. Clin Chim Acta. 518:134–141. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xiang Y, Mao L, Zuo ML, Song GL, Tan LM
and Yang ZB: The role of MicroRNAs in hyperlipidemia: From
pathogenesis to therapeutical application. Mediators Inflamm.
2022:31019002022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lin F, Pei L, Zhang Q, Han W, Jiang S, Lin
Y, Dong B, Cui L and Li M: Ox-LDL induces endothelial cell
apoptosis and macrophage migration by regulating caveolin-1
phosphorylation. J Cell Physiol. 233:6683–6692. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Colles SM, Maxson JM, Carlson SG and
Chisolm GM: Oxidized LDL-induced injury and apoptosis in
atherosclerosis. Potential roles for oxysterols. Trends Cardiovasc
Med. 11:131–138. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Escargueil-Blanc I, Meilhac O, Pieraggi
MT, Arnal JF, Salvayre R and Nègre-Salvayre A: Oxidized LDLs induce
massive apoptosis of cultured human endothelial cells through a
calcium-dependent pathway. Prevention by aurintricarboxylic acid.
Arterioscler Thromb Vasc Biol. 17:331–339. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang YZ, Wang L, Zhang JJ, Xiong XM,
Zhang D, Tang XM, Luo XJ, Ma QL and Peng J: Vascular peroxide 1
promotes ox-LDL-induced programmed necrosis in endothelial cells
through a mechanism involving β-catenin signaling. Atherosclerosis.
274:128–138. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tolouei S, Curi TZ, Klider LM and Junior
AG: MicroRNA-30 and 145 as targets for the treatment of
cardiovascular diseases: Therapeutic feasibility and challenges.
Curr Pharm Des. 27:3858–3870. 2021. View Article : Google Scholar : PubMed/NCBI
|