Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2026 Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)

  • Authors:
    • Yixin Zhang
    • Tong Ren
    • Jianbo Xue
    • Yan Yu
    • Xianqiang Zhou
    • Xiaoyi Hu
    • Wenyi Yu
    • Zhancheng Gao
    • Cuiling Feng
  • View Affiliations / Copyright

    Affiliations: Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing 100044, P.R. China, Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, P.R. China, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 88
    |
    Published online on: January 13, 2026
       https://doi.org/10.3892/mmr.2026.13798
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible lung condition characterized by airflow limitation. Current treatments primarily aim to alleviate symptoms, especially dyspnea. Extracellular vesicles (EVs), which are nanoscale lipid bilayer particles secreted by living cells, are present in various bodily fluids, including blood, urine and ascites. These vesicles have an important role in intercellular communication and are linked to COPD progression. The present review explores the molecular mechanisms underlying COPD pathogenesis, highlighting the notable involvement of EVs, and also examines the advances that have been made in terms of the diagnostic and therapeutic potential of EVs in COPD management.

View Figures

Figure 1

Biogenesis, secretion and cell entry
of EVs. EVs are categorized into exosomes, apoptotic bodies and MVs
based on their biological origin and size. Exosomes produce ILVs
through inward budding of early endosomes to form MVBs, which
subsequently fuse with lysosomes or cell membranes and are released
into the extracellular environment of the exosome. MVs are produced
by outward budding from the plasma membrane. Apoptotic bodies are
released during cell death through plasma membrane vesicles. EVs
can deliver cargo to recipient cells through phagocytosis,
megakaryocytosis, endocytosis, direct fusion and other means, and
subsequently modulate biological behavior. Created with
BioRender.com (https://app.biorender.com/illustrations/692ee7fb97717aa47f30567d?slideId=76ff231c-5a96-4f30-a8e7-0972073ada7c).
EVs, extracellular vesicles; MVs, microvesicles; MVBs,
multivesicular bodies; ILV, intraluminal vesicle.

Figure 2

Schematic overview of epithelial
EV-induced airway remodeling. Epithelial cells secrete a large
number of EVs after being stimulated by the external environment,
and miR-210, miR-21, cellular communication network factor 1 and
other components contained in EVs induce the increased expression
of pro-inflammatory cytokines, such as IL-8 and monocyte
chemoattractant protein-1, secreted by activated epithelial cells.
This is achieved by activating the Wnt signaling pathway/hypoxia
inducible factor-1α pathway, which enhances the differentiation of
fibroblasts into myofibroblasts, the contraction of smooth muscle
cells and the accumulation of extracellular matrix proteins,
ultimately promoting airway remodeling. Created with BioRender.com
(https://app.biorender.com/illustrations/692eed2c2bdb071cce996f3d?slideId=f9661b16-c75e-4ba9-a385-974bcfbc0a16).
COPD, chronic obstructive pulmonary disease; EVs, extracellular
vesicles; CCN1, cellular communication network factor 1; miRNA,
microRNA; NK, natural killer; DC, dendritic cell; ROCK1,
Rho-associated protein kinase 1; PVHL, von Hippel-Lindau tumor
suppressor; HIF-1α, hypoxia inducible factor-1α; ATG7, autophagy
related 7.

Figure 3

Schematic overview of EV-based
biomarkers in COPD diagnosis. By detecting sputum, bronchoalveolar
lavage fluid and EVs in blood samples as markers for the diagnosis
of chronic obstructive pulmonary disease, the concentrations of
CD31-MPs, CD66b-MPs, CD235ab-MPs and total protein in sputum
sample-derived EVs are notably increased, the levels of miR-122 in
bronchoalveolar lavage fluid are decreased, and the expression
levels of EV miR-221, miR-23a and miR-574 in blood samples are also
notably increased. Created with BioRender.com (https://app.biorender.com/illustrations/692eeccc235f309bfe04b81d?slideId=44a0ee63-27a9-433b-8188-676b7956b82a).
COPD, chronic obstructive pulmonary disease; miR, microRNA; EVs,
extracellular vesicles; MPs, microparticles.

