|
1
|
Craig JM, Turner TH, Harrell JC and
Clevenger CV: Prolactin drives a dynamic STAT5A/HDAC6/HMGN2
Cis-regulatory landscape exploitable in ER+ breast cancer.
Endocrinology. 162:bqab0362021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
He B, Zhu I, Postnikov Y, Furusawa T,
Jenkins L, Nanduri R, Bustin M and Landsman D: Multiple epigenetic
factors co-localize with HMGN proteins in A-compartment chromatin.
Epigenetics Chromatin. 15:232022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhang S, Postnikov Y, Lobanov A, Furusawa
T, Deng T and Bustin M: H3K27ac nucleosomes facilitate HMGN
localization at regulatory sites to modulate chromatin binding of
transcription factors. Commun Biol. 5:1592022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Eliason S, Su D, Pinho F, Sun Z, Zhang Z,
Li X, Sweat M, Venugopalan SR, He B, Bustin M and Amendt BA: HMGN2
represses gene transcription via interaction with transcription
factors Lef-1 and Pitx2 during amelogenesis. J Biol Chem.
298:1022952022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Su L, Hu A, Luo Y, Zhou W, Zhang P and
Feng Y: HMGN2, a new anti-tumor effector molecule of
CD8+ T cells. Mol Cancer. 13:1782014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen J, Fan Y, Cui B, Li X, Yu Y, Du Y,
Chen Q, Feng Y and Zhang P: HMGN2: An antitumor effector molecule
of γδT cells. J Immunother. 41:118–124. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xia A, Zhang Y, Xu J, Yin T and Lu XJ: T
cell dysfunction in cancer immunity and immunotherapy. Front
Immunol. 10:17192019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mahaki H, Ravari H, Kazemzadeh G, Lotfian
E, Daddost RA, Avan A, Manoochehri H, Sheykhhasan M, Mahmoudian RA
and Tanzadehpanah H: Pro-inflammatory responses after peptide-based
cancer immunotherapy. Heliyon. 10:e322492024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Najafi M, Farhood B and Mortezaee K:
Contribution of regulatory T cells to cancer: A review. J Cell
Physiol. 234:7983–7993. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li Q, Chen J, Li X, Cui B, Fan Y, Geng N,
Chen Q, Zhang P and Feng Y: Increased expression of high-mobility
group nucleosomal-binding domain 2 protein in various tumor cell
lines. Oncol Lett. 15:4517–4522. 2018.PubMed/NCBI
|
|
11
|
Fan B, Shi S, Shen X, Yang X, Liu N, Wu G,
Guo X and Huang N: Effect of HMGN2 on proliferation and apoptosis
of MCF-7 breast cancer cells. Oncol Lett. 17:1160–1166.
2019.PubMed/NCBI
|
|
12
|
Breitling J and Aebi M: N-linked protein
glycosylation in the endoplasmic reticulum. Cold Spring Harb
Perspect Biol. 5:a0133592013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hsu JM, Xia W, Hsu YH, Chan LC, Yu WH, Cha
JH, Chen CT, Liao HW, Kuo CW, Khoo KH, et al: STT3-dependent PD-L1
accumulation on cancer stem cells promotes immune evasion. Nat
Commun. 9:19082018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sutton MS, Bucsan AN, Lehman CC, Kamath M,
Pokkali S, Magnani DM, Seder R, Darrah PA and Roederer M:
Antibody-mediated depletion of select leukocyte subsets in blood
and tissue of nonhuman primates. Front Immunol. 15:13596792024.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen Z, Kankala RK, Yang Z, Li W, Xie S,
Li H, Chen AZ and Zou L: Antibody-based drug delivery systems for
cancer therapy: Mechanisms, challenges, and prospects.
Theranostics. 12:3719–3746. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Abramson J, Adler J, Dunger J, Evans R,
Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick
J, et al: Accurate structure prediction of biomolecular
interactions with AlphaFold 3. Nature. 630:493–500. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xiong W, Gao Y, Wei W and Zhang J:
Extracellular and nuclear PD-L1 in modulating cancer immunotherapy.
Trends Cancer. 7:837–846. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu
JM, Nie L, Chen Y, Wang YC, Liu C, et al: PD-L1-mediated gasdermin
C expression switches apoptosis to pyroptosis in cancer cells and
facilitates tumour necrosis. Nat Cell Biol. 22:1264–1275. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liu W, Peng J, Xiao M, Cai Y, Peng B,
Zhang W, Li J, Kang F, Hong Q, Liang Q, et al: The implication of
pyroptosis in cancer immunology: Current advances and prospects.
