Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2026 Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Converting ‘cold’ to ‘hot’ hepatocellular carcinoma for improved immunotherapy (Review)

  • Authors:
    • Ching-Hua Hsieh
    • Pei-Chin Chuang
  • View Affiliations / Copyright

    Affiliations: Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C., Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C.
    Copyright: © Hsieh et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 93
    |
    Published online on: January 15, 2026
       https://doi.org/10.3892/mmr.2026.13803
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Hepatocellular carcinoma (HCC) often exhibits an immunologically ‘cold’ tumor microenvironment (TME) characterized by poor T cell infiltration and active immunosuppressive mechanisms, limiting the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs). Therefore, converting immunologically cold HCC tumors into ‘hot’, immune‑reactive tumors has emerged as a critical strategy to enhance immunotherapy responsiveness. In the present review, the tumor immune landscape in HCC is summarized, and the mechanisms underlying its immunologically cold phenotype, and current strategies for reprogramming the TME toward an immune‑active state are described. In addition, the roles of various immune cells, cytokines and tumor‑intrinsic pathways in driving immune exclusion and tolerance are discussed. Therapeutic approaches include ICI‑based combinations with anti‑angiogenic agents or locoregional therapies, as well as dual checkpoint blockade. Other strategies involve targeting immunosuppressive cell populations, oncolytic virus therapy, cancer vaccines, adoptive cell therapies and epigenetic modulators. Clinical evidence supports the potential of these strategies, with several combinations demonstrating improved response rates and survival. Research aims to optimize these therapies, identify predictive biomarkers and explore novel immune targets to further improve outcomes. Overall, converting HCC from an immunologically cold‑to‑hot tumor represents a promising paradigm to potentiate immunotherapy efficacy, although additional studies and innovative strategies are required to achieve durable benefits for a broader population of patients with HCC.

View Figures

Figure 1

Transformation of immunologically
cold HCC tumors into hot immunoresponsive tumors by various
therapeutic strategies. The left panel depicts a cold tumor
microenvironment characterized by low MHC I expression, low levels
of tumor antigens, defective immune cell infiltration and
immunosuppressive features, including abundant TAMs, Tregs and
MDSCs. These tumors show poor antigen presentation, decreased
antigen uptake by DCs, and ineffective T-cell activation due to
immunosuppressive cytokines TGF-β, VEGF and IL-10. The right panel
shows a successfully converted hot tumor with high MHC I
expression, increased tumor antigen levels and uptake, and robust
immune cell infiltration. This environment features activated
CD8+ and CD4+ T cells, functional APCs, and
immune-stimulating cytokines IL-6 and IFN-γ. The central arrow
outlines eight key strategic approaches for this conversion. Each
strategy includes specific therapeutic examples currently being
investigated for HCC treatment. AFP, α-fetoprotein; APC,
antigen-presenting cell; CAR-T, chimeric antigen receptor-T;
CSF-1R, colony stimulating factor-1 receptor; DC, dendritic cell;
DNMT, DNA methyltransferase; HCC, hepatocellular carcinoma; HDAC,
histone deacetylase; Mj, macrophage; MDSC, myeloid-derived
suppressor cell; MHC, major histocompatibility complex; Pexa-Vec,
pexastimogene devacirepvec; T-VEC, talimogene laherparepvec; TACE,
transarterial chemoembolization; TAMs, tumor-associated
macrophages; TCR, T cell receptor; TGF-β, transforming growth
factor-β; Tregs, regulatory T cells; VEGF, vascular endothelial
growth factor.

Figure 2

Flowchart illustrating key
combination therapies to convert an immunologically cold HCC tumor
into a hot tumor. Cold tumors exhibit low T-cell infiltration and
strong immunosuppressive factors, whereas hot tumors have abundant
CD8+ T cells and an inflamed microenvironment. Each
arrow represents a combination strategy designed to overcome a
specific barrier to antitumor immunity. ICIs (e.g., PD-1/PD-L1
inhibitor) + anti-angiogenic therapy (e.g., bevacizumab): Targeting
angiogenesis normalizes VEGF-driven abnormal tumor vasculature and
reduces VEGF-mediated immunosuppression, thereby increasing T-cell
infiltration into the tumor. ICIs (e.g., PD-1/PD-L1 inhibitor) +
CTLA-4 inhibitor: Dual checkpoint blockade enhances T-cell priming
and reverses T-cell exhaustion, thereby reducing Treg-mediated
suppression. ICI + TACE or ablation: Locoregional treatments such
as TACE or ablation induce immunogenic cell death, the release of
neoantigens and antigen presentation, thereby promoting T-cell
priming and infiltration. Oncolytic viruses + ICIs: Viral oncolysis
triggers innate immune sensing, tumor antigen release and
inflammatory signals, which are sustained and amplified by ICIs.
CSF-1R inhibitor + ICIs: CSF-1R inhibitors deplete or reprogram
immunosuppressive tumor-associated macrophages, relieving
macrophage-induced T cell suppression. In combination with
anti-PD-1/PD-L1 therapy, this increases cytotoxic T cell activity.
CSF-1R, colony stimulating factor-1 receptor; CTLA-4, cytotoxic
T-lymphocyte-associated protein 4; HCC, hepatocellular carcinoma;
ICIs, immune checkpoint inhibitors; IFN-γ, interferon-γ; PD-1,
programmed cell death protein 1; PD-L1, programmed death-ligand 1;
TACE, transarterial chemoembolization; TAMs, tumor-associated
macrophages; Treg, regulatory T cell; VEGF, vascular endothelial
growth factor.
View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI

