Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2026 Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies 
(Review)

  • Authors:
    • Yifei Chen
    • Zhaohui Zhang
    • Gaosheng Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 98
    |
    Published online on: January 22, 2026
       https://doi.org/10.3892/mmr.2026.13808
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Sepsis is a systemic inflammatory disorder characterized by multi‑organ dysfunction following infection. Sepsis‑induced cardiomyopathy (SIC) represents a prevalent complication that markedly contributes to in‑hospital mortality. The NOD‑like receptor protein 3 (NLRP3) inflammasome serves as an important regulator in SIC pathogenesis, directly impairing cardiac function through multiple mechanisms: i) Driving cytokine storms; ii) inducing cardiomyocyte pyroptosis and apoptosis; iii) disrupting mitochondrial homeostasis; and iv) suppressing autophagy. Molecularly‑targeted NLRP3 inhibitors have been developed, such as MCC950, curcumin, indole‑3‑propionic acid and carvacrol, which have demonstrated cardioprotective effects in cellular and animal models of SIC. Further exploration of NLRP3 mechanisms and resulting therapeutic targets may yield novel strategies for SIC diagnosis and clinical management. The present review examined NLRP3‑mediated pathways involving inflammation, programmed cell death and mitophagy in SIC pathogenesis, summarized pharmacological interventions targeting these pathways and highlighted previous advances in NLRP3 research to inform future therapeutic development and clinical translation.

View Figures

Figure 1

Mechanism of sepsis-induced
cardiomyopathy. Sepsis-induced cardiomyopathy pathogenesis involves
mitochondrial dysfunction, pyroptosis, apoptosis, dysregulation of
Ca2+ homeostasis, coronary microvascular changes and
inflammation. The present figure was generated using FigDraw.
GSDMD, gasdermin D; ASC, apoptosis-associated speck-like protein
containing a CARD; BAX, BCL-2-associated X protein; BCL-2, B-cell
lymphoma 2; Cyt c, cytochrome c; LTCC, L-type
Ca2+ channel; SERCA, sarcoplasmic reticulum calcium
pump; RyR, ryanodine receptor; NCX, Na+/Ca2+
exchanger; NOXs, nicotinamide adenine dinucleotide phosphate
oxidases;; NO, nitric oxide; TNF-α, tumor necrosis factor-α; MANF,
mesencephalic astrocyte-derived neurotrophic factor; ROS, reactive
oxygen species; mtROS, mitochondrial ROS; mtDNA, mitochondrial DNA;
IL-1β, interleukin-1β; NLRP3, NOD-like receptor protein 3.

Figure 2

Mechanisms of activation for NLRP3
inflammasomes. The present figure was generated using FigDraw.
DAMPs, damage-associated molecular patterns; PAMPs,
pathogen-associated molecular patterns; TLRs, Toll-like receptors;
MyD88, myeloid differentiation primary response gene 88; ATP,
adenosine triphosphate; MAVS, mitochondrial antiviral signaling
protein; ER, endoplasmic reticulum; NLRP3, NOD-like receptor
protein 3; Ub, ubiquitin; P, phosphate group; LPS,
lipopolysaccharide; TNF, tumor necrosis factor; NF-κB, nuclear
factor κ-light-chain-enhancer of activated B cells; ROS, reactive
oxygen species; mtDNA, mitochondrial DNA; IL-1β,
interleukin-1β.

