|
1
|
Bousquet J, Van Cauwenberge P and Khaltaev
N; Aria Workshop Group; World Health Organization, : Allergic
rhinitis and its impact on asthma. J Allergy Clin Immunol. 108
(Suppl 5):S147–S334. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cox L: The role of allergen immunotherapy
in the management of allergic rhinitis. Am J Rhinol Allergy.
30:48–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hellgren J, Cervin A, Nordling S, Bergman
A and Cardell LO: Allergic rhinitis and the common cold-high cost
to society. Allergy. 65:776–783. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Devillier P, Bousquet J, Salvator H,
Naline E, Grassin-Delyle S and de Beaumont O: In allergic rhinitis,
work, classroom and activity impairments are weakly related to
other outcome measures. Clin Exp Allergy. 46:1456–1464. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Vandenplas O, Vinnikov D, Blanc PD, Agache
I, Bachert C, Bewick M, Cardell LO, Cullinan P, Demoly P, Descatha
A, et al: Impact of rhinitis on work productivity: A systematic
review. J Allergy Clin Immunol Pract. 6:1274–1286.e9. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Seidman MD, Gurgel RK, Lin SY, Schwartz
SR, Baroody FM, Bonner JR, Dawson DE, Dykewicz MS, Hackell JM, Han
JK, et al: Clinical practice guideline: allergic rhinitis executive
summary. Otolaryngol Head Neck Surg. 152:197–206. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Juniper EF, Thompson AK, Ferrie PJ and
Roberts JN: Validation of the standardized version of the
rhinoconjunctivitis quality of life questionnaire. J Allergy Clin
Immunol. 104:364–369. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Katial R: Primary care: Clinics in office
practice. Preface. Prim Care. 35:xi–xii. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yu Z, Fan Y, Nguyen T, Piao CH, Lee BH,
Lee SY, Shin HS, Kim TG, Song CH and Chai OH: Undaria pinnatifida
extract attenuates combined allergic rhinitis and asthma syndrome
by the modulation of epithelial cell dysfunction and oxidative
stress. Acta Biochim Biophys Sin (Shanghai). 57:792–804. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pagel JML and Mattos JL: Allergic rhinitis
and its effect on sleep. Otolaryngol Clin North Am. 57:319–328.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Grimm D, Hwang PH and Lin YT: The link
between allergic rhinitis and chronic rhinosinusitis. Curr Opin
Otolaryngol Head Neck Surg. 31:3–10. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang X, Zhou Y, Liu Z and Liu Y:
Olfactory dysfunction in allergic rhinitis. Clin Rev Allergy
Immunol. 68:32024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bousquet J, Jacot W, Vignola AM, Bachert C
and Van Cauwenberge P: Allergic rhinitis: A disease remodeling the
upper airways? J Allergy Clin Immunol. 113:43–49. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bachert C, Vignola AM, Gevaert P, Leynaert
B, Van Cauwenberge P and Bousquet J: Allergic rhinitis,
rhinosinusitis, and asthma: One airway disease. Immunol Allergy
Clin North Am. 24:19–43. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Grossman J: One airway, one disease.
Chest. 111 (Suppl 2):11S–16S. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Brozek JL, Bousquet J, Baena-Cagnani CE,
Bonini S, Canonica GW, Casale TB, van Wijk RG, Ohta K, Zuberbier T,
Schünemann HJ, et al: Allergic rhinitis and its impact on asthma
(ARIA) guidelines: 2010 Revision. J Allergy Clin Immunol.
126:466–476. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wise SK, Damask C, Roland LT, Ebert C,
Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, et
al: International consensus statement on allergy and rhinology:
Allergic rhinitis-2023. Int Forum Allergy Rhinol. 13:293–859. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Brożek JL, Bousquet J, Agache I, Agarwal
A, Bachert C, Bosnic-Anticevich S, Brignardello-Petersen R,
Canonica GW, Casale T, Chavannes NH, et al: Allergic rhinitis and
its impact on asthma (ARIA) guidelines-2016 revision. J Allergy
Clin Immunol. 140:950–958. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nappi E, Paoletti G, Malvezzi L, Ferri S,
Racca F, Messina MR, Puggioni F, Heffler E and Canonica GW:
Comorbid allergic rhinitis and asthma: Important clinical
considerations. Expert Rev Clin Immunol. 18:747–758. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Eggleston PA, Butz A, Rand C,
Curtin-Brosnan J, Kanchanaraksa S, Swartz L, Breysse P, Buckley T,
Diette G, Merriman B and Krishnan JA: Home environmental
intervention in inner-city asthma: A randomized controlled clinical
trial. Ann Allergy Asthma Immunol. 95:518–524. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nurmatov U, van Schayck CP, Hurwitz B and
Sheikh A: House dust mite avoidance measures for perennial allergic
rhinitis: An updated Cochrane systematic review. Allergy.
