|
1
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A,
Yodoi J and Tian H: Progress in the mechanism and targeted drug
therapy for COPD. Signal Transduct Target Ther. 5:2482020.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Silverman EK: Genetics of COPD. Annu Rev
Physiol. 82:413–431. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Christenson SA, Smith BM, Bafadhel M and
Putcha N: Chronic obstructive pulmonary disease. Lancet.
399:2227–2242. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Abbaszadeh H, Ghorbani F, Abbaspour-Aghdam
S, Kamrani A, Valizadeh H, Nadiri M, Sadeghi A, Shamsasenjan K,
Jadidi-Niaragh F, Roshangar L and Ahmadi M: Chronic obstructive
pulmonary disease and asthma: Mesenchymal stem cells and their
extracellular vesicles as potential therapeutic tools. Stem Cell
Res Ther. 13:2622022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wei YY, Chen TT, Zhang DW, Zhang Y, Li F,
Ding YC, Wang MY, Zhang L, Chen KG and Fei GH: Microplastics
exacerbate ferroptosis via mitochondrial reactive oxygen
species-mediated autophagy in chronic obstructive pulmonary
disease. Autophagy. 21:1717–1743. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dumas G, Arabi YM, Bartz R, Ranzani O,
Scheibe F, Darmon M and Helms J: Diagnosis and management of
autoimmune diseases in the ICU. Intensive Care Med. 50:17–35. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Billington CK, Penn RB and Hall IP:
β2 agonists. Handb Exp Pharmacol. 237:23–40. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Trappe A, Donnelly SC, McNally P and
Coppinger JA: Role of extracellular vesicles in chronic lung
disease. Thorax. 76:1047–1056. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kalita-de Croft P, Sharma S, Sobrevia L
and Salomon C: Extracellular vesicle interactions with the external
and internal exposome in mediating carcinogenesis. Mol Aspects Med.
87:1010392022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Akhmerov A and Parimon T: Extracellular
vesicles, inflammation, and cardiovascular disease. Cells.
11:22292022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Marar C, Starich B and Wirtz D:
Extracellular vesicles in immunomodulation and tumor progression.
Nat Immunol. 22:560–570. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tian J, Han Z, Song D, Peng Y, Xiong M,
Chen Z, Duan S and Zhang L: Engineered exosome for drug delivery:
Recent development and clinical applications. Int J Nanomedicine.
18:7923–7940. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Schaberg T, Klein U, Rau M, Eller J and
Lode H: Subpopulations of alveolar macrophages in smokers and
nonsmokers: Relation to the expression of CD11/CD18 molecules and
superoxide anion production. Am J Respir Crit Care Med.
151:1551–1558. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen J, Wang T, Li X, Gao L, Wang K, Cheng
M, Zeng Z, Chen L, Shen Y and Wen F: DNA of neutrophil
extracellular traps promote NF-κB-dependent autoimmunity via
cGAS/TLR9 in chronic obstructive pulmonary disease. Signal
Transduct Target Ther. 9:1632024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Barnes PJ: Oxidative stress-based
therapeutics in COPD. Redox Biol. 33:1015442020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nwozor KO, Hackett TL, Chen Q, Yang CX,
Aguilar Lozano SP, Zheng X, Al-Fouadi M, Kole TM, Faiz A, Mahbub
RM, et al: Effect of age, COPD severity, and cigarette smoke
exposure on bronchial epithelial barrier function. Am J Physiol
Lung Cell Mol Physiol. 328:L724–Ll737. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Vestbo J, Hurd SS, Agustí AG, Jones PW,
Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ,
Nishimura M, et al: Global strategy for the diagnosis, management,
and prevention of chronic obstructive pulmonary disease: GOLD
executive summary. Am J Respir Crit Care Med. 187:347–365. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cui W, Zhang Z, Zhang P, Qu J, Zheng C, Mo
X, Zhou W, Xu L, Yao H and Gao J: Nrf2 attenuates inflammatory
response in COPD/emphysema: Crosstalk with Wnt3a/β-catenin and AMPK
pathways. J Cell Mol Med. 22:3514–3525. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guo P, Li R, Piao TH, Wang CL, Wu XL and
Cai HY: Pathological mechanism and targeted drugs of COPD. Int J
Chron Obstruct Pulmon Dis. 17:1565–1575. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Barnes PJ, Burney PG, Silverman EK, Celli
BR, Vestbo J, Wedzicha JA and Wouters EF: Chronic obstructive
pulmonary disease. Nat Rev Dis Primers. 1:150762015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Barnes PJ: Inflammatory mechanisms in
patients with chronic obstructive pulmonary disease. J Allergy Clin
Immunol. 138:16–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Brightling C and Greening N: Airway
inflammation in COPD: Progress to precision medicine. Eur Respir J.