Figure 3

The regulatory mechanism of NLRP3
inflammasome in SIC. The figure was generated using FigDraw. LPS,
lipopolysaccharide; TREM-1, triggering receptor expressed on
myeloid cells-1; IL-1R1, IL-1 receptor 1; SSTR2, somatostatin
receptor 2; GPCR, G protein-coupled receptor; DAP12,
DNAX-activating protein of 12 kDa; IRAK1, IL-1 receptor-associated
kinase 1; IRAK4, interleukin-1 receptor-associated kinase 4; NEMO,
NF-κB essential modulator; PI3K, phosphatidylinositol 3-kinase;
SMC4, structural maintenance of chromosome 4; IRF3, interferon
regulatory factor 3; RIPK1, receptor-interacting serine/threonine
kinase 1; RIPK3, receptor-interacting serine/threonine kinase 3;
STING, stimulator of interferon genes; AMPK, adenosine
5′-monophosphate-activated protein kinase; Drp1, dynamin-related
protein 1; PINK, PTEN-induced putative kinase 1; PHB1, prohibitin
1; USF2, upstream stimulatory factor 2; PARP, poly(ADP-ribose)
polymerase; PPAR, peroxisome proliferator-activated receptor; MafB,
v-maf musculoaponeurotic fibrosarcoma oncogene homolog B; P2X7R,
purinergic ligand-gated ion channel 7 receptor; Cyt c,
cytochrome c; BCL-2, B-cell lymphoma 2; BAX,
BCL-2-associated X protein; ROS, reactive oxygen species; mtROS,
mitochondrial ROS; mtDNA, mitochondrial DNA; ER, endoplasmic
reticulum; DAMPs, damage-associated molecular patterns; PAMPs,
pathogen-associated molecular patterns; TLRs, Toll-like receptors;
MyD88, myeloid differentiation primary response gene 88; ATP,
adenosine triphosphate; NLRP3, NOD-like receptor protein 3.

Figure 4

Inhibitors and promoters of the NLRP3
inflammasome and their mechanisms of action. The figure
demonstrates promoters and inhibitors of the NLRP3 inflammasome and
their specific modes of action, forming a complex regulatory
network. Green boxes indicate inducers of the inflammasome, and red
boxes indicate inhibitors. The figure was generated using FigDraw.
CTS, cortistatin; IPA, indole-3-propionic acid; PIK3CG,
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit γ;
BA, brevilin A; AT-1, atractylenolide I; 5m,
5-methoxyindole-3-carboxaldehyde; CA, cinnamyl alcohol; Tan I,
tanshinone I; FAAH inhibitors, fatty acid amide hydrolase
inhibitors; MIOX, myo-inositol oxygenase; ALDOA, aldolase A;
APPL-1, adaptor protein containing PH domain, PTB domain and
leucine zipper motif 1; CVL, carvacrol; BeG, bergapten; VAC,
vaccarin; DUSP1, dual specificity phosphatase 1; HSP70, heat shock
protein 70; NLRP3, NOD-like receptor protein 3.
View References

1 

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM and Sibbald WJ: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American college of chest physicians/society of critical care medicine. Chest. 101:1644–1655. 1992. View Article : Google Scholar : PubMed/NCBI

3 

Cecconi M, Evans L, Levy M and Rhodes A: Sepsis and septic shock. Lancet. 392:75–87. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Gheen N: Sepsis-3 definitions. Ann Emerg Med. 68:784–785. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Gong T, Fu Y, Wang Q, Loughran PA, Li Y, Billiar TR, Wen Z, Liu Y and Fan J: Decoding the multiple functions of ZBP1 in the mechanism of sepsis-induced acute lung injury. Commun Biol. 7:13612024. View Article : Google Scholar : PubMed/NCBI

6 

Li Y, Hu C, Zhai P, Zhang J, Jiang J, Suo J, Hu B, Wang J, Weng X, Zhou X, et al: Fibroblastic reticular cell-derived exosomes are a promising therapeutic approach for septic acute kidney injury. Kidney Int. 105:508–523. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Song YQ, Lin WJ, Hu HJ, Wu SH, Jing L, Lu Q and Zhu W: Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis. Int Immunopharmacol. 118:1101112023. View Article : Google Scholar : PubMed/NCBI

8 

Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, et al: Viral sepsis: Diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res. 11:782024.PubMed/NCBI