Figure 4

Therapeutic applications of
engineered extracellular vesicles in COPD. EVs extracted from
different cells, including mesenchymal stem cells, macrophages and
DCs, by methods such as differential centrifugation, size exclusion
chromatography, immunoaffinity capture, microfluidics or
precipitation, can be used in the treatment of COPD. These EVs are
loaded with drugs endogenously and/or exogenously, and their
membrane surfaces are modified to improve lung tissue targeting.
Created with BioRender.com (https://app.biorender.com/illustrations/692ee91969efa5da6646019a?slideId=15732dc8-116e-49fa-a545-6343ae7d7599).
miR, microRNA; EVs, extracellular vesicles.
View References

1 

Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J and Tian H: Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 5:2482020. View Article : Google Scholar : PubMed/NCBI

2 

Silverman EK: Genetics of COPD. Annu Rev Physiol. 82:413–431. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Christenson SA, Smith BM, Bafadhel M and Putcha N: Chronic obstructive pulmonary disease. Lancet. 399:2227–2242. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Abbaszadeh H, Ghorbani F, Abbaspour-Aghdam S, Kamrani A, Valizadeh H, Nadiri M, Sadeghi A, Shamsasenjan K, Jadidi-Niaragh F, Roshangar L and Ahmadi M: Chronic obstructive pulmonary disease and asthma: Mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools. Stem Cell Res Ther. 13:2622022. View Article : Google Scholar : PubMed/NCBI

5 

Wei YY, Chen TT, Zhang DW, Zhang Y, Li F, Ding YC, Wang MY, Zhang L, Chen KG and Fei GH: Microplastics exacerbate ferroptosis via mitochondrial reactive oxygen species-mediated autophagy in chronic obstructive pulmonary disease. Autophagy. 21:1717–1743. 2025. View Article : Google Scholar : PubMed/NCBI

6 

Dumas G, Arabi YM, Bartz R, Ranzani O, Scheibe F, Darmon M and Helms J: Diagnosis and management of autoimmune diseases in the ICU. Intensive Care Med. 50:17–35. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Billington CK, Penn RB and Hall IP: β2 agonists. Handb Exp Pharmacol. 237:23–40. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Trappe A, Donnelly SC, McNally P and Coppinger JA: Role of extracellular vesicles in chronic lung disease. Thorax. 76:1047–1056. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Kalita-de Croft P, Sharma S, Sobrevia L and Salomon C: Extracellular vesicle interactions with the external and internal exposome in mediating carcinogenesis. Mol Aspects Med. 87:1010392022. View Article : Google Scholar : PubMed/NCBI

10 

Akhmerov A and Parimon T: Extracellular vesicles, inflammation, and cardiovascular disease. Cells. 11:22292022. View Article : Google Scholar : PubMed/NCBI

11 

Marar C, Starich B and Wirtz D: Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol. 22:560–570. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Tian J, Han Z, Song D, Peng Y, Xiong M, Chen Z, Duan S and Zhang L: Engineered exosome for drug delivery: Recent development and clinical applications. Int J Nanomedicine. 18:7923–7940. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Schaberg T, Klein U, Rau M, Eller J and Lode H: Subpopulations of alveolar macrophages in smokers and nonsmokers: Relation to the expression of CD11/CD18 molecules and superoxide anion production. Am J Respir Crit Care Med. 151:1551–1558. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Chen J, Wang T, Li X, Gao L, Wang K, Cheng M, Zeng Z, Chen L, Shen Y and Wen F: DNA of neutrophil extracellular traps promote NF-κB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct Target Ther. 9:1632024. View Article : Google Scholar : PubMed/NCBI

15 

Barnes PJ: Oxidative stress-based therapeutics in COPD. Redox Biol. 33:1015442020. View Article : Google Scholar : PubMed/NCBI

16 

Nwozor KO, Hackett TL, Chen Q, Yang CX, Aguilar Lozano SP, Zheng X, Al-Fouadi M, Kole TM, Faiz A, Mahbub RM, et al: Effect of age, COPD severity, and cigarette smoke exposure on bronchial epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 328:L724–Ll737. 2025. View Article : Google Scholar : PubMed/NCBI

17 

Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, et al: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 187:347–365. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Cui W, Zhang Z, Zhang P, Qu J, Zheng C, Mo X, Zhou W, Xu L, Yao H and Gao J: Nrf2 attenuates inflammatory response in COPD/emphysema: Crosstalk with Wnt3a/β-catenin and AMPK pathways. J Cell Mol Med. 22:3514–3525. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Guo P, Li R, Piao TH, Wang CL, Wu XL and Cai HY: Pathological mechanism and targeted drugs of COPD. Int J Chron Obstruct Pulmon Dis. 17:1565–1575. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Barnes PJ, Burney PG, Silverman EK, Celli BR, Vestbo J, Wedzicha JA and Wouters EF: Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 1:150762015. View Article : Google Scholar : PubMed/NCBI