54:19006512019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xu J, Zeng Q, Li S, Su Q and Fan H:
Inflammation mechanism and research progress of COPD. Front
Immunol. 15:14046152024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer
CM, Kodavanti UP, Takeuchi M, Bayram H and Pinkerton KE: Animal
models and mechanisms of tobacco smoke-induced chronic obstructive
pulmonary disease (COPD). J Toxicol Environ Health B Crit Rev.
26:275–305. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
DI Stefano A, Gnemmi I, Dossena F,
Ricciardolo FL, Maniscalco M, Lo Bello F and Balbi B: Pathogenesis
of COPD at the cellular and molecular level. Minerva Med.
113:405–423. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Shapiro SD: Proteolysis in the lung. Eur
Respir J Suppl. 44:30s–32s. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Abboud RT and Vimalanathan S: Pathogenesis
of COPD. Part I. The role of protease-antiprotease imbalance in
emphysema. Int J Tuberc Lung Dis. 12:361–367. 2008.PubMed/NCBI
|
|
28
|
Haq I, Chappell S, Johnson SR, Lotya J,
Daly L, Morgan K, Guetta-Baranes T, Roca J, Rabinovich R, Millar
AB, et al: Association of MMP-2 polymorphisms with severe and very
severe COPD: A case control study of MMPs-1, 9 and 12 in a European
population. BMC Med Genet. 11:72010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
D'Armiento JM, Goldklang MP, Hardigan AA,
Geraghty P, Roth MD, Connett JE, Wise RA, Sciurba FC, Scharf SM,
Thankachen J, et al: Increased matrix metalloproteinase (MMPs)
levels do not predict disease severity or progression in emphysema.
PLoS One. 8:e563522013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lomas DA: Does protease-antiprotease
imbalance explain chronic obstructive pulmonary disease? Ann Am
Thorac Soc. 13 (Suppl 2):S130–S137. 2016.PubMed/NCBI
|
|
31
|
Xin XF, Zhao M, Li ZL, Song Y and Shi Y:
Metalloproteinase-9/tissue inhibitor of metalloproteinase-1 in
induced sputum in patients with asthma and chronic obstructive
pulmonary disease and their relationship to airway inflammation and
airflow limitation. Zhonghua Jie He He Hu Xi Za Zhi. 30:192–196.
2007.(In Chinese). PubMed/NCBI
|
|
32
|
Wickman G, Julian L and Olson MF: How
apoptotic cells aid in the removal of their own cold dead bodies.
Cell Death Differ. 19:735–742. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Du S, Guan Y, Xie A, Yan Z, Gao S, Li W,
Rao L, Chen X and Chen T: Extracellular vesicles: A rising star for
therapeutics and drug delivery. J Nanobiotechnology. 21:2312023.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen
CA and Zhou QA: Exosomes-nature's lipid nanoparticles, a rising
star in drug delivery and diagnostics. ACS Nano. 16:17802–17846.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y,
Fu W, Yi J, Wang J and Du G: The biology, function, and
applications of exosomes in cancer. Acta Pharm Sin B. 11:2783–2797.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Antonyak MA and Cerione RA: Microvesicles
as mediators of intercellular communication in cancer. Methods Mol
Biol. 1165:147–173. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xu X, Lai Y and Hua ZC: Apoptosis and
apoptotic body: Disease message and therapeutic target potentials.
Biosci Rep. 39:BSR201809922019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu Q, Li D, Pan X and Liang Y: Targeted
therapy using engineered extracellular vesicles: Principles and
strategies for membrane modification. J Nanobiotechnology.