2 

Villanueva A: Hepatocellular carcinoma. N Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Ker CG: Hepatobiliary surgery in Taiwan: The past, present, and future. Part I; biliary surgery. Formos J Surg. 57:1–10. 2024. View Article : Google Scholar

4 

Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P, et al: A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 59:81–88. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX and Finn RS: Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 19:151–172. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, Melero I, Kudo M, Hou MM, Matilla A, et al: Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The checkmate 040 randomized clinical trial. JAMA Oncol. 6:e2045642020. View Article : Google Scholar : PubMed/NCBI

7 

Childs A, Aidoo-Micah G, Maini MK and Meyer T: Immunotherapy for hepatocellular carcinoma. JHEP Rep. 6:1011302024. View Article : Google Scholar : PubMed/NCBI

8 

Ho DW, Tsui YM, Chan LK, Sze KM, Zhang X, Cheu JW, Chiu YT, Lee JM, Chan AC, Cheung ET, et al: Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 12:36842021. View Article : Google Scholar : PubMed/NCBI

9 

Galon J and Bruni D: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 18:197–218. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Pinyol R, Sia D and Llovet JM: Immune exclusion-Wnt/CTNNB1 class predicts resistance to immunotherapies in HCC. Clin Cancer Res. 25:2021–2023. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Giraud J, Chalopin D, Blanc JF and Saleh M: Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front Immunol. 12:6556972021. View Article : Google Scholar : PubMed/NCBI

12 

De Marchi P, Leal LF, da Silva LS, Cavagna RO, da Silva FAF, da Silva VD, da Silva EC, Saito AO, de Lima VCC and Reis RM: Gene expression profiles (GEPs) of immuno-oncologic pathways as predictors of response to checkpoint inhibitors in advanced NSCLC. Transl Oncol. 39:1018182024. View Article : Google Scholar : PubMed/NCBI

13 

Hernandez S, Lazcano R, Serrano A, Powell S, Kostousov L, Mehta J, Khan K, Lu W and Solis LM: Challenges and opportunities for immunoprofiling using a spatial high-plex technology: The NanoString GeoMx(®) digital spatial profiler. Front Oncol. 12:8904102022. View Article : Google Scholar : PubMed/NCBI

14 

Bruni D, Angell HK and Galon J: The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 20:662–680. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Pfister D, Núñez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, Gupta R, Qiu M, Deczkowska A, Weiner A, et al: NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 592:450–456. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind D, et al: Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 179:829–845.e20. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Yi Q, Yang J, Wu Y, Wang Y, Cao Q and Wen W: Immune microenvironment changes of liver cirrhosis: Emerging role of mesenchymal stromal cells. Front Immunol. 14:12045242023. View Article : Google Scholar : PubMed/NCBI

18 

Montella L, Sarno F, Ambrosino A, Facchini S, D'antò M, Laterza M, Fasano M, Quarata E, Ranucci RAN, Altucci L, et al: The role of immunotherapy in a tolerogenic environment: Current and future perspectives for hepatocellular carcinoma. Cells. 10:19092021. View Article : Google Scholar : PubMed/NCBI

19 

Shu QH, Ge Y, Hua X, Gao XQ, Pan JJ, Liu DB, Xu GL, Ma JL and Jia WD: Prognostic value of polarized macrophages in patients with hepatocellular carcinoma after curative resection. J Cell Mol Med. 20:1024–1035. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, et al: Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 612:141–147. 2022. View Article : Google Scholar : PubMed/NCBI

21 

Ghaedi M and Ohashi P: ILC transdifferentiation: Roles in cancer progression. Cell Res. 30:562–563. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Kim HD, Song G, Park S, Jung M, Kim MH, Kang H, Yoo C, Yi K, Kim KH, Eo S, et al: Association between expression level of PD1 by tumor-infiltrating CD8+ T cells and features of hepatocellular carcinoma. Gastroenterology. 155:1936–1950. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, et al: Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 132:2328–2239. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Yan J, Liu XL, Xiao G, Li NL, Deng YN, Han L, Yin LC, Ling LJ and Liu LX: Prevalence and clinical relevance of T-Helper cells, Th17 and Th1, in hepatitis B virus-related hepatocellular carcinoma. PLoS One. 9:e960802014. View Article : Google Scholar : PubMed/NCBI

