You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies
(Review)
Sepsis is a systemic inflammatory disorder characterized by multi‑organ dysfunction following infection. Sepsis‑induced cardiomyopathy (SIC) represents a prevalent complication that markedly contributes to in‑hospital mortality. The NOD‑like receptor protein 3 (NLRP3) inflammasome serves as an important regulator in SIC pathogenesis, directly impairing cardiac function through multiple mechanisms: i) Driving cytokine storms; ii) inducing cardiomyocyte pyroptosis and apoptosis; iii) disrupting mitochondrial homeostasis; and iv) suppressing autophagy. Molecularly‑targeted NLRP3 inhibitors have been developed, such as MCC950, curcumin, indole‑3‑propionic acid and carvacrol, which have demonstrated cardioprotective effects in cellular and animal models of SIC. Further exploration of NLRP3 mechanisms and resulting therapeutic targets may yield novel strategies for SIC diagnosis and clinical management. The present review examined NLRP3‑mediated pathways involving inflammation, programmed cell death and mitophagy in SIC pathogenesis, summarized pharmacological interventions targeting these pathways and highlighted previous advances in NLRP3 research to inform future therapeutic development and clinical translation.
![]() |
![]() |
![]() |
![]() |
|
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM and Sibbald WJ: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American college of chest physicians/society of critical care medicine. Chest. 101:1644–1655. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Cecconi M, Evans L, Levy M and Rhodes A: Sepsis and septic shock. Lancet. 392:75–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gheen N: Sepsis-3 definitions. Ann Emerg Med. 68:784–785. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gong T, Fu Y, Wang Q, Loughran PA, Li Y, Billiar TR, Wen Z, Liu Y and Fan J: Decoding the multiple functions of ZBP1 in the mechanism of sepsis-induced acute lung injury. Commun Biol. 7:13612024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Hu C, Zhai P, Zhang J, Jiang J, Suo J, Hu B, Wang J, Weng X, Zhou X, et al: Fibroblastic reticular cell-derived exosomes are a promising therapeutic approach for septic acute kidney injury. Kidney Int. 105:508–523. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Song YQ, Lin WJ, Hu HJ, Wu SH, Jing L, Lu Q and Zhu W: Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis. Int Immunopharmacol. 118:1101112023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, et al: Viral sepsis: Diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res. 11:782024.PubMed/NCBI | |
|
Werdan K, Schmidt H, Ebelt H, Zorn-Pauly K, Koidl B, Hoke RS, Heinroth K and Müller-Werdan U: Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol. 87:266–274. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hasegawa D, Ishisaka Y, Maeda T, Prasitlumkum N, Nishida K, Dugar S and Sato R: Prevalence and prognosis of sepsis-induced cardiomyopathy: A systematic review and meta-analysis. J Intensive Care Med. 38:797–808. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F and Scolletta S: Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J Crit Care. 29:500–511. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA and Parrillo JE: Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 100:483–490. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
MacLean LD, Mulligan WG, McLean AP and Duff JH: Patterns of septic shock in man-a detailed study of 56 patients. Ann Surg. 166:543–562. 1967. View Article : Google Scholar : PubMed/NCBI | |
|
Parrillo JE: Pathogenetic mechanisms of septic shock. N Engl J Med. 328:1471–1477. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Abraham E and Singer M: Mechanisms of sepsis-induced organ dysfunction. Crit Care Med. 35:2408–2416. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Levy RJ and Deutschman CS: Cytochrome c oxidase dysfunction in sepsis. Crit Care Med. 35 (9 Suppl):S468–S475. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mebazaa A, De Keulenaer GW, Paqueron X, Andries LJ, Ratajczak P, Lanone S, Frelin C, Longrois D, Payen D, Brutsaert DL and Sys SU: Activation of cardiac endothelium as a compensatory component in endotoxin-induced cardiomyopathy: role of endothelin, prostaglandins, and nitric oxide. Circulation. 104:3137–3144. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hobai IA, Edgecomb J, LaBarge K and Colucci WS: Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock. 43:3–15. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Miranda M, Balarini M, Caixeta D and Bouskela E: Microcirculatory dysfunction in sepsis: Pathophysiology, clinical monitoring, and potential therapies. Am J Physiol Heart Circ Physiol. 311:H24–H35. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Henedak NT, El-Abhar HS, Soubh AA and Abdallah DM: NLRP3 Inflammasome: A central player in renal pathologies and nephropathy. Life Sci. 351:1228132024. View Article : Google Scholar : PubMed/NCBI | |
|