9 

Werdan K, Schmidt H, Ebelt H, Zorn-Pauly K, Koidl B, Hoke RS, Heinroth K and Müller-Werdan U: Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol. 87:266–274. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Hasegawa D, Ishisaka Y, Maeda T, Prasitlumkum N, Nishida K, Dugar S and Sato R: Prevalence and prognosis of sepsis-induced cardiomyopathy: A systematic review and meta-analysis. J Intensive Care Med. 38:797–808. 2023. View Article : Google Scholar : PubMed/NCBI

11 

Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F and Scolletta S: Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J Crit Care. 29:500–511. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA and Parrillo JE: Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 100:483–490. 1984. View Article : Google Scholar : PubMed/NCBI

13 

MacLean LD, Mulligan WG, McLean AP and Duff JH: Patterns of septic shock in man-a detailed study of 56 patients. Ann Surg. 166:543–562. 1967. View Article : Google Scholar : PubMed/NCBI

14 

Parrillo JE: Pathogenetic mechanisms of septic shock. N Engl J Med. 328:1471–1477. 1993. View Article : Google Scholar : PubMed/NCBI

15 

Abraham E and Singer M: Mechanisms of sepsis-induced organ dysfunction. Crit Care Med. 35:2408–2416. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Levy RJ and Deutschman CS: Cytochrome c oxidase dysfunction in sepsis. Crit Care Med. 35 (9 Suppl):S468–S475. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Mebazaa A, De Keulenaer GW, Paqueron X, Andries LJ, Ratajczak P, Lanone S, Frelin C, Longrois D, Payen D, Brutsaert DL and Sys SU: Activation of cardiac endothelium as a compensatory component in endotoxin-induced cardiomyopathy: role of endothelin, prostaglandins, and nitric oxide. Circulation. 104:3137–3144. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Hobai IA, Edgecomb J, LaBarge K and Colucci WS: Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock. 43:3–15. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Miranda M, Balarini M, Caixeta D and Bouskela E: Microcirculatory dysfunction in sepsis: Pathophysiology, clinical monitoring, and potential therapies. Am J Physiol Heart Circ Physiol. 311:H24–H35. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Henedak NT, El-Abhar HS, Soubh AA and Abdallah DM: NLRP3 Inflammasome: A central player in renal pathologies and nephropathy. Life Sci. 351:1228132024. View Article : Google Scholar : PubMed/NCBI

21 

Tao S, Fan W, Liu J, Wang T, Zheng H, Qi G, Chen Y, Zhang H, Guo Z and Zhou F: NLRP3 inflammasome: An Emerging therapeutic target for Alzheimer's disease. J Alzheimers Dis. 96:1383–1398. 2023. View Article : Google Scholar : PubMed/NCBI

22 

Tengesdal IW, Dinarello CA and Marchetti C: NLRP3 and cancer: Pathogenesis and therapeutic opportunities. Pharmacol Ther. 251:1085452023. View Article : Google Scholar : PubMed/NCBI

23 

Sayaf K, Battistella S and Russo FP: NLRP3 inflammasome in acute and chronic liver diseases. Int J Mol Sci. 25:45372024. View Article : Google Scholar : PubMed/NCBI

24 

Wang Y, You YK, Guo J, Wang J, Shao B, Li H, Meng X, Lan HY and Chen H: C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation. Mol Ther. 33:263–278. 2025. View Article : Google Scholar : PubMed/NCBI

25 

Wen Y, Liu Y, Liu W, Liu W, Dong J, Liu Q, Hao H and Ren H: Research progress on the activation mechanism of NLRP3 inflammasome in septic cardiomyopathy. Immun Inflamm Dis. 11:e10392023. View Article : Google Scholar : PubMed/NCBI

26 

Toldo S and Abbate A: The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol. 21:219–237. 2024. View Article : Google Scholar : PubMed/NCBI