25 

Hu C, You W, Kong D, Huang Y, Lu J, Zhao M, Jin Y, Peng R, Hua D, Kuang DM and Chen Y: tertiary lymphoid structure-associated B cells enhance CXCL13+CD103+CD8+ tissue-resident memory T-Cell response to programmed cell death protein 1 blockade in cancer immunotherapy. Gastroenterology. 166:1069–1084. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Ford K, Hanley C, Mellone M, Szyndralewiez C, Heitz F, Wiesel P, Wood O, Machado M, Lopez MA, Ganesan AP, et al: NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumors. Cancer Res. 80:1846–1860. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Deng HJ, Kan A, Lyu N, Mu L, Han Y, Liu L, Zhang Y, Duan Y, Liao S, Li S, et al: Dual vascular endothelial growth factor receptor and fibroblast growth factor receptor inhibition elicits antitumor immunity and enhances programmed cell death-1 checkpoint blockade in hepatocellular carcinoma. Liver Cancer. 9:338–357. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K and Xia L: Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: From bench to bedside. Exp Hematol Oncol. 13:722024. View Article : Google Scholar : PubMed/NCBI

29 

Yeung O, Lo C, Ling C, Qi X, Geng W, Li C, Ng KT, Forbes SJ, Guan XY, Poon RT, et al: Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 62:607–616. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Mantovani A, Allavena P, Marchesi F and Garlanda C: Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 21:799–820. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Zhu Y, Tan H, Wang J, Zhuang H, Zhao H and Lu X: Molecular insight into T cell exhaustion in hepatocellular carcinoma. Pharmacol Res. 203:1071612024. View Article : Google Scholar : PubMed/NCBI

32 

Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, de Moura MC, Putra J, Camprecios G, Bassaganyas L, Akers N, et al: Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 153:812–826. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Guo T and Xu J: Cancer-associated fibroblasts: A versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev. 43:1095–1116. 2024. View Article : Google Scholar : PubMed/NCBI

34 

Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C and Zhuang J: Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother. 167:1156222023. View Article : Google Scholar : PubMed/NCBI

35 

Liu ZL, Zhu LL, Liu JH, Pu ZY, Ruan ZP and Chen J: Vascular endothelial growth factor receptor-2 and its association with tumor immune regulatory gene expression in hepatocellular carcinoma. Aging (Albany NY). 12:25172–25188. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP and Bergers G: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. 9:eaak96792017. View Article : Google Scholar : PubMed/NCBI

37 

Apte RS, Chen DS and Ferrara N: VEGF in signaling and disease: Beyond discovery and development. Cell. 176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Singh K: Spontaneous regression of hepatocellular carcinoma from autoinfarction and implications on liver transplantation. ACG Case Rep J. 9:e008252022. View Article : Google Scholar : PubMed/NCBI

39 

Luke JJ, Bao R, Sweis RF, Spranger S and Gajewski TF: WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res. 25:3074–3083. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, Shia J, Hechtman JF, Kundra R, El Dika I, et al: Prospective genotyping of hepatocellular carcinoma: Clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res. 25:2116–2126. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Gao X, Qiao X, Xing X, Huang J, Qian J, Wang Y, Zhang Y, Zhang X, Li M, Cui J and Yang Y: Matrix stiffness-upregulated MicroRNA-17-5p attenuates the intervention effects of metformin on HCC invasion and metastasis by targeting the PTEN/PI3K/Akt pathway. Front Oncol. 10:15632020. View Article : Google Scholar : PubMed/NCBI

42 

Li H, Wu K, Tao K, Chen L, Zheng Q, Lu XM, Liu J, Shi L, Liu C, Wang G and Zou W: Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 56:1342–1351. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Trehanpati N and Vyas AK: Immune regulation by T regulatory cells in hepatitis B virus-related inflammation and cancer. Scand J Immunol. 85:175–181. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF and Korangy F: Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 50:799–807. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Yeung W, Liu L, Chen Z, Lo C and Man K: Delta PD-1 expressed M2 macrophages promote liver tumor recurrence after transplantation. Transplantation. 102 (Suppl 7):S250–S251. 2018. View Article : Google Scholar

46 

Xie Q, Zhang P, Wang Y, Mei W and Zeng C: Overcoming resistance to immune checkpoint inhibitors in hepatocellular carcinoma: Challenges and opportunities. Front Oncol. 12:9587202022. View Article : Google Scholar : PubMed/NCBI

47 

Argentiero A, Delvecchio A, Fasano R, Andriano A, Caradonna IC, Memeo R and Desantis V: The complexity of the tumor microenvironment in hepatocellular carcinoma and emerging therapeutic developments. J Clin Med. 12:74692023. View Article : Google Scholar : PubMed/NCBI

48 

Vaupel P and Multhoff G: Adenosine can thwart antitumor immune responses elicited by radiotherapy. Strahlenther Onkol. 192:279–287. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Karimi M, Geramizadeh B and Malek-Hosseini S: Tolerance induction in liver. Int J Organ Transplant Med. 6:45–54. 2015.PubMed/NCBI

50 

Karrar A, Broomé U, Uzunel M, Qureshi AR and Sumitran-Holgersson S: Human liver sinusoidal endothelial cells induce apoptosis in activated T cells: A role in tolerance induction. Gut. 56:243–252. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Casey L, Hughes K, Saunders M, Miller S, Pearson R and Shea L: Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials. 283:1214572022. View Article : Google Scholar : PubMed/NCBI