Tao S, Fan W, Liu J, Wang T, Zheng H, Qi G, Chen Y, Zhang H, Guo Z and Zhou F: NLRP3 inflammasome: An Emerging therapeutic target for Alzheimer's disease. J Alzheimers Dis. 96:1383–1398. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tengesdal IW, Dinarello CA and Marchetti C: NLRP3 and cancer: Pathogenesis and therapeutic opportunities. Pharmacol Ther. 251:1085452023. View Article : Google Scholar : PubMed/NCBI | |
|
Sayaf K, Battistella S and Russo FP: NLRP3 inflammasome in acute and chronic liver diseases. Int J Mol Sci. 25:45372024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, You YK, Guo J, Wang J, Shao B, Li H, Meng X, Lan HY and Chen H: C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation. Mol Ther. 33:263–278. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wen Y, Liu Y, Liu W, Liu W, Dong J, Liu Q, Hao H and Ren H: Research progress on the activation mechanism of NLRP3 inflammasome in septic cardiomyopathy. Immun Inflamm Dis. 11:e10392023. View Article : Google Scholar : PubMed/NCBI | |
|
Toldo S and Abbate A: The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol. 21:219–237. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu W, Bao X, Yang Y, Xing M, Xiong S, Chen S, Zhong Y, Hu X, Lu Q, Wang K, et al: Peripheral evolution of tanshinone IIA and cryptotanshinone for discovery of a potent and specific NLRP3 inflammasome inhibitor. J Med Chem. 68:3460–3479. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X and Yang L: MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim). 357:e24004592024. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Guan Y, Liang B, Ding P, Hou X, Wei W and Ma Y: Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol. 928:1750912022. View Article : Google Scholar : PubMed/NCBI | |
|
Cabral JE, Wu A, Zhou H, Pham MA, Lin S and McNulty R: Targeting the NLRP3 inflammasome for inflammatory disease therapy. Trends Pharmacol Sci. 46:503–519. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Takeuchi O and Akira S: Pattern recognition receptors and inflammation. Cell. 140:805–820. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Ye X, Escames G, Lei W, Zhang X, Li M, Jing T, Yao Y, Qiu Z, Wang Z, et al: The NLRP3 inflammasome: Contributions to inflammation-related diseases. Cell Mol Biol Lett. 28:512023. View Article : Google Scholar : PubMed/NCBI | |
|
Fu J and Wu H: Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 41:301–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Matico RE, Miller R, Chauhan D, Van Schoubroeck B, Grauwen K, Suarez J, Pietrak B, Haloi N, Yin Y, et al: Structural basis for the oligomerization-facilitated NLRP3 activation. Nat Commun. 15:11642024. View Article : Google Scholar : PubMed/NCBI | |
|
Jo EK, Kim JK, Shin DM and Sasakawa C: Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 13:148–159. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-García JJ, Martínez-Banaclocha H, Angosto-Bazarra D, de Torre-Minguela C, Baroja-Mazo A, Alarcón-Vila C, Martínez-Alarcón L, Amores-Iniesta J, Martín-Sánchez F, Ercole GA, et al: P2X7 receptor induces mitochondrial failure in monocytes and compromises NLRP3 inflammasome activation during sepsis. Nat Commun. 10:27112019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu QR, Yang H, Zhang HD, Cai YJ, Zheng YX, Fang H, Wang ZF, Kuang SJ, Rao F, Huang HL, et al: IP3R2-mediated Ca2+ release promotes LPS-induced cardiomyocyte pyroptosis via the activation of NLRP3/Caspase-1/GSDMD pathway. Cell Death Discov. 10:912024. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Y, Cao G, Lin L, Zhang Y, Luo X, Ma X, Aiyisake A and Cheng Q: Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway. J Invest Surg. 36:21575212023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Bi Y, Han T, Li YE, Wang Q, Wu NN, Xu C, Ge J, Hu R and Zhang Y: The E3 ubiquitin ligase MARCH2 protects against myocardial ischemia-reperfusion injury through inhibiting pyroptosis via negative regulation of PGAM5/MAVS/NLRP3 axis. Cell Discov. 10:242024. View Article : Google Scholar : PubMed/NCBI | |
|
Karasawa T and Takahashi M: The crystal-induced activation of NLRP3 inflammasomes in atherosclerosis. Inflamm Regen. 37:182017. View Article : Google Scholar : PubMed/NCBI | |
|
Ye T, Wang C, Yan J, Qin Z, Qin W, Ma Y, Wan Q, Lu W, Zhang M, Tay FR, et al: Lysosomal destabilization: A missing link between pathological calcification and osteoarthritis. Bioact Mater. 34:37–50. 2023.PubMed/NCBI | |
|