21 

Barnes PJ: Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 138:16–27. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Brightling C and Greening N: Airway inflammation in COPD: Progress to precision medicine. Eur Respir J. 54:19006512019. View Article : Google Scholar : PubMed/NCBI

23 

Xu J, Zeng Q, Li S, Su Q and Fan H: Inflammation mechanism and research progress of COPD. Front Immunol. 15:14046152024. View Article : Google Scholar : PubMed/NCBI

24 

Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H and Pinkerton KE: Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). J Toxicol Environ Health B Crit Rev. 26:275–305. 2023. View Article : Google Scholar : PubMed/NCBI

25 

DI Stefano A, Gnemmi I, Dossena F, Ricciardolo FL, Maniscalco M, Lo Bello F and Balbi B: Pathogenesis of COPD at the cellular and molecular level. Minerva Med. 113:405–423. 2022. View Article : Google Scholar : PubMed/NCBI

26 

Shapiro SD: Proteolysis in the lung. Eur Respir J Suppl. 44:30s–32s. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Abboud RT and Vimalanathan S: Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis. 12:361–367. 2008.PubMed/NCBI

28 

Haq I, Chappell S, Johnson SR, Lotya J, Daly L, Morgan K, Guetta-Baranes T, Roca J, Rabinovich R, Millar AB, et al: Association of MMP-2 polymorphisms with severe and very severe COPD: A case control study of MMPs-1, 9 and 12 in a European population. BMC Med Genet. 11:72010. View Article : Google Scholar : PubMed/NCBI

29 

D'Armiento JM, Goldklang MP, Hardigan AA, Geraghty P, Roth MD, Connett JE, Wise RA, Sciurba FC, Scharf SM, Thankachen J, et al: Increased matrix metalloproteinase (MMPs) levels do not predict disease severity or progression in emphysema. PLoS One. 8:e563522013. View Article : Google Scholar : PubMed/NCBI

30 

Lomas DA: Does protease-antiprotease imbalance explain chronic obstructive pulmonary disease? Ann Am Thorac Soc. 13 (Suppl 2):S130–S137. 2016.PubMed/NCBI

31 

Xin XF, Zhao M, Li ZL, Song Y and Shi Y: Metalloproteinase-9/tissue inhibitor of metalloproteinase-1 in induced sputum in patients with asthma and chronic obstructive pulmonary disease and their relationship to airway inflammation and airflow limitation. Zhonghua Jie He He Hu Xi Za Zhi. 30:192–196. 2007.(In Chinese). PubMed/NCBI

32 

Wickman G, Julian L and Olson MF: How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ. 19:735–742. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Du S, Guan Y, Xie A, Yan Z, Gao S, Li W, Rao L, Chen X and Chen T: Extracellular vesicles: A rising star for therapeutics and drug delivery. J Nanobiotechnology. 21:2312023. View Article : Google Scholar : PubMed/NCBI

34 

Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA and Zhou QA: Exosomes-nature's lipid nanoparticles, a rising star in drug delivery and diagnostics. ACS Nano. 16:17802–17846. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J and Du G: The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 11:2783–2797. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Antonyak MA and Cerione RA: Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol. 1165:147–173. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Xu X, Lai Y and Hua ZC: Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci Rep. 39:BSR201809922019. View Article : Google Scholar : PubMed/NCBI

38 

Liu Q, Li D, Pan X and Liang Y: Targeted therapy using engineered extracellular vesicles: Principles and strategies for membrane modification. J Nanobiotechnology. 21:3342023. View Article : Google Scholar : PubMed/NCBI

39 

Hallstrand TS, Hackett TL, Altemeier WA, Matute-Bello G, Hansbro PM and Knight DA: Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clin Immunol. 151:1–15. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Yang Y, Yuan L, Du X, Zhou K, Qin L, Wang L, Yang M, Wu M, Zheng Z, Xiang Y, et al: Involvement of epithelia-derived exosomes in chronic respiratory diseases. Biomed Pharmacother. 143:1121892021. View Article : Google Scholar : PubMed/NCBI