52 

Wang Y, Liu TT, Tang W, Deng B, Chen Y, Zhu JM and Shen X: Hepatocellular carcinoma cells induce regulatory T cells and lead to poor prognosis via production of transforming growth factor-β1. Cell Physiol Biochem. 38:306–318. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Kakita N, Kanto T, Itose I, Kuroda S, Inoue M, Matsubara T, Higashitani K, Miyazaki M, Sakakibara M, Hiramatsu N, et al: Comparative analyses of regulatory T cell subsets in patients with hepatocellular carcinoma: A crucial role of CD25-FOXP3- T cells. Int J Cancer. 131:2573–2783. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Liu Y, Yang H, Li T and Zhang N: Immunotherapy in liver cancer: Overcoming the tolerogenic liver microenvironment. Front Immunol. 15:14602822024. View Article : Google Scholar : PubMed/NCBI

55 

Patseas D, El-Masry A, Liu Z, Ramachandran P and Triantafyllou E: Myeloid cells in chronic liver inflammation. Cell Mol Immunol. 22:1237–1261. 2025. View Article : Google Scholar : PubMed/NCBI

56 

Chakravarthy A, Pasini E, Zhao X, To J, Shen SYR, Fischer S, Ghanekar A, Vogel A, Grant RC, Knox J, et al: Evolutionary dynamics of recurrent hepatocellular carcinoma under divergent immune selection pressures. Front Oncol. 15:15370872025. View Article : Google Scholar : PubMed/NCBI

57 

Yang Z, Cheng C, Li Z, Wang H, Zhang M, Xie E, He X, Liu B, Sun H, Wang J, et al: Advancing liver cancer treatment with dual-targeting CAR-T therapy. J Nanobiotechnol. 23:4622025. View Article : Google Scholar

58 

Taylor BC and Balko JM: Mechanisms of MHC-I downregulation and role in immunotherapy response. Front Immunol. 13:8448662022. View Article : Google Scholar : PubMed/NCBI

59 

Hazini A, Fisher K and Seymour L: Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer. 9:e0028992021. View Article : Google Scholar : PubMed/NCBI

60 

Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, et al: Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 382:1894–1905. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Nishida N and Kudo M: Immune checkpoint blockade for the treatment of human hepatocellular carcinoma. Hepatol Res. 48:622–634. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D and Allison JP: Distinct cellular mechanisms underlie Anti-CTLA-4 and Anti-PD-1 checkpoint blockade. Cell. 170:1120–1133.e17. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Abou-Alfa GK, Lau G, Kudo M, Chan SL, Kelley RK, Furuse J, Sukeepaisarnjaroen W, Kang YK, Dao TV, De Toni EN, et al: Plain language summary of the HIMALAYA study: Tremelimumab and durvalumab for unresectable hepatocellular carcinoma (liver cancer). Future Oncol. 19:2505–2516. 2023. View Article : Google Scholar : PubMed/NCBI

64 

Taddei TH, Brown DB, Yarchoan M, Mendiratta-Lala M and Llovet JM: Critical update: AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology. 82:272–274. 2025. View Article : Google Scholar : PubMed/NCBI

65 

Brackenier C, Kinget L, Cappuyns S, Verslype C, Beuselinck B and Dekervel J: Unraveling the synergy between atezolizumab and bevacizumab for the treatment of hepatocellular carcinoma. Cancers (Basel). 15:3482023. View Article : Google Scholar : PubMed/NCBI

66 

Hatzidakis A, Müller L, Krokidis M and Kloeckner R: Local and regional therapies for hepatocellular carcinoma and future combinations. Cancers (Basel). 14:24692022. View Article : Google Scholar : PubMed/NCBI

67 

Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, Davis JL, Hughes MS, Heller T, ElGindi M, et al: Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 66:545–551. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Leuchte K, Staib E, Thelen M, Gödel P, Lechner A, Zentis P, Garcia-Marquez M, Waldschmidt D, Datta RR, Wahba R, et al: Microwave ablation enhances tumor-specific immune response in patients with hepatocellular carcinoma. Cancer Immunol Immunother. 70:893–907. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Zhang Z, Liu X, Chen D and Yu J: Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct Target Ther. 7:2582022. View Article : Google Scholar : PubMed/NCBI

70 

Sangro B, Kudo M, Erinjeri JP, Qin S, Ren Z, Chan SL, Arai Y, Heo J, Mai A, Escobar J, et al: Durvalumab with or without bevacizumab with transarterial chemoembolisation in hepatocellular carcinoma (EMERALD-1): A multiregional, randomised, double-blind, placebo-controlled, phase 3 study. Lancet. 405:216–232. 2025. View Article : Google Scholar : PubMed/NCBI

71 

AstraZeneca. A phase III, randomized, double-blind, placebo-controlled, multi center study of durvalumab monotherapy or in combination with bevacizumab as adjuvant therapy in patients with hepatocellular carcinoma who are at high risk of recurrence after curative hepatic resection or ablation. ClinicalTrialsgov Identifier: NCT04276941. Available from:. https://clinicaltrialsgov/study/NCT038474282019.