21:3342023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hallstrand TS, Hackett TL, Altemeier WA,
Matute-Bello G, Hansbro PM and Knight DA: Airway epithelial
regulation of pulmonary immune homeostasis and inflammation. Clin
Immunol. 151:1–15. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang Y, Yuan L, Du X, Zhou K, Qin L, Wang
L, Yang M, Wu M, Zheng Z, Xiang Y, et al: Involvement of
epithelia-derived exosomes in chronic respiratory diseases. Biomed
Pharmacother. 143:1121892021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xu H, Ling M, Xue J, Dai X, Sun Q, Chen C,
Liu Y, Zhou L, Liu J, Luo F, et al: Exosomal microRNA-21 derived
from bronchial epithelial cells is involved in aberrant
epithelium-fibroblast cross-talk in COPD induced by cigarette
smoking. Theranostics. 8:5419–5433. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Qiu Q, Dan X, Yang C, Hardy P, Yang Z, Liu
G and Xiong W: Increased airway T lymphocyte microparticles in
chronic obstructive pulmonary disease induces airway epithelial
injury. Life Sci. 261:1183572020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fujita Y, Araya J, Ito S, Kobayashi K,
Kosaka N, Yoshioka Y, Kadota T, Hara H, Kuwano K and Ochiya T:
Suppression of autophagy by extracellular vesicles promotes
myofibroblast differentiation in COPD pathogenesis. J Extracell
Vesicles. 4:283882015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hernández-Díazcouder A, Romero-Nava R,
Del-Río-Navarro BE, Sánchez-Muñoz F, Guzmán-Martín CA,
Reyes-Noriega N, Rodríguez-Cortés O, Leija-Martínez JJ,
Vélez-Reséndiz JM, Villafaña S, et al: The Roles of MicroRNAs in
asthma and emerging insights into the effects of vitamin
D3 supplementation. Nutrients. 16:3412024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Augustyniak D, Roszkowiak J, Wiśniewska I,
Skała J, Gorczyca D and Drulis-Kawa Z: Neuropeptides SP and CGRP
diminish the Moraxella catarrhalis outer membrane
vesicle-(OMV-) triggered inflammatory response of human a549
epithelial cells and neutrophils. Mediators Inflamm.
2018:48472052018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bomberger JM, Ye S, Maceachran DP, Koeppen
K, Barnaby RL, O'Toole GA and Stanton BA: A Pseudomonas
aeruginosa toxin that hijacks the host ubiquitin proteolytic
system. PLoS Pathog. 7:e10013252011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Riley CM and Sciurba FC: Diagnosis and
outpatient management of chronic obstructive pulmonary disease: A
review. JAMA. 321:786–797. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ferrera MC, Labaki WW and Han MK: Advances
in chronic obstructive pulmonary disease. Annu Rev Med. 72:119–134.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kahnert K, Jörres RA, Behr J and Welte T:
The diagnosis and treatment of COPD and its comorbidities. Dtsch
Arztebl Int. 120:434–444. 2023.PubMed/NCBI
|
|
50
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu
T, March KL, Cooper LT Jr, Wolfram J and Fairweather D:
Extracellular vesicles as personalized medicine. Mol Aspects Med.
91:1011552023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Brightling CE: Clinical applications of
induced sputum. Chest. 129:1344–1348. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jin Y, Chen Z, Chen Q, Sha L and Shen C:
Role and significance of bioactive substances in sputum in the
diagnosis of lung cancer. Zhongguo Fei Ai Za Zhi. 24:867–873.
2021.(In Chinese). PubMed/NCBI
|
|
53
|
Guiot J, Demarche S, Henket M, Paulus V,
Graff S, Schleich F, Corhay JL, Louis R and Moermans C: Methodology
for sputum induction and laboratory processing. J Vis Exp.
566122017.PubMed/NCBI
|
|
54
|
Pastor L, Vera E, Marin JM and Sanz-Rubio
D: Extracellular vesicles from airway secretions: New insights in
lung diseases. Int J Mol. 22:5832021. View Article : Google Scholar
|
|
55
|
Kotsiou OS, Katsanaki K, Tsiggene A,
Papathanasiou S, Rouka E, Antonopoulos D, Gerogianni I, Balatsos
NAA, Gourgoulianis KI and Tsilioni I: Detection and
characterization of extracellular vesicles in sputum samples of
COPD patients. J Pers Med. 14:8202024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu Y, Huang J, Li E, Xiao Y, Li C, Xia M,
Ke J, Xiang L and Lei M: Analysis of research trends and hot spots
on COPD biomarkers from the perspective of bibliometrics. Respir
Med. 240:1080302025. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kaur G, Maremanda KP, Campos M, Chand HS,
Li F, Hirani N, Haseeb MA, Li D and Rahman I: Distinct exosomal
miRNA profiles from BALF and lung tissue of COPD and IPF patients.