41 

Xu H, Ling M, Xue J, Dai X, Sun Q, Chen C, Liu Y, Zhou L, Liu J, Luo F, et al: Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Theranostics. 8:5419–5433. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Qiu Q, Dan X, Yang C, Hardy P, Yang Z, Liu G and Xiong W: Increased airway T lymphocyte microparticles in chronic obstructive pulmonary disease induces airway epithelial injury. Life Sci. 261:1183572020. View Article : Google Scholar : PubMed/NCBI

43 

Fujita Y, Araya J, Ito S, Kobayashi K, Kosaka N, Yoshioka Y, Kadota T, Hara H, Kuwano K and Ochiya T: Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles. 4:283882015. View Article : Google Scholar : PubMed/NCBI

44 

Hernández-Díazcouder A, Romero-Nava R, Del-Río-Navarro BE, Sánchez-Muñoz F, Guzmán-Martín CA, Reyes-Noriega N, Rodríguez-Cortés O, Leija-Martínez JJ, Vélez-Reséndiz JM, Villafaña S, et al: The Roles of MicroRNAs in asthma and emerging insights into the effects of vitamin D3 supplementation. Nutrients. 16:3412024. View Article : Google Scholar : PubMed/NCBI

45 

Augustyniak D, Roszkowiak J, Wiśniewska I, Skała J, Gorczyca D and Drulis-Kawa Z: Neuropeptides SP and CGRP diminish the Moraxella catarrhalis outer membrane vesicle-(OMV-) triggered inflammatory response of human a549 epithelial cells and neutrophils. Mediators Inflamm. 2018:48472052018. View Article : Google Scholar : PubMed/NCBI

46 

Bomberger JM, Ye S, Maceachran DP, Koeppen K, Barnaby RL, O'Toole GA and Stanton BA: A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. PLoS Pathog. 7:e10013252011. View Article : Google Scholar : PubMed/NCBI

47 

Riley CM and Sciurba FC: Diagnosis and outpatient management of chronic obstructive pulmonary disease: A review. JAMA. 321:786–797. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Ferrera MC, Labaki WW and Han MK: Advances in chronic obstructive pulmonary disease. Annu Rev Med. 72:119–134. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Kahnert K, Jörres RA, Behr J and Welte T: The diagnosis and treatment of COPD and its comorbidities. Dtsch Arztebl Int. 120:434–444. 2023.PubMed/NCBI

50 

Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT Jr, Wolfram J and Fairweather D: Extracellular vesicles as personalized medicine. Mol Aspects Med. 91:1011552023. View Article : Google Scholar : PubMed/NCBI

51 

Brightling CE: Clinical applications of induced sputum. Chest. 129:1344–1348. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Jin Y, Chen Z, Chen Q, Sha L and Shen C: Role and significance of bioactive substances in sputum in the diagnosis of lung cancer. Zhongguo Fei Ai Za Zhi. 24:867–873. 2021.(In Chinese). PubMed/NCBI

53 

Guiot J, Demarche S, Henket M, Paulus V, Graff S, Schleich F, Corhay JL, Louis R and Moermans C: Methodology for sputum induction and laboratory processing. J Vis Exp. 566122017.PubMed/NCBI

54 

Pastor L, Vera E, Marin JM and Sanz-Rubio D: Extracellular vesicles from airway secretions: New insights in lung diseases. Int J Mol. 22:5832021. View Article : Google Scholar

55 

Kotsiou OS, Katsanaki K, Tsiggene A, Papathanasiou S, Rouka E, Antonopoulos D, Gerogianni I, Balatsos NAA, Gourgoulianis KI and Tsilioni I: Detection and characterization of extracellular vesicles in sputum samples of COPD patients. J Pers Med. 14:8202024. View Article : Google Scholar : PubMed/NCBI

56 

Liu Y, Huang J, Li E, Xiao Y, Li C, Xia M, Ke J, Xiang L and Lei M: Analysis of research trends and hot spots on COPD biomarkers from the perspective of bibliometrics. Respir Med. 240:1080302025. View Article : Google Scholar : PubMed/NCBI

57 

Kaur G, Maremanda KP, Campos M, Chand HS, Li F, Hirani N, Haseeb MA, Li D and Rahman I: Distinct exosomal miRNA profiles from BALF and lung tissue of COPD and IPF patients. Int J Mol Sci. 22:118302021. View Article : Google Scholar : PubMed/NCBI