72 

Sangro B, Galle PR, Kelley RK, Charoentum C, De Toni EN, Ostapenko Y, Heo J, Cheng AL, Woods AW, Gupta C, et al: Patient-reported outcomes from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. J Clin Oncol. 42:2790–2799. 2024. View Article : Google Scholar : PubMed/NCBI

73 

Llovet JM, Kudo M, Merle P, Meyer T, Qin S, Ikeda M, Xu R, Edeline J, Ryoo BY, Ren Z, et al: Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): A randomised, double-blind, phase 3 trial. Lancet Oncol. 24:1399–1410. 2023. View Article : Google Scholar : PubMed/NCBI

74 

Qin S, Chan S, Gu S, Bai Y, Ren Z, Lin X, Chen Z, Jia W, Jin Y, Guo Y, et al: Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study. Lancet. 402:1133–1146. 2023. View Article : Google Scholar : PubMed/NCBI

75 

Kudo M, Finn R, Ikeda M, Sung M, Baron A, Okusaka T, Kobayashi M, Kumada H, Kaneko S, Pracht M, et al: A phase 1b study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma: Extended analysis of study 116. Liver Cancer. 13:451–458. 2023. View Article : Google Scholar : PubMed/NCBI

76 

Jenkins F, Johnson JE, Collichio F and Ollila D: Talimogene laherparepvec and novel injectable oncolytic viruses in the management of metastatic melanoma. J Transl Genet Genom. 5:396–413. 2021.

77 

Ridolfi R, Flamini E, Riccobon A, De Paola F, Maltoni R, Gardini A, Ridolfi L, Medri L, Poletti G and Amadori D: Adjuvant adoptive immunotherapy with tumour-infiltrating lymphocytes and modulated doses of interleukin-2 in 22 patients with melanoma, colorectal and renal cancer, after radical metastasectomy, and in 12 advanced patients. Cancer Immunol Immunother. 46:185–193. 1998. View Article : Google Scholar : PubMed/NCBI

78 

Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O, Rajasekhar VK, Yoshida A, Kondo H, Hata T, et al: CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther. 20:1388–1399. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Zhu Y, Yang J, Xu D, Gao XM, Zhang Z, Hsu JL, Li CW, Lim SO, Sheng YY, Zhang Y, et al: Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 68:1653–1666. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Charo IF, Singh R, Schall TJ, Datta M, Jain RK, et al: CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci USA. 117:1129–1138. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Li X, Yao W, Yuan Y, Chen P, Li B, Li JQ, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Shan F, Somasundaram A, Bruno TC, Workman CJ and Vignali DAA: Therapeutic targeting of regulatory T cells in cancer. Trends Cancer. 8:944–961. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Faivre S, Santoro A, Kelley RK, Gane E, Costentin CE, Gueorguieva I, Smith C, Cleverly A, Lahn MM, Raymond E, et al: Novel transforming growth factor beta receptor I kinase inhibitor galunisertib (LY2157299) in advanced hepatocellular carcinoma. Liver Int. 39:1468–1477. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, Hsu FJ, Berzofsky JA and Lawrence DP: Phase I study of GC1008 (fresolimumab): A human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 9:e903532014. View Article : Google Scholar : PubMed/NCBI

85 

Gunderson AJ, Yamazaki T, McCarty K, Fox N, Phillips M, Alice A, Blair T, Whiteford M, O'Brien D, Ahmad R, et al: TGFβ suppresses CD8+ T cell expression of CXCR3 and tumor trafficking. Nat Commun. 11:17492020. View Article : Google Scholar : PubMed/NCBI

86 

Abdallah N, Kim S, Ayash L, Klimecki S, Ventimiglia M, Alavi A, Ratanatharathorn V, Uberti J and Deol A: Does use of biosimilar G-CSF change plerixafor utilization during stem cell mobilization for autologous stem cell transplant? Bone Marrow Transplant. 55:1655–1657. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Hecht JR, Oberoi A, Cabanas EG, Chon HJ, Digklia A, Rottey S, Jimenez MM, Chaney M, Hippenmeyer J, Lawrence T, et al: Phase Ib/II trial of talimogene laherparepvec alone and with pembrolizumab in advanced solid tumors with liver metastases and hepatocellular carcinoma. Oncologist. 30:oyae2032025. View Article : Google Scholar : PubMed/NCBI

88 

Raman S, Pless M, Cubillo A, Calvo A, Hecht R, Liu C, Chan E, Chesney J and Prat A: 3:36 PM Abstract No. 375 Early safety from a phase 1, multicenter, open-label clinical trial of talimogene laherparepvec (T-VEC) injected into liver tumors. JVIR. 29:S1612018. View Article : Google Scholar

89 

Heo J, Reid T, Ruo L, Breitbach C, Rose S, Bloomston M, Cho M, Lim HY, Chung HC, Kim CW, et al: Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 19:329–336. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Abou-Alfa GK, Galle PR, Chao Y, Erinjeri J, Heo J, Borad MJ, Luca A, Burke J, Pelusio A, Agathon D, et al: PHOCUS: A phase 3, randomized, open-label study of sequential treatment with pexa-vec (JX-594) and sorafenib in patients with advanced hepatocellular carcinoma. Liver Cancer. 13:248–264. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Butterfield LH, Ribas A, Dissette VB, Lee Y, Yang JQ, De la Rocha P, Duran SD, Hernandez J, Seja E, Potter DM, et al: A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin Cancer Res. 12:2817–2825. 2006. View Article : Google Scholar : PubMed/NCBI