27 

Zhu W, Bao X, Yang Y, Xing M, Xiong S, Chen S, Zhong Y, Hu X, Lu Q, Wang K, et al: Peripheral evolution of tanshinone IIA and cryptotanshinone for discovery of a potent and specific NLRP3 inflammasome inhibitor. J Med Chem. 68:3460–3479. 2025. View Article : Google Scholar : PubMed/NCBI

28 

Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X and Yang L: MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim). 357:e24004592024. View Article : Google Scholar : PubMed/NCBI

29 

Li H, Guan Y, Liang B, Ding P, Hou X, Wei W and Ma Y: Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol. 928:1750912022. View Article : Google Scholar : PubMed/NCBI

30 

Cabral JE, Wu A, Zhou H, Pham MA, Lin S and McNulty R: Targeting the NLRP3 inflammasome for inflammatory disease therapy. Trends Pharmacol Sci. 46:503–519. 2025. View Article : Google Scholar : PubMed/NCBI

31 

Takeuchi O and Akira S: Pattern recognition receptors and inflammation. Cell. 140:805–820. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Chen Y, Ye X, Escames G, Lei W, Zhang X, Li M, Jing T, Yao Y, Qiu Z, Wang Z, et al: The NLRP3 inflammasome: Contributions to inflammation-related diseases. Cell Mol Biol Lett. 28:512023. View Article : Google Scholar : PubMed/NCBI

33 

Fu J and Wu H: Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 41:301–316. 2023. View Article : Google Scholar : PubMed/NCBI

34 

Yu X, Matico RE, Miller R, Chauhan D, Van Schoubroeck B, Grauwen K, Suarez J, Pietrak B, Haloi N, Yin Y, et al: Structural basis for the oligomerization-facilitated NLRP3 activation. Nat Commun. 15:11642024. View Article : Google Scholar : PubMed/NCBI

35 

Jo EK, Kim JK, Shin DM and Sasakawa C: Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 13:148–159. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Martínez-García JJ, Martínez-Banaclocha H, Angosto-Bazarra D, de Torre-Minguela C, Baroja-Mazo A, Alarcón-Vila C, Martínez-Alarcón L, Amores-Iniesta J, Martín-Sánchez F, Ercole GA, et al: P2X7 receptor induces mitochondrial failure in monocytes and compromises NLRP3 inflammasome activation during sepsis. Nat Commun. 10:27112019. View Article : Google Scholar : PubMed/NCBI

37 

Wu QR, Yang H, Zhang HD, Cai YJ, Zheng YX, Fang H, Wang ZF, Kuang SJ, Rao F, Huang HL, et al: IP3R2-mediated Ca2+ release promotes LPS-induced cardiomyocyte pyroptosis via the activation of NLRP3/Caspase-1/GSDMD pathway. Cell Death Discov. 10:912024. View Article : Google Scholar : PubMed/NCBI

38 

Zeng Y, Cao G, Lin L, Zhang Y, Luo X, Ma X, Aiyisake A and Cheng Q: Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway. J Invest Surg. 36:21575212023. View Article : Google Scholar : PubMed/NCBI

39 

Liu S, Bi Y, Han T, Li YE, Wang Q, Wu NN, Xu C, Ge J, Hu R and Zhang Y: The E3 ubiquitin ligase MARCH2 protects against myocardial ischemia-reperfusion injury through inhibiting pyroptosis via negative regulation of PGAM5/MAVS/NLRP3 axis. Cell Discov. 10:242024. View Article : Google Scholar : PubMed/NCBI

40 

Karasawa T and Takahashi M: The crystal-induced activation of NLRP3 inflammasomes in atherosclerosis. Inflamm Regen. 37:182017. View Article : Google Scholar : PubMed/NCBI

41 

Ye T, Wang C, Yan J, Qin Z, Qin W, Ma Y, Wan Q, Lu W, Zhang M, Tay FR, et al: Lysosomal destabilization: A missing link between pathological calcification and osteoarthritis. Bioact Mater. 34:37–50. 2023.PubMed/NCBI