Du G, Healy LB, David L, Walker C, El-Baba TJ, Lutomski CA, Goh B, Gu B, Pi X, Devant P, et al: ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D. Nature. 630:437–446. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Xu W and Zhou R: NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 18:2114–2127. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Saller BS, Wöhrle S, Fischer L, Dufossez C, Ingerl IL, Kessler S, Mateo-Tortola M, Gorka O, Lange F, Cheng Y, et al: Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity. 58:90–107.e11. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, et al: The NLR gene family: A standard nomenclature. Immunity. 28:285–287. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Zhang H, Mao H, Zhong S, Huang Y, Chen S, Yan K, Zhao Z, Hao X, Zhang Y, et al: FAAH served a key membrane-anchoring and stabilizing role for NLRP3 protein independently of the endocannabinoid system. Cell Death Differ. 30:168–183. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu S, Fu J, Wang J, Zhao Y, Liu B, Wei J, Yan X and Su J: The influence of mitochondrial-DNA-driven inflammation pathways on macrophage polarization: A new perspective for targeted immunometabolic therapy in cerebral ischemia-reperfusion injury. Int J Mol Sci. 23:1352021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Zhong T, Ma Y, Wan X, Qin A, Yao B, Zou H, Song Y and Yin D: Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME. Life Sci. 242:1171862020. View Article : Google Scholar : PubMed/NCBI | |
|
Rodrigue-Gervais IG and Saleh M: Caspases and immunity in a deadly grip. Trends Immunol. 34:41–49. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Miao R, Jiang C, Chang WY, Zhang H, An J, Ho F, Chen P, Zhang H, Junqueira C, Amgalan D, et al: Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity. 56:2523–2541.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gritte RB, Souza-Siqueira T, Borges da Silva E, Dos Santos de Oliveira LC, Cerqueira Borges R, Alves HHO, Masi LN, Murata GM, Gorjão R, Levada-Pires AC, et al: Evidence for monocyte reprogramming in a long-term postsepsis study. Crit Care Explor. 4:e07342022.PubMed/NCBI | |
|
Jin Y, Fleishman JS, Ma Y, Jing X, Guo Q, Shang W and Wang H: NLRP3 inflammasome targeting offers a novel therapeutic paradigm for sepsis-induced myocardial injury. Drug Des Devel Ther. 19:1025–1041. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Shen J, Wu JM, Hu GM, Li MZ, Cong WW, Feng YN, Wang SX, Li ZJ, Xu M, Dong ED, et al: Membrane nanotubes facilitate the propagation of inflammatory injury in the heart upon overactivation of the β-adrenergic receptor. Cell Death Dis. 11:9582020. View Article : Google Scholar : PubMed/NCBI | |
|
Wiersinga WJ, Leopold SJ, Cranendonk DR and van der Poll T: Host innate immune responses to sepsis. Virulence. 5:36–44. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fajgenbaum DC and June CH: Cytokine storm. N Engl J Med. 383:2255–2273. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Blevins HM, Xu Y, Biby S and Zhang S: The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci. 14:8790212022. View Article : Google Scholar : PubMed/NCBI | |
|
Napodano C, Carnazzo V, Basile V, Pocino K, Stefanile A, Gallucci S, Natali P, Basile U and Marino M: NLRP3 inflammasome involvement in heart, liver, and lung diseases-A lesson from cytokine storm syndrome. Int J Mol Sci. 24:165562023. View Article : Google Scholar : PubMed/NCBI | |
|
Fujimura K, Karasawa T, Komada T, Yamada N, Mizushina Y, Baatarjav C, Matsumura T, Otsu K, Takeda N, Mizukami H, et al: NLRP3 inflammasome-driven IL-1β and IL-18 contribute to lipopolysaccharide-induced septic cardiomyopathy. J Mol Cell Cardiol. 180:58–68. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Ge X, Wang Y, Niu L, Tang L and Pan S: USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol Res. 176:1059622022. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Li X, Deng W, Nan N, Zou H, Gong L, Chen M, Yu J, Chen P, Cui D and Zhang F: Knockdown of USF2 inhibits pyroptosis of podocytes and attenuates kidney injury in lupus nephritis. J Mol Histol. 54:313–327. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dong W, Liao R, Weng J, Du X, Chen J, Fang X, Liu W, Long T, You J, Wang W and Peng X: USF2 activates RhoB/ROCK pathway by transcriptional inhibition of miR-206 to promote pyroptosis in septic cardiomyocytes. Mol Cell Biochem. 479:1093–1108. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li S, Fan X and Wu Y: Pretreatment with indole-3-propionic acid attenuates lipopolysaccharide-induced cardiac dysfunction and inflammation through the AhR/NF-κB/NLRP3 pathway. J Inflamm Res. 17:5293–5309. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Konvalinka A: myo-Inositol oxygenase: A novel kidney-specific biomarker of acute kidney injury? Clin Chem. 60:708–710. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Lu J, Lin B, Chen J, Lin F, Zheng Q, Xue X, Wei Y, Chen S and Xu N: Integrated analysis of MIOX gene in prognosis of clear-cell renal cell carcinoma. Cell Death Dis. 16:3682025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Yu C and Long Y: Myo-inositol oxygenase (MIOX) accelerated inflammation in the model of infection-induced cardiac dysfunction by NLRP3 inflammasome. Immun Inflamm Dis. 11:e8292023. View Article : Google Scholar : PubMed/NCBI | |
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, et al: Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 30:1097–1154. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Y, Zhang HJ, Zhou W, Lai ZQ and Dong YF: The protective effects of sophocarpine on sepsis-induced cardiomyopathy. Eur J Pharmacol. 950:1757452023. View Article : Google Scholar : PubMed/NCBI | |