58 

Wu J, Ma Y and Chen Y: Extracellular vesicles and COPD: Foe or friend? J Nanobiotechnology. 21:1472023. View Article : Google Scholar : PubMed/NCBI

59 

Roth K, Hardie JA, Andreassen AH, Leh F and Eagan TM: Predictors of diagnostic yield in bronchoscopy: A retrospective cohort study comparing different combinations of sampling techniques. BMC Pulm Med. 8:22008. View Article : Google Scholar : PubMed/NCBI

60 

Walmsley S, Cruickshank-Quinn C, Quinn K, Zhang X, Petrache I, Bowler RP, Reisdorph R and Reisdorph N: A prototypic small molecule database for bronchoalveolar lavage-based metabolomics. Sci Data. 5:1800602018. View Article : Google Scholar : PubMed/NCBI

61 

Gon Y, Shimizu T, Mizumura K, Maruoka S and Hikichi M: Molecular techniques for respiratory diseases: MicroRNA and extracellular vesicles. Respirology. 25:149–160. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Donaldson A, Natanek SA, Lewis A, Man WD, Hopkinson NS, Polkey MI and Kemp PR: Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax. 68:1140–1149. 2013. View Article : Google Scholar : PubMed/NCBI

63 

McDonald JS, Milosevic D, Reddi HV, Grebe SK and Algeciras-Schimnich A: Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin Chem. 57:833–840. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Shen Y, Wang L, Wu Y, Ou Y, Lu H and Yao X: A novel diagnostic signature based on three circulating exosomal mircoRNAs for chronic obstructive pulmonary disease. Exp Ther Med. 22:7172021. View Article : Google Scholar : PubMed/NCBI

65 

Tan DBA, Armitage J, Teo TH, Ong NE, Shin H and Moodley YP: Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med. 132:261–264. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Park KS, Lässer C and Lötvall J: Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev. 105:1733–1821. 2025. View Article : Google Scholar : PubMed/NCBI

67 

Wang R, Zhu Z, Peng S, Xu J, Chen Y, Wei S and Liu X: Exosome microRNA-125a-5p derived from epithelium promotes M1 macrophage polarization by targeting IL1RN in chronic obstructive pulmonary disease. Int Immunopharmacol. 137:1124662024. View Article : Google Scholar : PubMed/NCBI

68 

Hade MD, Suire CN and Suo Z: Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 10:19592021. View Article : Google Scholar : PubMed/NCBI

69 

Chen L, Qu J, Kalyani FS, Zhang Q, Fan L, Fang Y, Li Y and Xiang C: Mesenchymal stem cell-based treatments for COVID-19: Status and future perspectives for clinical applications. Cell Mol Life Sci. 79:1422022. View Article : Google Scholar : PubMed/NCBI

70 

Pierro M, Ionescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G, Emery D, Bodiga S, Eaton F, Péault B, et al: Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax. 68:475–484. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Gu W, Song L, Li XM, Wang D, Guo XJ and Xu WG: Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 5:87332015. View Article : Google Scholar : PubMed/NCBI

72 

Schweitzer KS, Johnstone BH, Garrison J, Rush NI, Cooper S, Traktuev DO, Feng D, Adamowicz JJ, Van Demark M, Fisher AJ, et al: Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med. 183:215–225. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M and Tashkin DP: A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 143:1590–1598. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Lowenthal J and Sugarman J: Ethics and policy issues for stem cell research and pulmonary medicine. Chest. 147:824–834. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Mohammadipoor A, Antebi B, Batchinsky AI and Cancio LC: Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res. 19:2182018. View Article : Google Scholar : PubMed/NCBI

76 

Tan F, Li X, Wang Z, Li J, Shahzad K and Zheng J: Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 9:172024. View Article : Google Scholar : PubMed/NCBI

77 

Sung DK, Chang YS, Sung SI, Ahn SY and Park WS: Thrombin preconditioning of extracellular vesicles derived from mesenchymal stem cells accelerates cutaneous wound healing by boosting their biogenesis and enriching cargo content. J Clin Med. 8:5332019. View Article : Google Scholar : PubMed/NCBI

