|
1
|
Rose TL and Kim WY: Renal cell carcinoma:
A review. JAMA. 332:1001–1010. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Barata P, Gulati S, Elliott A, Hammers HJ,
Burgess E, Gartrell BA, Darabi S, Bilen MA, Basu A, Geynisman DM,
et al: Renal cell carcinoma histologic subtypes exhibit distinct
transcriptional profiles. J Clin Invest. 134:e1789152024.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Young M, Jackson-Spence F, Beltran L, Day
E, Suarez C, Bex A, Powles T and Szabados B: Renal cell carcinoma.
Lancet. 404:476–491. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Atkins MB and Tannir NM: Current and
emerging therapies for first-line treatment of metastatic clear
cell renal cell carcinoma. Cancer Treat Rev. 70:127–137. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Powles T, Albiges L, Bex A, Comperat E,
Grunwald V, Kanesvaran R, Kitamura H, McKay R, Porta C, Procopio G,
et al: Renal cell carcinoma: ESMO clinical practice guideline for
diagnosis, treatment and follow-up. Ann Oncol. 35:692–706. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bedke J, Ghanem YA, Albiges L, Bonn S,
Campi R, Capitanio U, Dabestani S, Hora M, Klatte T, Kuusk T, et
al: Updated European association of urology guidelines on the use
of adjuvant immune checkpoint inhibitors and subsequent therapy for
renal cell carcinoma. Eur Urol. 87:491–496. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Marasco LE and Kornblihtt AR: The
physiology of alternative splicing. Nat Rev Mol Cell Biol.
24:242–254. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bradley RK and Anczukow O: RNA splicing
dysregulation and the hallmarks of cancer. Nat Rev Cancer.
23:135–155. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bian Z, Yang F, Xu P, Gao G, Yang C, Cao
Y, Yao S, Wang X, Yin Y, Fei B and Huang Z: LINC01852 inhibits the
tumorigenesis and chemoresistance in colorectal cancer by
suppressing SRSF5-mediated alternative splicing of PKM. Mol Cancer.
23:232024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Meng K, Li Y, Yuan X, Shen HM, Hu LL, Liu
D, Shi F, Zheng D, Shi X, Wen N, et al: The cryptic lncRNA-encoded
microprotein TPM3P9 drives oncogenic RNA splicing and
tumorigenesis. Signal Transduct Target Ther. 10:432025. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang X, Zhan X, Bian T, Yang F, Li P, Lu
Y, Xing Z, Fan R, Zhang QC and Shi Y: Structural insights into
branch site proofreading by human spliceosome. Nat Struct Mol Biol.
31:835–845. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Huang Q, Yao Y, Wang Y, Li J, Chen J, Wu
M, Guo C, Lou J, Yang W, Zhao L, et al: Ginsenoside Rb2 inhibits
p300-mediated SF3A2 acetylation at lysine 10 to promote Fscn1
alternative splicing against myocardial ischemic/reperfusion
injury. J Adv Res. 65:365–379. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Frezza V, Chellini L, Riccioni V,
Bonvissuto D, Palombo R and Paronetto MP: DHX9 helicase impacts on
splicing decisions by modulating U2 snRNP recruitment in Ewing
sarcoma cells. Nucleic Acids Res. 53:gkaf0682025. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Deng L, Liao L, Zhang YL, Yang SY, Hu SY,
Andriani L, Ling YX, Ma XY, Zhang FL, Shao ZM and Li DQ: SF3A2
promotes progression and cisplatin resistance in triple-negative
breast cancer via alternative splicing of MKRN1. Sci Adv.
10:eadj40092024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Karlsson M, Zhang C, Mear L, Zhong W,
Digre A, Katona B, Sjostedt E, Butler L, Odeberg J, Dusart P, et
al: A single-cell type transcriptomics map of human tissues. Sci
Adv. 7:eabh21692021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Council N.R, . Guide for the Care and Use
of Laboratory Animals. National Academies Press; Washington, DC:
2010, PubMed/NCBI
|
|
18
|
Miao D, Wang Q, Shi J, Lv Q, Tan D, Zhao
C, Xiong Z and Zhang X: N6-methyladenosine-modified DBT alleviates
lipid accumulation and inhibits tumor progression in clear cell
renal cell carcinoma through the ANXA2/YAP axis-regulated Hippo
pathway. Cancer Commun (Lond). 43:480–502. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Xu Y, Li L, Yang W, Zhang K, Zhang Z, Yu
C, Qiu J, Cai L, Gong Y, Zhang Z, et al: TRAF2 promotes
M2-polarized tumor-associated macrophage infiltration, angiogenesis
and cancer progression by inhibiting autophagy in clear cell renal
cell carcinoma. J Exp Clin Cancer Res. 42:1592023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang B, Ren J, Ma Q, Yang F, Pan X, Zhang
Y, Liu Y, Wang C, Zhang D, Wei L, et al: A novel peptide
PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via
interacting with PPP1CA to inhibit AKT dephosphorylation and
activate the AKT-mTOR signaling pathway. Mol Cancer. 23:342024.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pellacani C, Bucciarelli E, Renda F,
Hayward D, Palena A, Chen J, Bonaccorsi S, Wakefield JG, Gatti M
and Somma MP: Splicing factors Sf3A2 and Prp31 have direct roles in
mitotic chromosome segregation. Elife. 7:e403252018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sun W, Lu H, Cui S, Zhao S, Yu H, Song H,
Ruan Q, Zhang Y, Chu Y and Dong S: NEDD4 ameliorates myocardial
reperfusion injury by preventing macrophages pyroptosis. Cell
Commun Signal. 21:292023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hirokawa M, Morita H, Tajima T, Takahashi
A, Ashikawa K, Miya F, Shigemizu D, Ozaki K, Sakata Y, Nakatani D,
et al: A genome-wide association study identifies PLCL2 and
AP3D1-DOT1L-SF3A2 as new susceptibility loci for myocardial
infarction in Japanese. Eur J Hum Genet. 23:374–380. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang Y, Ouyang Y, Cao X and Cai Q:
Identifying hub genes for chemo-radiotherapy sensitivity in
cervical cancer: A bi-dataset in silico analysis. Discov Oncol.