Int J Mol Sci. 22:118302021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wu J, Ma Y and Chen Y: Extracellular
vesicles and COPD: Foe or friend? J Nanobiotechnology. 21:1472023.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Roth K, Hardie JA, Andreassen AH, Leh F
and Eagan TM: Predictors of diagnostic yield in bronchoscopy: A
retrospective cohort study comparing different combinations of
sampling techniques. BMC Pulm Med. 8:22008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Walmsley S, Cruickshank-Quinn C, Quinn K,
Zhang X, Petrache I, Bowler RP, Reisdorph R and Reisdorph N: A
prototypic small molecule database for bronchoalveolar lavage-based
metabolomics. Sci Data. 5:1800602018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gon Y, Shimizu T, Mizumura K, Maruoka S
and Hikichi M: Molecular techniques for respiratory diseases:
MicroRNA and extracellular vesicles. Respirology. 25:149–160. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Donaldson A, Natanek SA, Lewis A, Man WD,
Hopkinson NS, Polkey MI and Kemp PR: Increased skeletal
muscle-specific microRNA in the blood of patients with COPD.
Thorax. 68:1140–1149. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
McDonald JS, Milosevic D, Reddi HV, Grebe
SK and Algeciras-Schimnich A: Analysis of circulating microRNA:
Preanalytical and analytical challenges. Clin Chem. 57:833–840.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shen Y, Wang L, Wu Y, Ou Y, Lu H and Yao
X: A novel diagnostic signature based on three circulating exosomal
mircoRNAs for chronic obstructive pulmonary disease. Exp Ther Med.
22:7172021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tan DBA, Armitage J, Teo TH, Ong NE, Shin
H and Moodley YP: Elevated levels of circulating exosome in COPD
patients are associated with systemic inflammation. Respir Med.
132:261–264. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Park KS, Lässer C and Lötvall J:
Extracellular vesicles and the lung: from disease pathogenesis to
biomarkers and treatments. Physiol Rev. 105:1733–1821. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang R, Zhu Z, Peng S, Xu J, Chen Y, Wei S
and Liu X: Exosome microRNA-125a-5p derived from epithelium
promotes M1 macrophage polarization by targeting IL1RN in chronic
obstructive pulmonary disease. Int Immunopharmacol. 137:1124662024.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hade MD, Suire CN and Suo Z: Mesenchymal
stem cell-derived exosomes: applications in regenerative medicine.
Cells. 10:19592021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen L, Qu J, Kalyani FS, Zhang Q, Fan L,
Fang Y, Li Y and Xiang C: Mesenchymal stem cell-based treatments
for COVID-19: Status and future perspectives for clinical
applications. Cell Mol Life Sci. 79:1422022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Pierro M, Ionescu L, Montemurro T, Vadivel
A, Weissmann G, Oudit G, Emery D, Bodiga S, Eaton F, Péault B, et
al: Short-term, long-term and paracrine effect of human umbilical
cord-derived stem cells in lung injury prevention and repair in
experimental bronchopulmonary dysplasia. Thorax. 68:475–484. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gu W, Song L, Li XM, Wang D, Guo XJ and Xu
WG: Mesenchymal stem cells alleviate airway inflammation and
emphysema in COPD through down-regulation of cyclooxygenase-2 via
p38 and ERK MAPK pathways. Sci Rep. 5:87332015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Schweitzer KS, Johnstone BH, Garrison J,
Rush NI, Cooper S, Traktuev DO, Feng D, Adamowicz JJ, Van Demark M,
Fisher AJ, et al: Adipose stem cell treatment in mice attenuates
lung and systemic injury induced by cigarette smoking. Am J Respir
Crit Care Med. 183:215–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Weiss DJ, Casaburi R, Flannery R,
LeRoux-Williams M and Tashkin DP: A placebo-controlled, randomized
trial of mesenchymal stem cells in COPD. Chest. 143:1590–1598.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lowenthal J and Sugarman J: Ethics and
policy issues for stem cell research and pulmonary medicine. Chest.