92 

Sawada Y, Yoshikawa T, Nobuoka D, Shirakawa H, Kuronuma T, Motomura Y, Mizuno S, Ishii H, Nakachi K, Konishi M, et al: Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res. 18:3686–3696. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Ikeda M, Okusaka T, Ohno I, Mitsunaga S, Kondo S, Ueno H, Morizane C, Gemmoto K, Suna H, Ushida Y and Furuse J: Phase I studies of peptide vaccine cocktails derived from GPC3, WDRPUH and NEIL3 for advanced hepatocellular carcinoma. Immunotherapy. 13:371–385. 2021. View Article : Google Scholar : PubMed/NCBI

94 

Kwak J, Nguyen H, Camai A, Huffman G, Mekvanich S, Kenney N, Zhu X, Randolph TW and Houghton AM: CXCR1/2 antagonism inhibits neutrophil function and not recruitment in cancer. Oncoimmunology. 13:23846742024. View Article : Google Scholar : PubMed/NCBI

95 

Kim Y, Kim G, Kim S, Cho B, Kim SY, Do EJ, Bae DJ, Kim S, Kweon MN, Song JS, et al: Fecal microbiota transplantation combined with anti-PD-1 inhibitor for unresectable or metastatic solid cancers refractory to anti-PD-1 inhibitor. Cell Host Microbe. 32:1380–1393.e9. 2023. View Article : Google Scholar : PubMed/NCBI

96 

Song C, Zhang J, Wen R, Li Q, Zhou J, Liu X, Wu Z, Lv Y and Wu R: Improved anti-hepatocellular carcinoma effect by enhanced Co-delivery of Tim-3 siRNA and sorafenib via multiple pH triggered drug-eluting nanoparticles. Mater Today Bio. 16:1003502022. View Article : Google Scholar : PubMed/NCBI

97 

Choukér A, Thiel M, Lukashev D, Ward J, Kaufmann I, Apasov S, Sitkovsky MV and Ohta A: Critical role of hypoxia and A2A adenosine receptors in liver tissue-protecting physiological anti-inflammatory pathway. Mol Med. 14:116–123. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Srivastava A, Moufarrij S, Hadley M, Chisholm S, Lopez-Acevedo M, Villagra A and Chiappinelli K: Abstract 1395: HDAC6 and DNMT inhibition affect immunogenicity of ovarian cancer cells: A rationale for combining epigenetic and immune therapy in ovarian cancer. Cancer Res. 78 (Suppl 13):13952018. View Article : Google Scholar

99 

Chen H, Li Z, Qiu L, Dong X, Chen G, Shi Y, Cai L, Liu W, Ye H, Zhou Y, et al: Personalized neoantigen vaccine combined with PD-1 blockade increases CD8+ tissue-resident memory T-cell infiltration in preclinical hepatocellular carcinoma models. J Immunother Cancer. 10:e0043892022. View Article : Google Scholar : PubMed/NCBI

100 

Shi D, Shi Y, Kaseb AO, Qi X, Zhang Y, Chi J, Lu Q, Gao H, Jiang H, Wang H, et al: Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: Results of phase I trials. Clin Cancer Res. 26:3979–3989. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Chattopadhyay S, Hazra R, Mallick A, Gayen S and Roy S: A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim Biophys Acta Rev Cancer. 1879:1891102024. View Article : Google Scholar : PubMed/NCBI

102 

Teng CF, Wang T, Shih FY, Shyu WC and Jeng LB: Therapeutic efficacy of dendritic cell vaccine combined with programmed death 1 inhibitor for hepatocellular carcinoma. J Gastroenterol Hepatol. 36:1988–1996. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Lee EHJ, Murad JP, Christian L, Gibson J, Yamaguchi Y, Cullen C, Gumber D, Park AK, Young C, Monroy I, et al: Antigen-dependent IL-12 signaling in CAR T cells promotes regional to systemic disease targeting. Nat Commun. 14:47372023. View Article : Google Scholar : PubMed/NCBI

104 

Zhu W, Peng Y, Wang L, Hong Y, Jiang X, Li Q, Liu H, Huang L, Wu J, Celis E, et al: Identification of α-fetoprotein-specific T-cell receptors for hepatocellular carcinoma immunotherapy. Hepatology. 68:574–589. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Topper MJ, Vaz M, Marrone KA, Brahmer JR and Baylin SB: The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 17:75–90. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Yang W, Feng Y, Zhou J, Cheung O, Cao J, Wang J, Tang W, Tu Y, Xu L, Wu F, et al: A selective HDAC8 inhibitor potentiates antitumor immunity and efficacy of immune checkpoint blockade in hepatocellular carcinoma. Sci Transl Med. 13:eaaz68042021. View Article : Google Scholar : PubMed/NCBI