67:158–165. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bousquet J, Anto JM, Bachert C, Baiardini
I, Bosnic-Anticevich S, Walter Canonica G, Melén E, Palomares O,
Scadding GK, Togias A and Toppila-Salmi S: Allergic rhinitis. Nat
Rev Dis Primers. 6:952020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dykewicz MS, Wallace DV, Amrol DJ, Baroody
FM, Bernstein JA, Craig TJ, Dinakar C, Ellis AK, Finegold I, Golden
DBK, et al: Rhinitis 2020: A practice parameter update. J Allergy
Clin Immunol. 146:721–767. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bernstein JA, Bernstein JS, Makol R and
Ward S: Allergic rhinitis: A review. JAMA. 331:866–877. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Czech EJ, Overholser A and Schultz P:
Allergic rhinitis. Prim Care. 50:159–178. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pavón-Romero GF, Parra-Vargas MI,
Ramírez-Jiménez F, Melgoza-Ruiz E, Serrano-Pérez NH and Teran LM:
Allergen immunotherapy: Current and future trends. Cells.
11:2122022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen H, He Y, Chen S, Qi S and Shen J:
Therapeutic targets of oxidative/nitrosative stress and
neuroinflammation in ischemic stroke: Applications for natural
product efficacy with omics and systemic biology. Pharmacol Res.
158:1048772020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Islam MR, Islam F, Nafady MH, Akter M,
Mitra S, Das R, Urmee H, Shohag S, Akter A, Chidambaram K, et al:
Natural small molecules in breast cancer treatment: Understandings
from a therapeutic viewpoint. Molecules. 27:21652022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Katz L and Baltz RH: Natural product
discovery: Past, present, and future. J Ind Microbiol Biotechnol.
43:155–176. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gao H, Kang N, Hu C, Zhang Z, Xu Q, Liu Y
and Yang S: Ginsenoside Rb1 exerts anti-inflammatory effects in
vitro and in vivo by modulating toll-like receptor 4 dimerization
and NF-kB/MAPKs signaling pathways. Phytomedicine. 69:1531972020.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Guo H and Liu MP: Mechanism of traditional
Chinese medicine in the treatment of allergic rhinitis. Chin Med J
(Engl). 126:756–760. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang Y, Song Y, Wang C, Jiang J, Liu S,
Bai Q, Li L, Jin H, Jin Y and Yan G: Panax notoginseng
saponin R1 attenuates allergic rhinitis through AMPK/Drp1 mediated
mitochondrial fission. Biochem Pharmacol. 202:1151062022.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Iinuma T, Kiuchi M, Hirahara K, Kurita J,
Kokubo K, Yagyu H, Yoneda R, Arai T, Sonobe Y, Fukuyo M, et al:
Single-cell immunoprofiling after immunotherapy for allergic
rhinitis reveals functional suppression of pathogenic
TH2 cells and clonal conversion. J Allergy Clin Immunol.
150:850–860.e5. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Galli SJ, Tsai M and Piliponsky AM: The
development of allergic inflammation. Nature. 454:445–454. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cheng L, Chen J, Fu Q, He S, Li H, Liu Z,
Tan G, Tao Z, Wang D, Wen W, et al: Chinese society of allergy
guidelines for diagnosis and treatment of allergic rhinitis.