147:824–834. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mohammadipoor A, Antebi B, Batchinsky AI
and Cancio LC: Therapeutic potential of products derived from
mesenchymal stem/stromal cells in pulmonary disease. Respir Res.
19:2182018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tan F, Li X, Wang Z, Li J, Shahzad K and
Zheng J: Clinical applications of stem cell-derived exosomes.
Signal Transduct Target Ther. 9:172024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sung DK, Chang YS, Sung SI, Ahn SY and
Park WS: Thrombin preconditioning of extracellular vesicles derived
from mesenchymal stem cells accelerates cutaneous wound healing by
boosting their biogenesis and enriching cargo content. J Clin Med.
8:5332019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lai RC, Yeo RW, Padmanabhan J, Choo A, de
Kleijn DP and Lim SK: Isolation and characterization of exosome
from human embryonic stem cell-derived C-Myc-immortalized
mesenchymal stem cells. Methods Mol Biol. 1416:477–494. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Miethe S, Potaczek DP, Bazan-Socha S,
Bachl M, Schaefer L, Wygrecka M and Garn H: The emerging role of
extracellular vesicles as communicators between adipose tissue and
pathologic lungs with a special focus on asthma. Am J Physiol Cell
Physiol. 324:C1119–C1125. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Manisalidis I, Stavropoulou E,
Stavropoulos A and Bezirtzoglou E: Environmental and health impacts
of air pollution: A review. Front Public Health. 8:142020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chen YT, Miao K, Zhou L and Xiong WN: Stem
cell therapy for chronic obstructive pulmonary disease. Chin Med J
(Engl). 134:1535–1545. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ji HL, Liu C and Zhao RZ: Stem cell
therapy for COVID-19 and other respiratory diseases: Global trends
of clinical trials. World J Stem Cells. 12:471–480. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen Q, Lin J, Deng Z and Qian W: Exosomes
derived from human umbilical cord mesenchymal stem cells protect
against papain-induced emphysema by preventing apoptosis through
activating VEGF-VEGFR2-mediated AKT and MEK/ERK pathways in rats.
Regen Ther. 21:216–224. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ridzuan N, Zakaria N, Widera D, Sheard J,
Morimoto M, Kiyokawa H, Mohd Isa SA, Chatar Singh GK, Then KY, Ooi
GC and Yahaya BH: Human umbilical cord mesenchymal stem
cell-derived extracellular vesicles ameliorate airway inflammation
in a rat model of chronic obstructive pulmonary disease (COPD).
Stem Cell Res Ther. 12:542021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Las G and Shirihai OS: Miro1: New wheels
for transferring mitochondria. EMBO J. 33:939–941. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lerner CA, Sundar IK and Rahman I:
Mitochondrial redox system, dynamics, and dysfunction in lung
inflammaging and COPD. Int J Biochem Cell Biol. 81:294–306. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Maremanda KP, Sundar IK and Rahman I:
Protective role of mesenchymal stem cells and mesenchymal stem
cell-derived exosomes in cigarette smoke-induced mitochondrial
dysfunction in mice. Toxicol Appl Pharmacol. 385:1147882019.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Calzetta L, Matera MG, Rogliani P and
Cazzola M: The role of triple therapy in the management of COPD.