Genes Dis. 10:2339–2350. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yang Z, Simovic MO, Edsall PR, Liu B,
Cancio TS, Batchinsky AI, Cancio LC and Li Y: HMGB1 inhibition to
ameliorate organ failure and increase survival in trauma.
Biomolecules. 12:1012022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tang D, Kang R, Xiao W, Zhang H, Lotze MT,
Wang H and Xiao X: Quercetin prevents LPS-induced high-mobility
group box 1 release and proinflammatory function. Am J Respir Cell
Mol Biol. 41:651–660. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tang Y, Lv B, Wang H, Xiao X and Zuo X:
PACAP inhibit the release and cytokine activity of HMGB1 and
improve the survival during lethal endotoxemia. Int
Immunopharmacol. 8:1646–1651. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Czura CJ, Wang H and Tracey KJ: Dual roles
for HMGB1: DNA binding and cytokine. J Endotoxin Res. 7:315–321.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang S and Zhang Y: HMGB1 in inflammation
and cancer. J Hematol Oncol. 13:1162020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yanai H, Ban T, Wang Z, Choi MK, Kawamura
T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, et al: HMGB
proteins function as universal sentinels for nucleic-acid-mediated
innate immune responses. Nature. 462:99–103. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
De Martino M, Fusco A and Esposito F: HMGA
and cancer: A review on patent literatures. Recent Pat Anticancer
Drug Discov. 14:258–267. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Meireles Da Costa N, Ribeiro Pinto LF,
Nasciutti LE and Palumbo A Jr: The prominent role of HMGA proteins
in the early management of gastrointestinal cancers. Biomed Res
Int. 2019:20595162019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nanduri R, Furusawa T and Bustin M:
Biological functions of HMGN chromosomal proteins. Int J Mol Sci.
21:4492020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rochman M, Postnikov Y, Correll S, Malicet
C, Wincovitch S, Karpova TS, McNally JG, Wu X, Bubunenko NA,
Grigoryev S and Bustin M: The interaction of NSBP1/HMGN5 with
nucleosomes in euchromatin counteracts linker histone-mediated
chromatin compaction and modulates transcription. Mol Cell.
35:642–656. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mou J, Huang M, Wang F, Xu X, Xie H, Lu H,
Li M, Li Y, Kong W and Chen J: HMGN5 escorts oncogenic STAT3
signaling by regulating the chromatin landscape in breast cancer
tumorigenesis. Mol Cancer Res. 20:1724–1738. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yao K, He L, Gan Y, Liu J, Tang J, Long Z
and Tan J: HMGN5 promotes IL-6-induced epithelial-mesenchymal
transition of bladder cancer by interacting with Hsp27. Aging
(Albany NY). 12:7282–7298. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
He B, Deng T, Zhu I, Furusawa T, Zhang S,
Tang W, Postnikov Y, Ambs S, Li CC, Livak F, et al: Binding of HMGN
proteins to cell specific enhancers stabilizes cell identity. Nat
Commun. 9:52402018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nanduri R, Furusawa T, Lobanov A, He B,
Xie C, Dadkhah K, Kelly MC, Gavrilova O, Gonzalez FJ and Bustin M:
Epigenetic regulation of white adipose tissue plasticity and energy
metabolism by nucleosome binding HMGN proteins. Nat Commun.
13:73032022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Morande PE, Borge M, Abreu C, Galletti J,
Zanetti SR, Nannini P, Bezares RF, Pantano S, Dighiero G, Oppezzo
P, et al: Surface localization of high-mobility group
nucleosome-binding protein 2 on leukemic B cells from patients with
chronic lymphocytic leukemia is related to secondary autoimmune
hemolytic anemia. Leuk Lymphoma. 56:1115–1122. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu Z, Huang Y, Yuan W, Wu X, Shi H, Lu M
and Xu A: Expression, tumor immune infiltration, and prognostic
impact of HMGs in gastric cancer. Front Oncol. 12:10569172022.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liang G, Xu E, Yang C, Zhang C, Sheng X
and Zhou X: Nucleosome-binding protein HMGN2 exhibits antitumor
activity in human SaO2 and U2-OS osteosarcoma cell lines. Oncol
Rep. 33:1300–1306. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lin J, Cai Y, Wang Z, Ma Y, Pan J, Liu Y
and Zhao Z: Novel biomarkers predict prognosis and drug-induced
neuroendocrine differentiation in patients with prostate cancer.