Allergy Asthma Immunol Res. 10:300–353. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Park H, Li Z, Yang XO, Chang SH, Nurieva
R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q and Dong C: A distinct
lineage of CD4 T cells regulates tissue inflammation by producing
interleukin 17. Nat Immunol. 6:1133–1141. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Shahgordi S, Sankian M, Yazdani Y,
Mashayekhi K, Hasan Ayati S, Sadeghi M, Saeidi M and Hashemi M:
Immune responses modulation by curcumin and allergen encapsulated
into PLGA nanoparticles in mice model of rhinitis allergic through
sublingual immunotherapy. Int Immunopharmacol. 84:1065252020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wei P, Hu GH, Kang HY, Yao HB, Kou W, Liu
H, Zhang C and Hong SL: An aryl hydrocarbon receptor ligand acts on
dendritic cells and T cells to suppress the Th17 response in
allergic rhinitis patients. Lab Invest. 94:528–535. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xuekun H, Qintai Y, Yulian C and Gehua Z:
Correlation of gammadelta-T-cells, Th17 cells and IL-17 in
peripheral blood of patients with allergic rhinitis. Asian Pac J
Allergy Immunol. 32:235–239. 2014.PubMed/NCBI
|
|
40
|
Halim TY, Hwang YY, Scanlon ST, Zaghouani
H, Garbi N, Fallon PG and McKenzie AN: Group 2 innate lymphoid
cells license dendritic cells to potentiate memory TH2 cell
responses. Nat Immunol. 17:57–64. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Price AE, Liang HE, Sullivan BM, Reinhardt
RL, Eisley CJ, Erle DJ and Locksley RM: Systemically dispersed
innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad
Sci USA. 107:11489–11494. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lin L, Chen Z, Dai F, Wei JJ, Tang XY and
Sun GB: CD4+ T cells induce productions of IL-5 and
IL-13 through MHCII on ILC2s in a murine model of allergic
rhinitis. Auris Nasus Larynx. 46:533–541. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Marriott H, Duchesne M, Moitra S, Okoye I,
Gerla L, Mayers I, Moolji J, Adatia A and Lacy P: Upper airway
alarmin cytokine expression in asthma of different severities. J
Clin Med. 13:37212024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Simons FE: Allergic rhinobronchitis: The
asthma-allergic rhinitis link. J Allergy Clin Immunol. 104:534–540.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fontanari P, Burnet H, Zattara-Hartmann MC
and Jammes Y: Changes in airway resistance induced by nasal
inhalation of cold dry, dry, or moist air in normal individuals. J
Appl Physiol (1985). 81:1739–1743. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bousquet J, Khaltaev N, Cruz AA, Denburg
J, Fokkens WJ, Togias A, Zuberbier T, Baena-Cagnani CE, Canonica
GW, van Weel C, et al: Allergic rhinitis and its impact on asthma
(ARIA) 2008 update (in collaboration with the World Health
Organization, GA(2)LEN and AllerGen). Allergy. 63 (Suppl
86):S8–S160. 2008. View Article : Google Scholar
|
|
47
|
Chen M, He S, Miles P, Li C, Ge Y, Yu X,
Wang L, Huang W, Kong X, Ma S, et al: Nasal bacterial microbiome
differs between healthy controls and those with asthma and allergic
rhinitis. Front Cell Infect Microbiol. 12:8419952022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Paiva Ferreira LKD, Paiva Ferreira LAM,
Monteiro TM, Bezerra GC, Bernardo LR and Piuvezam MR: Combined
allergic rhinitis and asthma syndrome (CARAS). Int Immunopharmacol.
74:1057182019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ciprandi G, Buscaglia S, Pesce G, Pronzato
C, Ricca V, Parmiani S, Bagnasco M and Canonica GW: Minimal
persistent inflammation is present at mucosal level in patients
with asymptomatic rhinitis and mite allergy. J Allergy Clin
Immunol. 96:971–979. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Adams RJ, Fuhlbrigge AL, Finkelstein JA
and Weiss ST: Intranasal steroids and the risk of emergency
department visits for asthma. J Allergy Clin Immunol. 109:636–642.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Crystal-Peters J, Neslusan C, Crown WH and
Torres A: Treating allergic rhinitis in patients with comorbid
asthma: The risk of asthma-related hospitalizations and emergency
department visits. J Allergy Clin Immunol. 109:57–62. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hamdi A, Viera-Alcaide I, Jiménez-Araujo
A, Rodríguez-Arcos R and Guillén-Bejarano R: Applications of
saponin extract from asparagus roots as functional ingredient.