107 

Yau T, Park JW, Finn RS, Cheng AL, Mathurin P, Edeline J, Kudo M, Harding JJ, Merle P, Rosmorduc O, et al: Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 23:77–90. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY, Breder V, Edeline J, Chao Y, Ogasawara S, et al: Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase III trial. J Clin Oncol. 38:193–202. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Cheng X, Li J, Feng L, Feng S, Wu X and Li Y: The role of hypoxia-related genes in TACE-refractory hepatocellular carcinoma: Exploration of prognosis, immunological characteristics and drug resistance based on onco-multi-OMICS approach. Front Pharmacol. 13:10110332022. View Article : Google Scholar : PubMed/NCBI

110 

Trommer M, Yeo SY, Persigehl T, Bunck A, Grüll H, Schlaak M, Theurich S, von Bergwelt-Baildon M, Morgenthaler J, Herter JM, et al: Abscopal effects in radio-immunotherapy-response analysis of metastatic cancer patients with progressive disease under anti-PD-1 immune checkpoint inhibition. Front Pharmacol. 10:5112019. View Article : Google Scholar : PubMed/NCBI

111 

Steffin D, Ghatwai N, Montalbano A, Rathi P, Courtney AN, Arnett AB, Fleurence J, Sweidan R, Wang T, Zhang H, et al: Interleukin-15-armored GPC3-CAR T cells for patients with solid cancers. Res Sq. 3:rs.3.rs–4103623. 2024.

112 

Luo X, Cui H, Cai L, Zhu W, Yang WC, Patrick M, Zhu S, Huang J, Yao X, Yao Y, et al: Selection of a clinical lead TCR targeting alpha-fetoprotein-positive liver cancer based on a balance of risk and benefit. Front Immunol. 11:6232020. View Article : Google Scholar : PubMed/NCBI

113 

Lee JH, Tak WY, Lee Y, Heo MK, Song JS, Kim HY, Park SY, Bae SH, Lee JH, Heo J, et al: Adjuvant immunotherapy with autologous dendritic cells for hepatocellular carcinoma, randomized phase II study. Oncoimmunology. 6:e13283352017. View Article : Google Scholar : PubMed/NCBI

114 

Adachi Y, Kamiyama H, Ichikawa K, Ozawa Y, Fukushima S, Satoshi G, Yamaguchi S, Matsuki M, Miyano SW, Yokoi A, et al: Abstract 6637: Inhibition of FGFR signaling by lenvatinib activates tumor interferon gamma signaling pathway and potentiates antitumor activity of anti-PD-1 antibody. Cancer Res. 80:66372020. View Article : Google Scholar

115 

Leslie J, Mackey JBG, Jamieson T, Ramon-Gil E, Drake TM, Fercoq F, Clark W, Gilroy K, Hedley A, Nixon C, et al: CXCR2 inhibition enables NASH-HCC immunotherapy. Gut. 71:2093–2106. 2022. View Article : Google Scholar : PubMed/NCBI

116 

Sun C, Wang B and Hao S: Adenosine-A2A receptor pathway in cancer immunotherapy. Front Immunol. 13:8372302022. View Article : Google Scholar : PubMed/NCBI

117 

Angell H and Galon J: From the immune contexture to the immunoscore: The role of prognostic and predictive immune markers in cancer. Curr Opin Immunol. 25:261–267. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Paik J: Nivolumab plus relatlimab: First approval. Drugs. 82:925–931. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Finn RS, Ryoo BY, Hsu CH, Li D, Burgoyne AM, Cotter C, Badhrinarayanan S, Wang Y, Yin A, Edubilli TR, et al: Tiragolumab in combination with atezolizumab and bevacizumab in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (MORPHEUS-Liver): A randomised, open-label, phase 1b-2, study. Lancet Oncol. 26:214–226. 2025. View Article : Google Scholar : PubMed/NCBI

120 

Kelley RK, Oliver JW, Hazra S, Benzaghou F, Yau T, Cheng AL and Rimassa L: Cabozantinib in combination with atezolizumab versus sorafenib in treatment-naive advanced hepatocellular carcinoma: COSMIC-312 Phase III study design. Future Oncol. 16:1525–1536. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Gutteridge TP, Kelly AB and Laurens KR: Increased likelihood of distressing and functionally impairing psychotic-like experiences among children with co-occurring internalising and externalising problems. Schizophr Res. 252:225–230. 2023. View Article : Google Scholar : PubMed/NCBI

122 

Exposito MJ, Akce M, Alvarez J, Assenat E, Balart L, Baron A, Decaens T, Heurgue-Berlot A, Martin A, Paik S, et al: Abstract No. 526 CheckMate-9DX: phase 3, randomized, double-blind study of adjuvant nivolumab vs placebo for patients with hepatocellular carcinoma (HCC) at high risk of recurrence after curative resection or ablation. J Vasc Interv Radiol. 30 (Suppl 1):S227–S228. 2019. View Article : Google Scholar

123 

Du JS, Hsu SH and Wang SN: The current and prospective adjuvant therapies for hepatocellular carcinoma. Cancers (Basel). 16:14222024. View Article : Google Scholar : PubMed/NCBI