42 

Du G, Healy LB, David L, Walker C, El-Baba TJ, Lutomski CA, Goh B, Gu B, Pi X, Devant P, et al: ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D. Nature. 630:437–446. 2024. View Article : Google Scholar : PubMed/NCBI

43 

Huang Y, Xu W and Zhou R: NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 18:2114–2127. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Saller BS, Wöhrle S, Fischer L, Dufossez C, Ingerl IL, Kessler S, Mateo-Tortola M, Gorka O, Lange F, Cheng Y, et al: Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity. 58:90–107.e11. 2025. View Article : Google Scholar : PubMed/NCBI

45 

Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, et al: The NLR gene family: A standard nomenclature. Immunity. 28:285–287. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Zhu Y, Zhang H, Mao H, Zhong S, Huang Y, Chen S, Yan K, Zhao Z, Hao X, Zhang Y, et al: FAAH served a key membrane-anchoring and stabilizing role for NLRP3 protein independently of the endocannabinoid system. Cell Death Differ. 30:168–183. 2023. View Article : Google Scholar : PubMed/NCBI

47 

Yu S, Fu J, Wang J, Zhao Y, Liu B, Wei J, Yan X and Su J: The influence of mitochondrial-DNA-driven inflammation pathways on macrophage polarization: A new perspective for targeted immunometabolic therapy in cerebral ischemia-reperfusion injury. Int J Mol Sci. 23:1352021. View Article : Google Scholar : PubMed/NCBI

48 

Zheng X, Zhong T, Ma Y, Wan X, Qin A, Yao B, Zou H, Song Y and Yin D: Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME. Life Sci. 242:1171862020. View Article : Google Scholar : PubMed/NCBI

49 

Rodrigue-Gervais IG and Saleh M: Caspases and immunity in a deadly grip. Trends Immunol. 34:41–49. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Miao R, Jiang C, Chang WY, Zhang H, An J, Ho F, Chen P, Zhang H, Junqueira C, Amgalan D, et al: Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity. 56:2523–2541.e8. 2023. View Article : Google Scholar : PubMed/NCBI

51 

Gritte RB, Souza-Siqueira T, Borges da Silva E, Dos Santos de Oliveira LC, Cerqueira Borges R, Alves HHO, Masi LN, Murata GM, Gorjão R, Levada-Pires AC, et al: Evidence for monocyte reprogramming in a long-term postsepsis study. Crit Care Explor. 4:e07342022.PubMed/NCBI

52 

Jin Y, Fleishman JS, Ma Y, Jing X, Guo Q, Shang W and Wang H: NLRP3 inflammasome targeting offers a novel therapeutic paradigm for sepsis-induced myocardial injury. Drug Des Devel Ther. 19:1025–1041. 2025. View Article : Google Scholar : PubMed/NCBI

53 

Shen J, Wu JM, Hu GM, Li MZ, Cong WW, Feng YN, Wang SX, Li ZJ, Xu M, Dong ED, et al: Membrane nanotubes facilitate the propagation of inflammatory injury in the heart upon overactivation of the β-adrenergic receptor. Cell Death Dis. 11:9582020. View Article : Google Scholar : PubMed/NCBI

54 

Wiersinga WJ, Leopold SJ, Cranendonk DR and van der Poll T: Host innate immune responses to sepsis. Virulence. 5:36–44. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Fajgenbaum DC and June CH: Cytokine storm. N Engl J Med. 383:2255–2273. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Blevins HM, Xu Y, Biby S and Zhang S: The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci. 14:8790212022. View Article : Google Scholar : PubMed/NCBI

57 

Napodano C, Carnazzo V, Basile V, Pocino K, Stefanile A, Gallucci S, Natali P, Basile U and Marino M: NLRP3 inflammasome involvement in heart, liver, and lung diseases-A lesson from cytokine storm syndrome. Int J Mol Sci. 24:165562023. View Article : Google Scholar : PubMed/NCBI