Foods. 13:2742024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Guan W and Qi W: Ginsenoside Rh2: A
shining and potential natural product in the treatment of human
nonmalignant and malignant diseases in the near future.
Phytomedicine. 118:1549382023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cheng L, Luo W, Ye A, Zhang Y, Li L and
Xie H: How to more effectively obtain ginsenoside Rg5:
Understanding pathways of conversion. Molecules. 28:73132023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li Q, Zhai C, Wang G, Zhou J, Li W, Xie L
and Shi Z: Ginsenoside Rh1 attenuates ovalbumin-induced asthma by
regulating Th1/Th2 cytokines balance. Biosci Biotechnol Biochem.
85:1809–1817. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xu W, Lyu W, Duan C, Ma F, Li X and Li D:
Preparation and bioactivity of the rare ginsenosides Rg3 and Rh2:
An updated review. Fitoterapia. 167:1055142023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bae HM, Cho OS, Kim SJ, Im BO, Cho SH, Lee
S, Kim MG, Kim KT, Leem KH and Ko SK: Inhibitory effects of
ginsenoside re isolated from ginseng berry on histamine and
cytokine release in human mast cells and human alveolar epithelial
cells. J Ginseng Res. 36:369–374. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang WC, Huang TH, Yeh KW, Chen YL, Shen
SC and Liou CJ: Ginsenoside Rg3 ameliorates allergic airway
inflammation and oxidative stress in mice. J Ginseng Res.
45:654–664. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lee IS, Uh I, Kim KS, Kim KH, Park J, Kim
Y, Jung JH, Jung HJ and Jang HJ: Anti-inflammatory effects of
ginsenoside Rg3 via NF-κB pathway in A549 cells and human asthmatic
lung tissue. J Immunol Res. 2016:75216012016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kim HI, Kim JK, Kim JY, Han MJ and Kim DH:
Fermented red ginseng and ginsenoside Rd alleviate
ovalbumin-induced allergic rhinitis in mice by suppressing IgE,
interleukin-4, and interleukin-5 expression. J Ginseng Res.
43:635–644. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Oh HA, Seo JY, Jeong HJ and Kim HM:
Ginsenoside Rg1 inhibits the TSLP production in allergic rhinitis
mice. Immunopharmacol Immunotoxicol. 35:678–686. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li LC, Piao HM, Zheng MY, Lin ZH, Choi YH
and Yan GH: Ginsenoside Rh2 attenuates allergic airway inflammation
by modulating nuclear factor-κB activation in a murine model of
asthma. Mol Med Rep. 12:6946–6954. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu J, Yang N, Yi X, Wang G, Wang C, Lin
H, Sun L, Wang F and Zhu D: Integration of transcriptomics and
metabolomics to reveal the effect of ginsenoside Rg3 on allergic
rhinitis in mice. Food Funct. 14:2416–2431. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bean CJ, Boulet SL, Ellingsen D, Pyle ME,
Barron-Casella EA, Casella JF, Payne AB, Driggers J, Trau HA, Yang
G, et al: Heme oxygenase-1 gene promoter polymorphism is associated
with reduced incidence of acute chest syndrome among children with
sickle cell disease. Blood. 120:3822–3828. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Emsley J, Knight CG, Farndale RW, Barnes
MJ and Liddington RC: Structural basis of collagen recognition by
integrin alpha2beta1. Cell. 101:47–56. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Islam T, McConnell R, Gauderman WJ, Avol
E, Peters JM and Gilliland FD: Ozone, oxidant defense genes, and
risk of asthma during adolescence. Am J Respir Crit Care Med.