|
Mahidhara R and Billiar TR: Apoptosis in sepsis. Crit Care Med. 28 (4 Suppl):N105–N113. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Maluleke TT, Manilall A, Shezi N, Baijnath S and Millen AME: Acute exposure to LPS induces cardiac dysfunction via the activation of the NLRP3 inflammasome. Sci Rep. 14:243782024. View Article : Google Scholar : PubMed/NCBI | |
|
Speir M and Lawlor KE: RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin Cell Dev Biol. 109:114–124. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Chai Z, Pandeya A, Yang L, Zhang Y, Zhang G, Wu C, Li Z and Wei Y: Caspase-11 and NLRP3 exacerbate systemic Klebsiella infection through reducing mitochondrial ROS production. Front Immunol. 16:15161202025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Lei W, Qian L, Zhang S, Yang W, Lu C, Song Y, Liang Z, Deng C, Chen Y, et al: Activation of NR1H3 signaling pathways by psoralidin attenuates septic myocardial injury. Free Radic Biol Med. 204:8–19. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Qu M, Wang Y, Qiu Z, Zhu S, Guo K, Chen W, Miao C and Zhang H: Necroptosis, pyroptosis, ferroptosis in sepsis and treatment. Shock. 57:161–171. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W and Tang Q: STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol. 24:1012152019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Lin Z, Zhou Y, Su M, Zhang H, Yu L and Li M: Atractylenolide I ameliorates sepsis-induced cardiomyocyte injury by inhibiting macrophage polarization through the modulation of the PARP1/NLRP3 signaling pathway. Tissue Cell. 89:1024242024. View Article : Google Scholar : PubMed/NCBI | |
|
Deng C, Liu Q, Zhao H, Qian L, Lei W, Yang W, Liang Z, Tian Y, Zhang S, Wang C, et al: Activation of NR1H3 attenuates the severity of septic myocardial injury by inhibiting NLRP3 inflammasome. Bioeng Transl Med. 8:e105172023. View Article : Google Scholar : PubMed/NCBI | |
|
D'Souza CA and Heitman J: Dismantling the cryptococcus coat. Trends Microbiol. 9:112–113. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Chen W, Gong F, Chen Y and Chen E: The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: A review. Front Immunol. 12:7119392021. View Article : Google Scholar : PubMed/NCBI | |
|
Coll RC, Schroder K and Pelegrín P: NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol Sci. 43:653–668. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yarovinsky TO, Su M, Chen C, Xiang Y, Tang WH and Hwa J: Pyroptosis in cardiovascular diseases: Pumping gasdermin on the fire. Semin Immunol. 69:1018092023. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y, Guan B, Xu J, Zhang H, Yi L and Yang Z: Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother. 167:1154932023. View Article : Google Scholar : PubMed/NCBI | |
|
Song C, Zhang Y, Pei Q, Zheng L, Wang M, Shi Y, Wu S, Ni W, Fu X, Peng Y, et al: HSP70 alleviates sepsis-induced cardiomyopathy by attenuating mitochondrial dysfunction-initiated NLRP3 inflammasome-mediated pyroptosis in cardiomyocytes. Burns Trauma. 10:tkac0432022. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Z, Li W, Shao Z, Liu X, Zeng Y, Lin P, Lin C, Zhao Y, Li T, Zhao Z, et al: Apelin ameliorates sepsis-induced myocardial dysfunction via inhibition of NLRP3-mediated pyroptosis of cardiomyocytes. Heliyon. 10:e245682024. View Article : Google Scholar : PubMed/NCBI | |
|
Duan F, Li L, Liu S, Tao J, Gu Y, Li H, Yi X, Gong J, You D, Feng Z, et al: Cortistatin protects against septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-NLRP3 pathway. Int Immunopharmacol. 134:1121862024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu C, Liu J, Escames G, Yang Y, Wu X, Liu Q, Chen J, Song Y, Wang Z, Deng C, et al: PIK3CG regulates NLRP3/GSDMD-mediated pyroptosis in septic myocardial injury. Inflammation. 46:2416–2432. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Dong Y, Escames G, Wu X, Ren J, Yang W, Zhang S, Zhu Y, Tian Y, Acuña-Castroviejo D and Yang Y: Identification of PIK3CG as a hub in septic myocardial injury using network pharmacology and weighted gene co-expression network analysis. Bioeng Transl Med. 8:e103842022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI | |
|
Ren C, Zhang H, Wu TT and Yao YM: Autophagy: A potential therapeutic target for reversing sepsis-induced immunosuppression. Front Immunol. 8:18322017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW and Zhao G: The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 8:3042023. View Article : Google Scholar : PubMed/NCBI | |
|
Shan X, Tao W, Li J, Tao W, Li D, Zhou L, Yang X, Dong C, Huang S, Chu X and Zhang C: Kai-Xin-San ameliorates Alzheimer's disease-related neuropathology and cognitive impairment in APP/PS1 mice via the mitochondrial autophagy-NLRP3 inflammasome pathway. J Ethnopharmacol. 329:1181452024. View Article : Google Scholar : PubMed/NCBI | |
|