124 

Knox J, Cheng A, Cleary S, Galle P, Kokudo N, Lencioni R and Fan J: A phase 3 study of durvalumab with or without bevacizumab as adjuvant therapy in patients with hepatocellular carcinoma at high risk of recurrence after curative hepatic resection or ablation: EMERALD-2. Ann Oncol. 30:iv59–iv60. 2019. View Article : Google Scholar

125 

Xia X, Li X, Feng G, Zheng C, Liang H and Zhou G: Intra-arterial interleukin-12 gene delivery combined with chemoembolization: Anti-tumor effect in a rabbit hepatocellular carcinoma (HCC) model. Acta Radiol. 54:684–689. 2013. View Article : Google Scholar : PubMed/NCBI

126 

Karapetyan L, Luke JJ and Davar D: Toll-Like receptor 9 agonists in cancer. Onco Targets Ther. 13:10039–10060. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, et al: Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res. 21:3149–3159. 2015. View Article : Google Scholar : PubMed/NCBI

128 

Reynolds K, Thomas M and Dougan M: Diagnosis and management of hepatitis in patients on checkpoint blockade. Oncologist. 23:991–997. 2018. View Article : Google Scholar : PubMed/NCBI

129 

De Martin E, Fulgenzi CAM, Celsa C, Laurent-Bellue A, Torkpour A, Lombardi P, D'Alessio A and Pinato DJ: Immune checkpoint inhibitors and the liver: balancing therapeutic benefit and adverse events. Gut. 74:1165–1177. 2025. View Article : Google Scholar : PubMed/NCBI

130 

Andrews MC, Duong CPM, Gopalakrishnan V, Iebba V, Chen WS, Derosa L, Khan MAW, Cogdill AP, White MG, Wong MC, et al: Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat Med. 27:1432–1441. 2021. View Article : Google Scholar : PubMed/NCBI

131 

Zhou G, Zhang N, Meng K and Pan F: Interaction between gut microbiota and immune checkpoint inhibitor-related colitis. Front Immunol. 13:10016232022. View Article : Google Scholar : PubMed/NCBI

132 

Strouse J, Chan KK, Baccile R, He G, Louden DKN, Giurcanu M, Singh A, Rieth J, Abdel-Wahab N, Katsumoto TR, et al: Impact of steroid-sparing immunosuppressive agents on tumor outcome in the context of cancer immunotherapy with highlight on melanoma: A systematic literature review and meta-analysis. Front Immunol. 15:14994782024. View Article : Google Scholar : PubMed/NCBI

133 

Syed S, Hines J, Baccile R, Rouhani S and Reid P: Studying outcomes after steroid-sparing immunosuppressive agent vs. steroid-only treatment for immune-related adverse events in non-small-cell lung cancer (NSCLC) and melanoma: A retrospective case-control study. Cancers (Basel). 16:18922024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hsieh C and Chuang P: <p>Converting &lsquo;cold&rsquo; to &lsquo;hot&rsquo; hepatocellular carcinoma for improved immunotherapy (Review)</p>. Mol Med Rep 33: 93, 2026.
APA
Hsieh, C., & Chuang, P. (2026). <p>Converting &lsquo;cold&rsquo; to &lsquo;hot&rsquo; hepatocellular carcinoma for improved immunotherapy (Review)</p>. Molecular Medicine Reports, 33, 93. https://doi.org/10.3892/mmr.2026.13803
MLA
Hsieh, C., Chuang, P."<p>Converting &lsquo;cold&rsquo; to &lsquo;hot&rsquo; hepatocellular carcinoma for improved immunotherapy (Review)</p>". Molecular Medicine Reports 33.3 (2026): 93.
Chicago
Hsieh, C., Chuang, P."<p>Converting &lsquo;cold&rsquo; to &lsquo;hot&rsquo; hepatocellular carcinoma for improved immunotherapy (Review)</p>". Molecular Medicine Reports 33, no. 3 (2026): 93. https://doi.org/10.3892/mmr.2026.13803
Copy and paste a formatted citation
x
Spandidos Publications style
Hsieh C and Chuang P: <p>Converting &lsquo;cold&rsquo; to &lsquo;hot&rsquo; hepatocellular carcinoma for improved immunotherapy (Review)</p>. Mol Med Rep 33: 93, 2026.
APA
Hsieh, C., & Chuang, P. (2026). <p>Converting &lsquo;cold&rsquo; to &lsquo;hot&rsquo; hepatocellular carcinoma for improved immunotherapy (Review)</p>. Molecular Medicine Reports, 33, 93. https://doi.org/10.3892/mmr.2026.13803
MLA
Hsieh, C., Chuang, P."<p>Converting &lsquo;cold&rsquo; to &lsquo;hot&rsquo; hepatocellular carcinoma for improved immunotherapy (Review)</p>". Molecular Medicine Reports 33.3 (2026): 93.
Chicago
Hsieh, C., Chuang, P."<p>Converting &lsquo;cold&rsquo; to &lsquo;hot&rsquo; hepatocellular carcinoma for improved immunotherapy (Review)</p>". Molecular Medicine Reports 33, no. 3 (2026): 93. https://doi.org/10.3892/mmr.2026.13803
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team