177:388–395. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu B, Wang J and Ren Z: SKP2-Promoted
ubiquitination of FOXO3 promotes the development of asthma. J
Immunol. 206:2366–2375. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yao X, Dai C, Fredriksson K, McCoy JP, Qu
X, Yu ZX, Keeran KJ, Zywicke GJ, Amar MJ, Remaley AT and Levine SJ:
5A, an apolipoprotein A-I mimetic peptide, attenuates the induction
of house dust mite-induced asthma. J Immunol. 186:576–583. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang M, Tang S, Yang X, Xie X, Luo Y, He
S, Li X and Feng X: Identification of key genes and pathways in
chronic rhinosinusitis with nasal polyps and asthma comorbidity
using bioinformatics approaches. Front Immunol. 13:9415472022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yamashita M, Miyoshi M, Iwai M, Takeda R,
Ono T and Kabuki T: Lactobacillus helveticus SBT2171
alleviates perennial allergic rhinitis in japanese adults by
suppressing eosinophils: A randomized, double-blind,
placebo-controlled study. Nutrients. 12:36202020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang Y, Sun X, Xie Y, Du A, Chen M, Lai S,
Wei X, Ji L and Wang C: Panax notoginseng saponins alleviate
diabetic retinopathy by inhibiting retinal inflammation:
Association with the NF-κB signaling pathway. J Ethnopharmacol.
319:1171352024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang H, Liu Z, Hu X, Liu X, Gui L, Cai Z
and Dai C: Protective effect of Panax notoginseng saponins
on apolipoprotein-E-deficient atherosclerosis-prone mice. Curr
Pharm Des. 28:671–677. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Uzayisenga R, Ayeka PA and Wang Y:
Anti-diabetic potential of Panax notoginseng saponins (PNS):
A review. Phytother Res. 28:510–516. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y
and Li N: Analytical methods and biological activities of Panax
notoginseng saponins: Recent trends. J Ethnopharmacol.
236:443–465. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xue K, Ruan L, Hu J, Fu Z, Tian D and Zou
W: Panax notoginseng saponin R1 modulates TNF-α/NF-κB
signaling and attenuates allergic airway inflammation in asthma.
Int Immunopharmacol. 88:1068602020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang Y, Zhao Y, Ran Y, Guo J, Cui H and
Liu S: Notoginsenoside R1 attenuates sevoflurane-induced
neurotoxicity. Transl Neurosci. 11:215–226. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li L, Hou X, Xu R, Liu C and Tu M:
Research review on the pharmacological effects of astragaloside IV.
Fundam Clin Pharmacol. 31:17–36. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ren S, Zhang H, Mu Y, Sun M and Liu P:
Pharmacological effects of astragaloside IV: A literature review. J
Tradit Chin Med. 33:413–416. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang J, Wu C, Gao L, Du G and Qin X:
Astragaloside IV derived from Astragalus membranaceus: A
research review on the pharmacological effects. Adv Pharmacol.
87:89–112. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen Z, Liu L, Gao C, Chen W, Vong CT, Yao
P, Yang Y, Li X, Tang X, Wang S and Wang Y: Astragali Radix
(Huangqi): A promising edible immunomodulatory herbal medicine. J
Ethnopharmacol. 258:1128952020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li K, Chen Y, Jiang R, Chen D, Wang H,
Xiong W, Li D, Liu Z, Li X, Li J and Yuan K: Protective effects of
astragaloside IV against ovalbumin-induced allergic rhinitis are
mediated by T-box protein expressed in T cells/GATA-3 and forkhead
box protein 3/retinoic acid-related orphan nuclear receptor γt. Mol
Med Rep. 16:1207–1215. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Guo J and Xu S: Astragaloside IV
suppresses histamine-induced inflammatory factors and mucin 5
subtype AC overproduction in nasal epithelial cells via regulation
of inflammation-related genes. Bioengineered. 12:6045–6056. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tong Y, Zhao G, Shuang R, Wang H and Zeng
N: Saikosaponin a activates tet1/dll3/notch1 signalling and
promotes hippocampal neurogenesis to improve depression-like
behavior in mice. J Ethnopharmacol. 319:1172892024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Luo H, Chen J, Su C and Zha L: Advances in
the bioactivities of phytochemical saponins in the prevention and
treatment of atherosclerosis. Nutrients. 14:49982022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen MF, Huang CC, Liu PS, Chen CH and
Shiu LY: Saikosaponin a and saikosaponin d inhibit proliferation
and migratory activity of rat HSC-T6 cells. J Med Food. 16:793–800.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Peng D, Chen Y, Sun Y, Zhang Z, Cui N,
Zhang W, Qi Y, Zeng Y, Hu B, Yang B, et al: Saikosaponin A and its
epimers alleviate LPS-induced acute lung injury in mice. Molecules.