58 

Fujimura K, Karasawa T, Komada T, Yamada N, Mizushina Y, Baatarjav C, Matsumura T, Otsu K, Takeda N, Mizukami H, et al: NLRP3 inflammasome-driven IL-1β and IL-18 contribute to lipopolysaccharide-induced septic cardiomyopathy. J Mol Cell Cardiol. 180:58–68. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Sun J, Ge X, Wang Y, Niu L, Tang L and Pan S: USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol Res. 176:1059622022. View Article : Google Scholar : PubMed/NCBI

60 

Xie Y, Li X, Deng W, Nan N, Zou H, Gong L, Chen M, Yu J, Chen P, Cui D and Zhang F: Knockdown of USF2 inhibits pyroptosis of podocytes and attenuates kidney injury in lupus nephritis. J Mol Histol. 54:313–327. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Dong W, Liao R, Weng J, Du X, Chen J, Fang X, Liu W, Long T, You J, Wang W and Peng X: USF2 activates RhoB/ROCK pathway by transcriptional inhibition of miR-206 to promote pyroptosis in septic cardiomyocytes. Mol Cell Biochem. 479:1093–1108. 2024. View Article : Google Scholar : PubMed/NCBI

62 

Zhang Y, Li S, Fan X and Wu Y: Pretreatment with indole-3-propionic acid attenuates lipopolysaccharide-induced cardiac dysfunction and inflammation through the AhR/NF-κB/NLRP3 pathway. J Inflamm Res. 17:5293–5309. 2024. View Article : Google Scholar : PubMed/NCBI

63 

Konvalinka A: myo-Inositol oxygenase: A novel kidney-specific biomarker of acute kidney injury? Clin Chem. 60:708–710. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Wang Y, Lu J, Lin B, Chen J, Lin F, Zheng Q, Xue X, Wei Y, Chen S and Xu N: Integrated analysis of MIOX gene in prognosis of clear-cell renal cell carcinoma. Cell Death Dis. 16:3682025. View Article : Google Scholar : PubMed/NCBI

65 

Zhou W, Yu C and Long Y: Myo-inositol oxygenase (MIOX) accelerated inflammation in the model of infection-induced cardiac dysfunction by NLRP3 inflammasome. Immun Inflamm Dis. 11:e8292023. View Article : Google Scholar : PubMed/NCBI

66 

Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, et al: Apoptotic cell death in disease-current understanding of the NCCD 2023. Cell Death Differ. 30:1097–1154. 2023. View Article : Google Scholar : PubMed/NCBI

67 

Fu Y, Zhang HJ, Zhou W, Lai ZQ and Dong YF: The protective effects of sophocarpine on sepsis-induced cardiomyopathy. Eur J Pharmacol. 950:1757452023. View Article : Google Scholar : PubMed/NCBI

68 

Mahidhara R and Billiar TR: Apoptosis in sepsis. Crit Care Med. 28 (4 Suppl):N105–N113. 2000. View Article : Google Scholar : PubMed/NCBI

69 

Maluleke TT, Manilall A, Shezi N, Baijnath S and Millen AME: Acute exposure to LPS induces cardiac dysfunction via the activation of the NLRP3 inflammasome. Sci Rep. 14:243782024. View Article : Google Scholar : PubMed/NCBI

70 

Speir M and Lawlor KE: RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin Cell Dev Biol. 109:114–124. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Zhou Y, Chai Z, Pandeya A, Yang L, Zhang Y, Zhang G, Wu C, Li Z and Wei Y: Caspase-11 and NLRP3 exacerbate systemic Klebsiella infection through reducing mitochondrial ROS production. Front Immunol. 16:15161202025. View Article : Google Scholar : PubMed/NCBI