Lei X, Wang J, Zhang F, Tang X, He F, Cheng S, Zou F and Yan W: Micheliolide ameliorates lipopolysaccharide-induced acute kidney injury through suppression of NLRP3 activation by promoting mitophagy via Nrf2/PINK1/Parkin axis. Int Immunopharmacol. 138:1125272024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou F, Lian W, Yuan X, Wang Z, Xia C, Yan Y, Wang W, Tong Z, Cheng Y, Xu J, et al: Cornuside alleviates cognitive impairments induced by Aβ1-42 through attenuating NLRP3-mediated neurotoxicity by promoting mitophagy. Alzheimers Res Ther. 17:472025. View Article : Google Scholar : PubMed/NCBI | |
|
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ and Ren J: Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends Mol Med. 28:836–849. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Wang Z, Sun X, Yu J, Li T, Zhao H, Ji Y, Peng B and Du M: STAT3/Mitophagy axis coordinates macrophage NLRP3 inflammasome activation and inflammatory bone loss. J Bone Miner Res. 38:335–353. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Luo L, Wang F, Xu X, Ma M, Kuang G, Zhang Y, Wang D, Li W, Zhang N and Zhao K: STAT3 promotes NLRP3 inflammasome activation by mediating NLRP3 mitochondrial translocation. Exp Mol Med. 56:1980–1990. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Nedel W, Deutschendorf C and Portela LVC: Sepsis-induced mitochondrial dysfunction: A narrative review. World J Crit Care Med. 12:139–152. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jing J, Yang F, Wang K, Cui M, Kong N, Wang S, Qiao X, Kong F, Zhao D, Ji J, et al: UFMylation of NLRP3 prevents its autophagic degradation and facilitates inflammasome activation. Adv Sci (Weinh). 12:e24067862025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S, Huang G and Ting JP: Mitochondria and NLRP3: To die or inflame. Immunity. 58:5–7. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Meyers AK, Wang Z, Han W, Zhao Q, Zabalawi M, Duan L, Liu J, Zhang Q, Manne RK, Lorenzo F, et al: Pyruvate dehydrogenase kinase supports macrophage NLRP3 inflammasome activation during acute inflammation. Cell Rep. 42:1119412023. View Article : Google Scholar : PubMed/NCBI | |
|
Thorburn J, Xu S and Thorburn A: MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J. 16:1888–1900. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Tan Y, Zhang Y, He J, Wu F, Wu D, Shi N, Liu W, Li Z, Liu W, Zhou H and Chen W: Dual specificity phosphatase 1 attenuates inflammation-induced cardiomyopathy by improving mitophagy and mitochondrial metabolism. Mol Metab. 64:1015672022. View Article : Google Scholar : PubMed/NCBI | |
|
Li FJ, Hu H, Wu L, Luo B, Zhou Y, Ren J, Lin J, Reiter RJ, Wang S, Dong M, et al: Ablation of mitophagy receptor FUNDC1 accentuates septic cardiomyopathy through ACSL4-dependent regulation of ferroptosis and mitochondrial integrity. Free Radic Biol Med. 225:75–86. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Nie J and Qiu H: DUSP1 mitigates MSU-induced immune response in gouty arthritis reinforcing autophagy. Front Biosci (Landmark Ed). 29:2222024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Chen F, Song D, Zhou X, Ren L and Zeng M: Dynamin-related protein 1 is involved in mitochondrial damage, defective mitophagy, and NLRP3 inflammasome activation induced by MSU crystals. Oxid Med Cell Longev. 2022:50644942022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Ma J, Yin P and Liang F: The landscape of mitophagy in sepsis reveals PHB1 as an NLRP3 inflammasome inhibitor. Front Immunol. 14:11884822023. View Article : Google Scholar : PubMed/NCBI | |
|
Song D, Tao W, Liu F, Wu X, Bi H, Shu J, Wang D and Li X: Lipopolysaccharide promotes NLRP3 inflammasome activation by inhibiting TFEB-mediated autophagy in NRK-52E cells. Mol Immunol. 163:127–135. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Guan S, Meng Z, Zhang D and Lu J: Ginsenoside Rb1 alleviates 3-MCPD-induced renal cell pyroptosis by activating mitophagy. Food Chem Toxicol. 186:1145222024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W and Liou YC: Mitochondrial dysfunction in sepsis: Mechanisms and therapeutic perspectives. Crit Care. 28:2922024. View Article : Google Scholar : PubMed/NCBI | |
|
Silva RCMC: Mitochondria, autophagy and inflammation: Interconnected in aging. Cell Biochem Biophys. 82:411–426. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG and Zerial M: APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell. 116:445–456. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Wu KKL and Cheng KKY: A new role of the early endosome in restricting NLRP3 inflammasome via mitophagy. Autophagy. 18:1475–1477. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yu WM, Appler JM, Kim YH, Nishitani AM, Holt JR and Goodrich LV: A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife. 2:e013412013. View Article : Google Scholar : PubMed/NCBI | |
|
Cui H, Banerjee S, Xie N, Dey T, Liu RM, Sanders YY and Liu G: MafB regulates NLRP3 inflammasome activation by sustaining p62 expression in macrophages. Commun Biol. 6:10472023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Wu M, Magupalli VG, Dahlberg PD, Wu H and Jensen GJ: Human NLRP3 inflammasome activation leads to formation of condensate at the microtubule organizing center. bioRxiv [Preprint]. 2024.09.12.612739. 2024. | |