28:9672023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lu CN, Yuan ZG, Zhang XL, Yan R, Zhao YQ,
Liao M and Chen JX: Saikosaponin a and its epimer saikosaponin d
exhibit anti-inflammatory activity by suppressing activation of
NF-κB signaling pathway. Int Immunopharmacol. 14:121–126. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Piao CH, Song CH, Lee EJ and Chai OH:
Saikosaponin A ameliorates nasal inflammation by suppressing
IL-6/ROR-γt/STAT3/IL-17/NF-κB pathway in OVA-induced allergic
rhinitis. Chem Biol Interact. 315:1088742020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Piaoa CH, Zou SC, Bui TT, Song CH and Chai
OH: Saikosaponin D inhibits nasal inflammation by regulating the
transcription factors T-box protein expressed in T cells/GATA-3 and
retinoic acid-related orphan nuclear receptor γt in a murine model
of allergic rhinitis. Heliyon. 9:e173192023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hayden MS and Ghosh S: Shared principles
in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Fu Y, Hu X, Cao Y, Zhang Z and Zhang N:
Saikosaponin a inhibits lipopolysaccharide-oxidative stress and
inflammation in human umbilical vein endothelial cells via
preventing TLR4 translocation into lipid rafts. Free Radic Biol
Med. 89:777–785. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Subbanna M, Shivakumar V, Talukdar PM,
Narayanaswamy JC, Venugopal D, Berk M, Varambally S,
Venkatasubramanian G and Debnath M: Role of IL-6/RORC/IL-22 axis in
driving Th17 pathway mediated immunopathogenesis of schizophrenia.
Cytokine. 111:112–118. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Bai H, Zhang Y, Zhang X, Li C, Ma M, Gao
J, Deng T, Gao C and Wang N: Zyxin-a novel detrimental target, is
inhibited by saikosaponin A during allergic asthma. Phytomedicine.
138:1564342025. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Park KH, Park J, Koh D and Lim Y: Effect
of saikosaponin-A, a triterpenoid glycoside, isolated from
Bupleurum falcatum on experimental allergic asthma. Phytother Res.
16:359–363. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Bailly C and Vergoten G: Proposed
mechanisms for the extracellular release of PD-L1 by the anticancer
saponin platycodin D. Int Immunopharmacol. 85:1066752020.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wu JT, Yang GW, Qi CH, Zhou L, Hu JG and
Wang MS: Anti-inflammatory activity of platycodin D on
alcohol-induced fatty liver rats via TLR4-MYD88-NF-κB signal path.
Afr J Tradit Complement Altern Med. 13:176–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Song Y, Lv P and Yu J: Platycodin D
inhibits diabetic retinopathy via suppressing TLR4/MyD88/NF-κB
signaling pathway and activating Nrf2/HO-1 signaling pathway. Chem
Biol Drug Des. 103:e144192024. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu H, Xu L, Lu E, Tang C, Zhang H, Xu Y,
Yu Y, Ong N, Yang XD, Chen Q and Zheng Y: Platycodin D facilitates
antiviral immunity through inhibiting cytokine storm via targeting
K63-linked TRAF6 ubiquitination. J Leukoc Biol. 117:qiae0752025.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Peng F, Xiao F and Lin L: Protective
effects of platycodin D3 on airway remodeling and inflammation via
modulating MAPK/NF-κB signaling pathway in asthma mice. Evid Based
Complement Alternat Med. 2022:16128292022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang B, Gao Y, Zheng G, Ren X, Sun B, Zhu
K, Luo H, Wang Z and Xu M: Platycodin D inhibits
interleukin-13-induced the expression of inflammatory cytokines and
mucus in nasal epithelial cells. Biomed Pharmacother. 84:1108–1112.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang T, Yang S, Du J, Jinfu Y and Shumin
W: Platycodin D attenuates airway inflammation in a mouse model of
allergic asthma by regulation NF-κB pathway. Inflammation.