15:4342024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Long G and Li Z, Gao Y, Zhang X, Cheng X,
Daniel IE, Zhang L, Wang D and Li Z: Ferroptosis-related
alternative splicing signatures as potential biomarkers for
predicting prognosis and therapy response in gastric cancer.
Heliyon. 10:e343812024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Song M, Bode AM, Dong Z and Lee MH: AKT as
a therapeutic target for cancer. Cancer Res. 79:1019–1031. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhang HL, Hu BX, Ye ZP, Li ZL, Liu S,
Zhong WQ, Du T, Yang D, Mai J, Li LC, et al: TRPML1 triggers
ferroptosis defense and is a potential therapeutic target in
AKT-hyperactivated cancer. Sci Transl Med. 16:eadk03302024.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Martin F, Alcon C, Marin E,
Morales-Sanchez P, Manzano-Munoz A, Diaz S, Garcia M, Samitier J,
Lu A, Villanueva A, et al: Novel selective strategies targeting the
BCL-2 family to enhance clinical efficacy in ALK-rearranged
non-small cell lung cancer. Cell Death Dis. 16:1942025. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yu L, Wei J and Liu P: Attacking the
PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment
in human cancer. Semin Cancer Biol. 85:69–94. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yu W, Yin S, Tang H, Li H, Zhang Z and
Yang K: PER2 interaction with HSP70 promotes cuproptosis in oral
squamous carcinoma cells by decreasing AKT stability. Cell Death
Dis. 16:1922025. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tian Y, Chen ZH, Wu P, Zhang D, Ma Y, Liu
XF, Wang X, Ding D, Cao XC and Yu Y: MIR497HG-Derived miR-195 and
miR-497 mediate tamoxifen resistance via PI3K/AKT signaling in
breast cancer. Adv Sci (Weinh). 10:e22048192023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Y, Huang J, Wang J, Xia S, Ran H, Gao
L, Feng C, Gui L, Zhou Z and Yuan J: Human umbilical cord-derived
mesenchymal stem cell transplantation supplemented with curcumin
improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2
axis. J Neuroinflammation. 20:492023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu J, Li SM, Tang YJ, Cao JL, Hou WS,
Wang AQ, Wang C and Jin CH: Jaceosidin induces apoptosis and
inhibits migration in AGS gastric cancer cells by regulating
ROS-mediated signaling pathways. Redox Rep. 29:23133662024.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu X, Song J, Zhang H, Liu X, Zuo F, Zhao
Y, Zhao Y, Yin X, Guo X, Wu X, et al: Immune checkpoint
HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from
NK cell surveillance. Cancer Cell. 41:272–287. e92023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jiang Q, Zheng N, Bu L, Zhang X, Zhang X,
Wu Y, Su Y, Wang L, Zhang X, Ren S, et al: SPOP-mediated
ubiquitination and degradation of PDK1 suppresses AKT kinase
activity and oncogenic functions. Mol Cancer. 20:1002021.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang Z, Zhang Y and Zhang R: P4HA3
promotes clear cell renal cell carcinoma progression via the
PI3K/AKT/GSK3β pathway. Med Oncol. 40:702023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mao H, Zhao Y, Lei L, Hu Y, Zhu H, Wang R,
Ni D, Liu J, Xu L, Xia H, et al: Selenoprotein S regulates
tumorigenesis of clear cell renal cell carcinoma through
AKT/GSK3β/NF-ĸB signaling pathway. Gene. 832:1465592022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhou Z, Li Y, Chai Y, Zhang Y and Yan P:
Analysis of mRNA pentatricopeptide repeat domain 1 as a prospective
oncogene in clear cell renal cell carcinoma that accelerates tumor
cells proliferation and invasion via the Akt/GSK3β/β-catenin
pathway. Discov Oncol. 16:222025. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sun Y, Zhu L, Liu P, Zhang H, Guo F and
Jin X: ZDHHC2-Mediated AGK palmitoylation activates AKT-mTOR
signaling to reduce sunitinib sensitivity in renal cell carcinoma.
Cancer Res. 83:2034–2051. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu W, Yan B, Yu H, Ren J, Peng M, Zhu L,
Wang Y, Jin X and Yi L: OTUD1 stabilizes PTEN to inhibit the
PI3K/AKT and TNF-alpha/NF-kappaB signaling pathways and sensitize
ccRCC to TKIs. Int J Biol Sci. 18:1401–1414. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lv Z, Wang M, Hou H, Tang G, Xu H, Wang X,
Li Y, Wang J and Liu M: FOXM1-regulated ZIC2 promotes the malignant
phenotype of renal clear cell carcinoma by activating UBE2C/mTOR
signaling pathway. Int J Biol Sci. 19:3293–3306. 2023. View Article : Google Scholar : PubMed/NCBI
|