|
Chen X, Yuan T, Zheng D, Li F, Xu H, Ye M, Liu S and Li J: Cardiomyocyte mitochondrial mono-ADP-ribosylation dictates cardiac tolerance to sepsis by configuring bioenergetic reserve in male mice. Nat Commun. 16:81192025. View Article : Google Scholar : PubMed/NCBI | |
|
Wan C and Wang Y: Integrated multi-omics of mitophagy-related molecular subtype characterization and biomarker identification in sepsis. Sci Rep. 16:7012025. View Article : Google Scholar : PubMed/NCBI | |
|
Mohd S, Sharma V, Harish V, Kumar R and Pilli G: Exploring thiazolidinedione-naphthalene analogues as potential antidiabetic agents: Design, synthesis, molecular docking and in-vitro evaluation. Cell Biochem Biophys. 83:2213–2226. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, He X, Zhang H, Hu X, Liao L, Cai M, Lin Z, Xiang J, Jia X, Lu G, et al: Tanshinone I limits inflammasome activation of macrophage via docking into Syk to alleviate DSS-induced colitis in mice. Mol Immunol. 173:88–98. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liang D, Tang S, Liu L, Zhao M, Ma X, Zhao Y, Shen C, Liu Q, Tang J, Zeng J and Chen N: Tanshinone I attenuates gastric precancerous lesions by inhibiting epithelial mesenchymal transition through the p38/STAT3 pathway. Int Immunopharmacol. 124:1109022023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Liu H, Hong Z, Luo W, Mu W, Hou X, Xu G, Fang Z, Ren L, Liu T, et al: Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC. Mol Med. 29:842023. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Y, Zhang X, Xu Y, Wu Y and Yang L: The protective effects of cinnamyl alcohol against hepatic steatosis, oxidative and inflammatory stress in nonalcoholic fatty liver disease induced by childhood obesity. Immunol Invest. 52:1008–1022. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshizaki K, Frias DP, Maier K, Smelan J, Correia AT, Oliveira LMDS, Amato-Lourenço LF, Santillo BT, Prado CM, Oshiro TM, et al: Exposure of cinnamyl alcohol in co-culture of BEAS-2B and dendritic cells: Interaction between CYP450 and cytokines. J Appl Toxicol. 44:1317–1328. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zou L, Li C, Chen X, Yu F, Huang Q, Chen L, Wu W and Liu Q: The anti-inflammatory effects of cinnamyl alcohol on sepsis-induced mice via the NLRP3 inflammasome pathway. Ann Transl Med. 10:482022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Z, Huang M, Li W, Hou L, Jin L, Fan Q, Zhang L, Li C, Zeng L, Yang C, et al: HECTD3 inhibits NLRP3 inflammasome assembly and activation by blocking NLRP3-NEK7 interaction. Cell Death Dis. 15:862024. View Article : Google Scholar : PubMed/NCBI | |
|
Guo J, Miao Y, Nie F, Gao F, Li H, Wang Y, Liu Q, Zhang T, Yang X, Liu L, et al: Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis. J Nanobiotechnology. 21:4482023. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Y, Liu L, Wu Y, Wang Y and Zhao R: Optimization of the transdermal delivery system in astilbin microemulsion with improved stability and anti-psoriatic activity. Curr Drug Deliv. 20:281–291. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Huang Y, Wu C, Qiu Y, Zhang L, Xu J, Zheng J, Zhang X, Li F and Xia D: Astilbin inhibited neutrophil extracellular traps in gouty arthritis through suppression of purinergic P2Y6 receptor. Phytomedicine. 130:1557542024. View Article : Google Scholar : PubMed/NCBI | |
|
Geng X, Fu Z, Geng G, Chi K, Liu C, Hong H, Cai G, Chen X and Hong Q: Astilbin improves the therapeutic effects of mesenchymal stem cells in AKI-CKD mice by regulating macrophage polarization through PTGS2-mediated pathway. Stem Cell Res Ther. 15:4272024. View Article : Google Scholar : PubMed/NCBI | |
|
Dou JY, Zhou MJ, Xuan MY, Guo J, Liu SH, Lian LH, Cui ZY, Nan JX and Wu YL: Astilbin alleviates hepatic fibrosis through PXR-PINK1/Parkin pathway: A new strategy by regulating hepatic stellate cells-macrophage crosstalk. Phytomedicine. 135:1561442024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang D and Zhang QF: The natural source, physicochemical properties, biological activities and metabolism of astilbin. Crit Rev Food Sci Nutr. 63:9506–9518. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Z, Wang G, Huang R, Liu C, Yushanjiang F, Mao T and Li J: Astilbin protects from sepsis-induced cardiac injury through the NRF2/HO-1 and TLR4/NF-κB pathway. Phytother Res. 38:1044–1058. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu YF, Li WQ, Hu ND, Ai B, Xia HX, Guo X, Chen Z and Xia H: Brevilin A ameliorates sepsis-induced cardiomyopathy through inhibiting NLRP3 inflammation. Ann Med Surg (Lond). 85:5952–5962. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fang H, Wang Y, Deng J, Zhang H, Wu Q, He L, Xu J, Shao X, Ouyang X, He Z, et al: Sepsis-induced gut dysbiosis mediates the susceptibility to sepsis-associated encephalopathy in mice. mSystems. 7:e01399212022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang H, Ren X, Jiang F and Zhou P: Indole-3-propionic acid alleviates chondrocytes inflammation and osteoarthritis via the AhR/NF-κB axis. Mol Med. 29:172023. View Article : Google Scholar : PubMed/NCBI | |