Front Endocrinol (Lausanne). 13:10059162023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bin-Alee F, Arayataweegool A,
Buranapraditkun S, Mahattanasakul P, Tangjaturonrasme N, Hirankarn
N, Mutirangura A and Kitkumthorn N: Transcriptomic analysis of
peripheral blood mononuclear cells in head and neck squamous cell
carcinoma patients. Oral Diseases. 27:1394–1402. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yu B, Geng C, Wu Z, Zhang Z, Zhang A, Yang
Z, Huang J, Xiong Y, Yang H and Chen Z: A CIC-related-epigenetic
factors-based model associated with prediction, the tumor
microenvironment and drug sensitivity in osteosarcoma. Sci Rep.
14:13082024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Antony F, Deantonio C, Cotella D, Soluri
MF, Tarasiuk O, Raspagliesi F, Adorni F, Piazza S, Ciani Y, Santoro
C, et al: High-throughput assessment of the antibody profile in
ovarian cancer ascitic fluids. Oncoimmunology. 8:e16148562019.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hu A, Dong X, Liu X, Zhang P, Zhang Y, Su
N, Chen Q and Feng Y: Nucleosome-binding protein HMGN2 exhibits
antitumor activity in oral squamous cell carcinoma. Oncol Lett.
7:115–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li H, Wu X, Bu D, Wang L, Xu X, Wang Y,
Liu Y and Zhu P: Recombinant jurkat cells (HMGN2-T cells) secrete
cytokines and inhibit the growth of tumor cells. J Mol Histol.
53:741–751. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sun Z, Ma X, Zhao C, Fan L, Yin S and Hu
H: Delta-tocotrienol disrupts PD-L1 glycosylation and reverses
PD-L1-mediated immune suppression. Biomed Pharmacother.
170:1160782024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Xu S, Wang H, Zhu Y, Han Y, Liu L, Zhang
X, Hu J, Zhang W, Duan S, Deng J, et al: Stabilization of EREG via
STT3B-mediated N-glycosylation is critical for PDL1 upregulation
and immune evasion in head and neck squamous cell carcinoma. Int J
Oral Sci. 16:472024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Blasco MT and Gomis RR: PD-L1 controls
cancer pyroptosis. Nat Cell Biol. 22:1157–1159. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Anderson MJ, den Hartigh AB and Fink SL:
Molecular mechanisms of pyroptosis. Methods Mol Biol. 2641:1–16.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shi J, Gao W and Shao F: Pyroptosis:
Gasdermin-mediated programmed necrotic cell death. Trends Biochem
Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li Y and Jiang Q: Uncoupled pyroptosis and
IL-1β secretion downstream of inflammasome signaling. Front
Immunol. 14:11283582023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zuo Y, Chen L, Gu H, He X, Ye Z, Wang Z,
Shao Q and Xue C: GSDMD-mediated pyroptosis: A critical mechanism
of diabetic nephropathy. Expert Rev Mol Med. 23:e232021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Huang Y, Wang S, Huang F, Zhang Q, Qin B,
Liao L, Wang M, Wan H, Yan W, Chen D, et al: c-FLIP regulates
pyroptosis in retinal neurons following oxygen-glucose
deprivation/recovery via a GSDMD-mediated pathway. Ann Anat.
235:1516722021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen Y, Long T, Chen J, Wei H, Meng J,
Kang M, Wang J, Zhang X, Xu Q, Zhang C and Xiong K: WTAP
participates in neuronal damage by protein translation of NLRP3 in
an m6A-YTHDF1-dependent manner after traumatic brain injury. Int J
Surg. 110:5396–5408. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xi G, Gao J, Wan B, Zhan P, Xu W, Lv T and
Song Y: GSDMD is required for effector CD8+ T cell responses to
lung cancer cells. Int Immunopharmacol. 74:1057132019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L,
Ke X, Wu J and Yuan J: Cisplatin induces pyroptosis via activation
of MEG3/NLRP3/caspase-1/GSDMD pathway in Triple-negative breast
cancer. Int J Biol Sci. 17:2606–2621. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu Y, Fang Y, Chen X, Wang Z, Liang X,
Zhang T, Liu M, Zhou N, Lv J, Tang K, et al: Gasdermin E-mediated
target cell pyroptosis by CAR T cells triggers cytokine release
syndrome. Sci Immunol. 5:eaax79692020. View Article : Google Scholar : PubMed/NCBI
|