78 

Lai RC, Yeo RW, Padmanabhan J, Choo A, de Kleijn DP and Lim SK: Isolation and characterization of exosome from human embryonic stem cell-derived C-Myc-immortalized mesenchymal stem cells. Methods Mol Biol. 1416:477–494. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Miethe S, Potaczek DP, Bazan-Socha S, Bachl M, Schaefer L, Wygrecka M and Garn H: The emerging role of extracellular vesicles as communicators between adipose tissue and pathologic lungs with a special focus on asthma. Am J Physiol Cell Physiol. 324:C1119–C1125. 2023. View Article : Google Scholar : PubMed/NCBI

80 

Manisalidis I, Stavropoulou E, Stavropoulos A and Bezirtzoglou E: Environmental and health impacts of air pollution: A review. Front Public Health. 8:142020. View Article : Google Scholar : PubMed/NCBI

81 

Chen YT, Miao K, Zhou L and Xiong WN: Stem cell therapy for chronic obstructive pulmonary disease. Chin Med J (Engl). 134:1535–1545. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Ji HL, Liu C and Zhao RZ: Stem cell therapy for COVID-19 and other respiratory diseases: Global trends of clinical trials. World J Stem Cells. 12:471–480. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Chen Q, Lin J, Deng Z and Qian W: Exosomes derived from human umbilical cord mesenchymal stem cells protect against papain-induced emphysema by preventing apoptosis through activating VEGF-VEGFR2-mediated AKT and MEK/ERK pathways in rats. Regen Ther. 21:216–224. 2022. View Article : Google Scholar : PubMed/NCBI

84 

Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, Mohd Isa SA, Chatar Singh GK, Then KY, Ooi GC and Yahaya BH: Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther. 12:542021. View Article : Google Scholar : PubMed/NCBI

85 

Las G and Shirihai OS: Miro1: New wheels for transferring mitochondria. EMBO J. 33:939–941. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Lerner CA, Sundar IK and Rahman I: Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. Int J Biochem Cell Biol. 81:294–306. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Maremanda KP, Sundar IK and Rahman I: Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicol Appl Pharmacol. 385:1147882019. View Article : Google Scholar : PubMed/NCBI

88 

Calzetta L, Matera MG, Rogliani P and Cazzola M: The role of triple therapy in the management of COPD. Expert Rev Clin Pharmacol. 13:865–874. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Wang N, Wang Q, Du T, Gabriel ANA, Wang X, Sun L, Li X, Xu K, Jiang X and Zhang Y: The potential roles of exosomes in chronic obstructive pulmonary disease. Front Med (Lausanne). 7:6185062021. View Article : Google Scholar : PubMed/NCBI

90 

Yang Y, Hong Y, Cho E, Kim GB and Kim IS: Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J Extracell Vesicles. 7:14401312018. View Article : Google Scholar : PubMed/NCBI

91 

Xu Y, Lai Y, Cao L, Li Y, Chen G, Chen L, Weng H, Chen T, Wang L and Ye Y: Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-451a represses epithelial-mesenchymal transition of hepatocellular carcinoma cells by inhibiting ADAM10. RNA Biol. 18:1408–1423. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Li YJ, Wu JY, Wang JM, Hu XB, Cai JX and Xiang DX: Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater. 101:519–530. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA and Gao J: Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 150:137–149. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Shapira S, Schwartz R, Tsiodras S, Bar-Shai A, Melloul A, Borsekofsky S, Peer M, Adi N, MacLoughlin R and Arber N: Inhaled CD24-enriched exosomes (EXO-CD24) as a novel immune modulator in respiratory disease. Int J Mol Sci. 25:772023. View Article : Google Scholar : PubMed/NCBI

95 

Xuan W, Wang S, Alarcon-Calderon A, Bagwell MS, Para R, Wang F, Zhang C, Tian X, Stalboerger P, Peterson T, et al: Nebulized platelet-derived extracellular vesicles attenuate chronic cigarette smoke-induced murine emphysema. Transl Res. 269:76–93. 2024. View Article : Google Scholar : PubMed/NCBI

96 

Kim YS, Kim JY, Cho R, Shin DM, Lee SW and Oh YM: Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med. 49:e2842017. View Article : Google Scholar : PubMed/NCBI

97 

Staubach S, Bauer FN, Tertel T, Börger V, Stambouli O, Salzig D and Giebel B: Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev. 177:1139402021. View Article : Google Scholar : PubMed/NCBI