|
Heumel S, de Rezende Rodovalho V, Urien C, Specque F, Brito Rodrigues P, Robil C, Delval L, Sencio V, Descat A, Deruyter L, et al: Shotgun metagenomics and systemic targeted metabolomics highlight indole-3-propionic acid as a protective gut microbial metabolite against influenza infection. Gut Microbes. 16:23250672024. View Article : Google Scholar : PubMed/NCBI | |
|
Ilha M, Sehgal R, Matilainen J, Rilla K, Kaminska D, Gandhi S, Männistö V, Ling C, Romeo S, Pajukanta P, et al: Indole-3-propionic acid promotes hepatic stellate cells inactivation. J Transl Med. 23:2532025. View Article : Google Scholar : PubMed/NCBI | |
|
Rapti E, Adamantidi T, Efthymiopoulos T, Kyzas GZ and Tsoupras A: Potential applications of the anti-inflammatory, antithrombotic and antioxidant health-promoting properties of curcumin: A critical review. Nutraceuticals. 4:562–595. 2024. View Article : Google Scholar | |
|
Shi Y, Wu Q, Lu Y, Meng LP, Xu XL, Wang XJ and Chen W: Arginine-glycine-aspartic acid-anchored curcumin-based nanotherapeutics inhibit pyroptosis-induced cytokine release syndrome for in vivo and in vitro sepsis applications. Curr Pharm Des. 29:283–294. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Karimi A, Pourreza S, Vajdi M, Mahmoodpoor A, Sanaie S, Karimi M and Tarighat-Esfanjani A: Evaluating the effects of curcumin nanomicelles on clinical outcome and cellular immune responses in critically ill sepsis patients: A randomized, double-blind, and placebo-controlled trial. Front Nutr. 9:10378612022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim D, Kim S, Kang MS, Yin Z and Min B: Cell type specific IL-27p28 (IL-30) deletion in mice uncovers an unexpected regulatory function of IL-30 in autoimmune inflammation. Sci Rep. 13:18122023. View Article : Google Scholar : PubMed/NCBI | |
|
Sung M, Lim S, Park S, Choi Y and Kim S: Anti-inflammatory effects of phytosphingosine-regulated cytokines and NF-kB and MAPK mechanism. Cell Mol Biol (Noisy-le-grand). 70:22–30. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Shehata RR, Atta SA, Fatma AS, Aml RA and Gomaa AS: Association of serum IL-30 and soluble GP130 with the risk of psoriasis vulgaris. Egypt J Immunol. 31:61–70. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao M, Zheng Z, Zhang P, Xu Y, Zhang J, Peng S, Liu J, Pan W, Yin Z, Xu S, et al: IL-30 protects against sepsis-induced myocardial dysfunction by inhibiting pro-inflammatory macrophage polarization and pyroptosis. iScience. 26:1075442023. View Article : Google Scholar : PubMed/NCBI | |
|
Arruri VK, Gundu C, Kalvala AK, Sherkhane B, Khatri DK and Singh SB: Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr Neurosci. 25:1731–1746. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Joshi S, Kundu S, Priya VV, Kulhari U, Mugale MN and Sahu BD: Anti-inflammatory activity of carvacrol protects the heart from lipopolysaccharide-induced cardiac dysfunction by inhibiting pyroptosis via NLRP3/caspase1/gasdermin D signaling axis. Life Sci. 324:1217432023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu T, Ma W, Lu W, Huangshen Z, Chen S, Yang Q, Li C, Li Z, Li N, Feng X, et al: Vaccarin alleviates cisplatin-induced acute kidney injury via decreasing NOX4-derived ROS. Heliyon. 9:e212312023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Meng X, Du X, Zhao C, Ma X, Wen Y, Zhang S, Hou B, Cai W, Du B, et al: Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai). 56:1860–1874. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Q, Liu D, Chu C, Wang Y, Liu M, Liu Y, Huang Y, Zhang J and Wen J: Vaccarin alleviates renal ischemia-reperfusion injury by inhibiting inflammation and ferroptosis. Int Immunopharmacol. 153:1144632025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu XX, Meng XY, Zhang AY, Zhao CY, Chang C, Chen TX, Huang YB, Xu JP, Fu X, Cai WW, et al: Vaccarin alleviates septic cardiomyopathy by potentiating NLRP3 palmitoylation and inactivation. Phytomedicine. 131:1557712024. View Article : Google Scholar : PubMed/NCBI | |
|
Liao R, Sun ZC, Wang L, Xian C, Lin R, Zhuo G, Wang H, Fang Y, Liu Y, Yang R, et al: Inhalable and bioactive lipid-nanomedicine based on bergapten for targeted acute lung injury therapy via orchestrating macrophage polarization. Bioact Mater. 43:406–422. 2024.PubMed/NCBI | |
|