Expert Rev Clin Pharmacol. 13:865–874. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang N, Wang Q, Du T, Gabriel ANA, Wang X,
Sun L, Li X, Xu K, Jiang X and Zhang Y: The potential roles of
exosomes in chronic obstructive pulmonary disease. Front Med
(Lausanne). 7:6185062021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yang Y, Hong Y, Cho E, Kim GB and Kim IS:
Extracellular vesicles as a platform for membrane-associated
therapeutic protein delivery. J Extracell Vesicles. 7:14401312018.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Xu Y, Lai Y, Cao L, Li Y, Chen G, Chen L,
Weng H, Chen T, Wang L and Ye Y: Human umbilical cord mesenchymal
stem cells-derived exosomal microRNA-451a represses
epithelial-mesenchymal transition of hepatocellular carcinoma cells
by inhibiting ADAM10. RNA Biol. 18:1408–1423. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li YJ, Wu JY, Wang JM, Hu XB, Cai JX and
Xiang DX: Gemcitabine loaded autologous exosomes for effective and
safe chemotherapy of pancreatic cancer. Acta Biomater. 101:519–530.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi
C, Huang NP, Xiao ZD, Lu ZH, Tannous BA and Gao J: Surface
functionalized exosomes as targeted drug delivery vehicles for
cerebral ischemia therapy. Biomaterials. 150:137–149. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Shapira S, Schwartz R, Tsiodras S,
Bar-Shai A, Melloul A, Borsekofsky S, Peer M, Adi N, MacLoughlin R
and Arber N: Inhaled CD24-enriched exosomes (EXO-CD24) as a novel
immune modulator in respiratory disease. Int J Mol Sci. 25:772023.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Xuan W, Wang S, Alarcon-Calderon A,
Bagwell MS, Para R, Wang F, Zhang C, Tian X, Stalboerger P,
Peterson T, et al: Nebulized platelet-derived extracellular
vesicles attenuate chronic cigarette smoke-induced murine
emphysema. Transl Res. 269:76–93. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kim YS, Kim JY, Cho R, Shin DM, Lee SW and
Oh YM: Adipose stem cell-derived nanovesicles inhibit emphysema
primarily via an FGF2-dependent pathway. Exp Mol Med. 49:e2842017.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Staubach S, Bauer FN, Tertel T, Börger V,
Stambouli O, Salzig D and Giebel B: Scaled preparation of
extracellular vesicles from conditioned media. Adv Drug Deliv Rev.
177:1139402021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jia Y, Yu L, Ma T, Xu W, Qian H, Sun Y and
Shi H: Small extracellular vesicles isolation and separation:
Current techniques, pending questions and clinical applications.
Theranostics. 12:6548–6575. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Araldi RP, Delvalle DA, da Costa VR,
Alievi AL, Teixeira MR, Dias Pinto JR and Kerkis I: Exosomes as a
nano-carrier for chemotherapeutics: A new era of oncology. Cells.
12:21442023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liang Y, Duan L, Lu J and Xia J:
Engineering exosomes for targeted drug delivery. Theranostics.
11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS
and Zeglis BM: Click chemistry and radiochemistry: An update.
Bioconjug Chem. 34:1925–1950. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Alvarez-Erviti L, Seow Y, Yin H, Betts C,
Lakhal S and Wood MJ: Delivery of siRNA to the mouse brain by
systemic injection of targeted exosomes. Nat Biotechnol.
29:341–345. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Bari E, Ferrarotti I, Torre ML, Corsico AG
and Perteghella S: Mesenchymal stem/stromal cell secretome for lung
regeneration: The long way through ‘pharmaceuticalization’ for the
best formulation. J Control Release. 309:11–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ma Y, Liu X, Long Y and Chen Y: Emerging
therapeutic potential of mesenchymal stem cell-derived
extracellular vesicles in chronic respiratory diseases: An overview
of recent progress. Front Bioeng Biotechnol. 10:8450422022.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Brave H and MacLoughlin R: State of the
art review of cell therapy in the treatment of lung disease, and
the potential for aerosol delivery. Int J Mol Sci. 21:64352020.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Rogliani P, Calzetta L, Coppola A, Cavalli
F, Ora J, Puxeddu E, Matera MG and Cazzola M: Optimizing drug
delivery in COPD: The role of inhaler devices. Respir Med.
124:6–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lv J and Xiong X: Extracellular vesicle
microRNA: A promising biomarker and therapeutic target for
respiratory diseases. Int J Mol Sci. 25:91472024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Neri T, Celi A, Tinè M, Bernardinello N,
Cosio MG, Saetta M, Nieri D and Bazzan E: The emerging role of
extracellular vesicles detected in different biological fluids in
COPD. Int J Mol Sci. 23:51362022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Reid LV, Spalluto CM, Watson A, Staples KJ
and Wilkinson TMA: The Role of Extracellular vesicles as a shared
disease mechanism contributing to multimorbidity in patients with
COPD. Front Immunol. 12:7540042021. View Article : Google Scholar : PubMed/NCBI
|