98 

Jia Y, Yu L, Ma T, Xu W, Qian H, Sun Y and Shi H: Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics. 12:6548–6575. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Araldi RP, Delvalle DA, da Costa VR, Alievi AL, Teixeira MR, Dias Pinto JR and Kerkis I: Exosomes as a nano-carrier for chemotherapeutics: A new era of oncology. Cells. 12:21442023. View Article : Google Scholar : PubMed/NCBI

100 

Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Bauer D, Cornejo MA, Hoang TT, Lewis JS and Zeglis BM: Click chemistry and radiochemistry: An update. Bioconjug Chem. 34:1925–1950. 2023. View Article : Google Scholar : PubMed/NCBI

102 

Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S and Wood MJ: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 29:341–345. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Bari E, Ferrarotti I, Torre ML, Corsico AG and Perteghella S: Mesenchymal stem/stromal cell secretome for lung regeneration: The long way through ‘pharmaceuticalization’ for the best formulation. J Control Release. 309:11–24. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Ma Y, Liu X, Long Y and Chen Y: Emerging therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in chronic respiratory diseases: An overview of recent progress. Front Bioeng Biotechnol. 10:8450422022. View Article : Google Scholar : PubMed/NCBI

105 

Brave H and MacLoughlin R: State of the art review of cell therapy in the treatment of lung disease, and the potential for aerosol delivery. Int J Mol Sci. 21:64352020. View Article : Google Scholar : PubMed/NCBI

106 

Rogliani P, Calzetta L, Coppola A, Cavalli F, Ora J, Puxeddu E, Matera MG and Cazzola M: Optimizing drug delivery in COPD: The role of inhaler devices. Respir Med. 124:6–14. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Lv J and Xiong X: Extracellular vesicle microRNA: A promising biomarker and therapeutic target for respiratory diseases. Int J Mol Sci. 25:91472024. View Article : Google Scholar : PubMed/NCBI

108 

Neri T, Celi A, Tinè M, Bernardinello N, Cosio MG, Saetta M, Nieri D and Bazzan E: The emerging role of extracellular vesicles detected in different biological fluids in COPD. Int J Mol Sci. 23:51362022. View Article : Google Scholar : PubMed/NCBI

109 

Reid LV, Spalluto CM, Watson A, Staples KJ and Wilkinson TMA: The Role of Extracellular vesicles as a shared disease mechanism contributing to multimorbidity in patients with COPD. Front Immunol. 12:7540042021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Ren T, Xue J, Yu Y, Zhou X, Hu X, Yu W, Gao Z and Feng C: <p>Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)</p>. Mol Med Rep 33: 88, 2026.
APA
Zhang, Y., Ren, T., Xue, J., Yu, Y., Zhou, X., Hu, X. ... Feng, C. (2026). <p>Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)</p>. Molecular Medicine Reports, 33, 88. https://doi.org/10.3892/mmr.2026.13798
MLA
Zhang, Y., Ren, T., Xue, J., Yu, Y., Zhou, X., Hu, X., Yu, W., Gao, Z., Feng, C."<p>Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)</p>". Molecular Medicine Reports 33.3 (2026): 88.
Chicago
Zhang, Y., Ren, T., Xue, J., Yu, Y., Zhou, X., Hu, X., Yu, W., Gao, Z., Feng, C."<p>Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)</p>". Molecular Medicine Reports 33, no. 3 (2026): 88. https://doi.org/10.3892/mmr.2026.13798
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Ren T, Xue J, Yu Y, Zhou X, Hu X, Yu W, Gao Z and Feng C: <p>Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)</p>. Mol Med Rep 33: 88, 2026.
APA
Zhang, Y., Ren, T., Xue, J., Yu, Y., Zhou, X., Hu, X. ... Feng, C. (2026). <p>Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)</p>. Molecular Medicine Reports, 33, 88. https://doi.org/10.3892/mmr.2026.13798
MLA
Zhang, Y., Ren, T., Xue, J., Yu, Y., Zhou, X., Hu, X., Yu, W., Gao, Z., Feng, C."<p>Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)</p>". Molecular Medicine Reports 33.3 (2026): 88.
Chicago
Zhang, Y., Ren, T., Xue, J., Yu, Y., Zhou, X., Hu, X., Yu, W., Gao, Z., Feng, C."<p>Application of extracellular vesicles in the diagnosis and treatment of chronic obstructive pulmonary disease (Review)</p>". Molecular Medicine Reports 33, no. 3 (2026): 88. https://doi.org/10.3892/mmr.2026.13798
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team