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH and Chai OH: Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed Pharmacother. 164:1149592023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Cheng L, Chen T, Liu X, Zhang C, Aji A, Guo W, Zhu J, Chu Y, Guo D and Li F: Bergapten ameliorates psoriatic skin lesions and IL-17A-induced activation of the NF-κB signaling pathway via the downregulation of CYP1B1. Phytother Res. 39:661–675. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Luo T, Jia X, Feng WD, Wang JY, Xie F, Kong LD, Wang XJ, Lian R, Liu X, Chu YJ, et al: Bergapten inhibits NLRP3 inflammasome activation and pyroptosis via promoting mitophagy. Acta Pharmacol Sin. 44:1867–1878. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bai D, Du J, Bu X, Cao W, Sun T, Zhao J, Zhao Y and Lu N: ALDOA maintains NLRP3 inflammasome activation by controlling AMPK activation. Autophagy. 18:1673–1693. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Honda TSB, Ku J and Anders HJ: Cell type-specific roles of NLRP3, inflammasome-dependent and -independent, in host defense, sterile necroinflammation, tissue repair, and fibrosis. Front Immunol. 14:12142892023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Yu S, Lu Z, Qiang L, Zhong Y, Ge P, Lei Z, Qiu C, Fang Y, Zhang X, et al: Pathogenic phosphorylation of linear ubiquitin machinery causes inflammasome sensor degradation. Cell Rep. 44:1162862025. View Article : Google Scholar : PubMed/NCBI | |
|
Liang S, Zhou J, Cao C, Liu Y, Ming S, Liu X, Shang Y, Lao J, Peng Q, Yang J and Wu M: GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. Cell Mol Immunol. 21:674–688. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cui LG, Zhai MM, Yin JJ, Wang ZM, Wang SH, Zhou YJ, Li PP, Wang Y, Xia L, Wang P, et al: Targeting the ALKBH5-NLRP3 positive feedback loop alleviates cardiomyocyte pyroptosis after myocardial infarction. Eur J Pharmacol. 989:1772472025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Zhang W, Chen H, Zhang Y, Guo B, Yang L, Yin C, Zuo Q, Ren L, Bai L, et al: HDAC3 activates endothelial NLRP3 inflammasome and promotes atherosclerosis via inhibiting the acetylation of specificity protein 1. Cell Death Differ. Nov 26–2025.(Epub ahead of print). View Article : Google Scholar | |
|
Liu S, Wu Z, Su Y and Qiu F: Successful treatment of sepsis-induced cardiomyopathy with 36 h refractory ventricular fibrillation: A case report. Heliyon. 10:e350842024. View Article : Google Scholar : PubMed/NCBI | |
|
Borkowski P, Borkowski M, Borkowska N, Modak V, Nazarenko N, Mangeshkar S, Osabutey A, Maliha M, Chowdhury I, Batikyan A, et al: The Complexities of sepsis-induced cardiomyopathy: A clinical case and review of inflammatory pathways and potential therapeutic targets. Cureus. 16:e751732024.PubMed/NCBI | |
|
Silva EE, Skon-Hegg C, Badovinac VP and Griffith TS: The calm after the storm: Implications of sepsis immunoparalysis on host immunity. J Immunol. 211:711–719. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Song Y, Dong T, Ouyang W, Shao L, Quan C, Lee KE, Tan T, Tsung A, Kurabayashi K, et al: Loss of PADI2 and PADI4 ameliorates sepsis-induced acute lung injury by suppressing NLRP3+ macrophages. JCI Insight. 9:e1816862024. View Article : Google Scholar : PubMed/NCBI | |
|
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 47:1181–1247. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Duan Y, Li Q, Wu J, Zhou C, Liu X, Yue J, Chen X, Liu J, Zhang Q, Zhang Y and Zhang L: A detrimental role of endothelial S1PR2 in cardiac ischemia-reperfusion injury via modulating mitochondrial dysfunction, NLRP3 inflammasome activation, and pyroptosis. Redox Biol. 75:1032442024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Tan M, Cai J, Li C, Yang M, Sun X and He B: Ribosome-targeting antibiotic control NLRP3-mediated inflammation by inhibiting mitochondrial DNA synthesis. Free Radic Biol Med. 210:75–84. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Licini C, Morroni G, Lucarini G, Vitto VAM, Orlando F, Missiroli S, D'Achille G, Perrone M, Spadoni T, Graciotti L, et al: ER-mitochondria association negatively affects wound healing by regulating NLRP3 activation. Cell Death Dis. 15:4072024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao PY, Yao RQ, Ren C, Li SY, Li YX, Zhu SY, Yao YM and Du XH: De ritis ratio as a significant prognostic factor in patients with sepsis: A retrospective analysis. J Surg Res. 264:375–385. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Vande Walle L and Lamkanfi M: Drugging the NLRP3 inflammasome: From signalling mechanisms to therapeutic targets. Nat Rev Drug Discov. 23:43–66. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang F, Kunder R, Chu T, Hains A, Nguyen A, McBride JM, Zhong Y, Santagostino S, Wilson M, Trenchak A, et al: First-in-human phase 1 trial evaluating safety, pharmacokinetics, and pharmacodynamics of NLRP3 inflammasome inhibitor, GDC-2394, in healthy volunteers. Clin Transl Sci. 16:1653–1666. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P and Glynn RJ; CANTOS Trial Group, : Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 390:1833–1842. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Saresella M, Zoia CP, La Rosa F, Bazzini C, Sala G, Grassenis E, Marventano I, Hernis A, Piancone F, Conti E, et al: Glibenclamide-loaded engineered nanovectors (GNVs) modulate autophagy and NLRP3-inflammasome activation. Pharmaceuticals (Basel). 16:17252023. View Article : Google Scholar : PubMed/NCBI |