38:1221–1228. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
He Y, Liang Y, Fan M, Zhang J and Miao Q:
Jieyu Guben decoction alleviates combined allergic rhinitis and
asthma syndrome by balancing Th17/Treg expression and restoring
PPARD. Phytomedicine. 139:1565082025. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lim CY, Moon JM, Kim BY, Lim SH, Lee GS,
Yu HS and Cho SI: Comparative study of Korean White Ginseng and
Korean Red Ginseng on efficacies of OVA-induced asthma model in
mice. J Ginseng Res. 39:38–45. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Tu Y: Artemisinin-A gift from traditional
Chinese medicine to the world (nobel lecture). Angew Chem Int Ed
Engl. 55:10210–10226. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ma N, Zhang Z, Liao F, Jiang T and Tu Y:
The birth of artemisinin. Pharmacol Ther. 216:1076582020.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhao J, Yan X, Gai J, Han J, Zhang H, Luo
H, Huang S and Wang J: Efficacy of Bimin decoction for patients
with perennial allergic rhinitis: An open-label non-inferiority
randomized controlled trial. Trials. 20:8022019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Nie J, Jiang X, Wang G, Xu Y, Pan R, Yu W,
Li Y and Wang J: Yu-Ping-Feng-San alleviates inflammation in atopic
dermatitis mice by TLR4/MyD88/NF-κB pathway. J Ethnopharmacol.
329:1180922024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Busse PJ, Schofield B, Birmingham N, Yang
N, Wen MC, Zhang T, Srivastava K and Li XM: The traditional Chinese
herbal formula ASHMI inhibits allergic lung inflammation in
antigen-sensitized and antigen-challenged aged mice. Ann Allergy
Asthma Immuno. 104:236–246. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Chan HHL and Ng T: Traditional Chinese
medicine (TCM) and allergic diseases. Curr Allergy Asthma Rep.
20:672020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Qin Z, Xie L, Li W, Wang C and Li Y: New
insights into mechanisms traditional Chinese Medicine for allergic
rhinitis by regulating inflammatory and oxidative stress pathways.
J Asthma Allergy. 17:97–112. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Cobanoğlu B, Toskala E, Ural A and Cingi
C: Role of leukotriene antagonists and antihistamines in the
treatment of allergic rhinitis. Curr Allergy Asthma Rep.
13:203–208. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Nayak A: A review of montelukast in the
treatment of asthma and allergic rhinitis. Expert Opin
Pharmacother. 5:679–686. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zyryanov SK and Vozzhaev AV: Modern
approaches to rational combination pharmacotherapy of allergic
rhinitis. Vestn Otorinolaringol. 89:68–77. 2024.(In Russian).
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
McDonnell J, Weller K and Pien LC: Safety
of intranasal steroids: An updated perspective. Curr Allergy Asthma
Rep. 20:692020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yu K, Chen F and Li C: Absorption,
disposition, and pharmacokinetics of saponins from Chinese
medicinal herbs: What do we know and what do we need to know more?
Curr Drug Metab. 13:577–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Fan PS, Sun MJ, Qin D, Yuan CS, Chen XG
and Liu Y: Nanosystems as curative platforms for allergic disorder
management. J Mater Chem B. 9:1729–1744. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ren Y, Yao D, Wu F, Xiao J, Ma L, Zhang Y,
Zhang Z, He G, Deng W, Qin B, et al: Tolerogenic nanovaccines for
the treatment of type I allergic diseases. J Control Release.
380:664–685. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Teng Z, Yang J, Chen X and Liu Y:
Intranasal morphology transformation nanomedicines for long-term
intervention of allergic rhinitis. ACS Nano. 17:25322–25334. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ansari B, Abbaspour MR, Estajy A,
Haghnavaz N, Pordel S, Rezaee M, Shobeiri SS, Moghadam M, Hashemi M
and Sankian M: Development of fast-dissolving sublingual nanofibers
containing allergen and curcumin for immune response modulation in
a mouse model of allergic rhinitis. Naunyn Schmiedebergs Arch
Pharmacol. 397:7839–7856. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Cao F, Cheng MH, Hu LQ, Shen HH, Tao JH,
Li XM, Pan HF and Gao J: Natural products action on pathogenic cues
in autoimmunity: Efficacy in systemic lupus erythematosus and
rheumatoid arthritis as compared to classical treatments. Pharmacol
Res. 160:1050542020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Skoner DP: Allergic rhinitis: Definition,
epidemiology, pathophysiology, detection, and diagnosis. J Allergy
Clin Immunol. 108 (Suppl 1):S2–S8. 2001. View Article : Google Scholar : PubMed/NCBI
|