72 

Yang Y, Lei W, Qian L, Zhang S, Yang W, Lu C, Song Y, Liang Z, Deng C, Chen Y, et al: Activation of NR1H3 signaling pathways by psoralidin attenuates septic myocardial injury. Free Radic Biol Med. 204:8–19. 2023. View Article : Google Scholar : PubMed/NCBI

73 

Qu M, Wang Y, Qiu Z, Zhu S, Guo K, Chen W, Miao C and Zhang H: Necroptosis, pyroptosis, ferroptosis in sepsis and treatment. Shock. 57:161–171. 2022. View Article : Google Scholar : PubMed/NCBI

74 

Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W and Tang Q: STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol. 24:1012152019. View Article : Google Scholar : PubMed/NCBI

75 

Wang D, Lin Z, Zhou Y, Su M, Zhang H, Yu L and Li M: Atractylenolide I ameliorates sepsis-induced cardiomyocyte injury by inhibiting macrophage polarization through the modulation of the PARP1/NLRP3 signaling pathway. Tissue Cell. 89:1024242024. View Article : Google Scholar : PubMed/NCBI

76 

Deng C, Liu Q, Zhao H, Qian L, Lei W, Yang W, Liang Z, Tian Y, Zhang S, Wang C, et al: Activation of NR1H3 attenuates the severity of septic myocardial injury by inhibiting NLRP3 inflammasome. Bioeng Transl Med. 8:e105172023. View Article : Google Scholar : PubMed/NCBI

77 

D'Souza CA and Heitman J: Dismantling the cryptococcus coat. Trends Microbiol. 9:112–113. 2001. View Article : Google Scholar : PubMed/NCBI

78 

Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI

79 

Zheng X, Chen W, Gong F, Chen Y and Chen E: The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: A review. Front Immunol. 12:7119392021. View Article : Google Scholar : PubMed/NCBI

80 

Coll RC, Schroder K and Pelegrín P: NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol Sci. 43:653–668. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Yarovinsky TO, Su M, Chen C, Xiang Y, Tang WH and Hwa J: Pyroptosis in cardiovascular diseases: Pumping gasdermin on the fire. Semin Immunol. 69:1018092023. View Article : Google Scholar : PubMed/NCBI

82 

Fan Y, Guan B, Xu J, Zhang H, Yi L and Yang Z: Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother. 167:1154932023. View Article : Google Scholar : PubMed/NCBI

83 

Song C, Zhang Y, Pei Q, Zheng L, Wang M, Shi Y, Wu S, Ni W, Fu X, Peng Y, et al: HSP70 alleviates sepsis-induced cardiomyopathy by attenuating mitochondrial dysfunction-initiated NLRP3 inflammasome-mediated pyroptosis in cardiomyocytes. Burns Trauma. 10:tkac0432022. View Article : Google Scholar : PubMed/NCBI

84 

Cao Z, Li W, Shao Z, Liu X, Zeng Y, Lin P, Lin C, Zhao Y, Li T, Zhao Z, et al: Apelin ameliorates sepsis-induced myocardial dysfunction via inhibition of NLRP3-mediated pyroptosis of cardiomyocytes. Heliyon. 10:e245682024. View Article : Google Scholar : PubMed/NCBI

85 

Duan F, Li L, Liu S, Tao J, Gu Y, Li H, Yi X, Gong J, You D, Feng Z, et al: Cortistatin protects against septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-NLRP3 pathway. Int Immunopharmacol. 134:1121862024. View Article : Google Scholar : PubMed/NCBI

86 

Lu C, Liu J, Escames G, Yang Y, Wu X, Liu Q, Chen J, Song Y, Wang Z, Deng C, et al: PIK3CG regulates NLRP3/GSDMD-mediated pyroptosis in septic myocardial injury. Inflammation. 46:2416–2432. 2023. View Article : Google Scholar : PubMed/NCBI

87 

Liu Q, Dong Y, Escames G, Wu X, Ren J, Yang W, Zhang S, Zhu Y, Tian Y, Acuña-Castroviejo D and Yang Y: Identification of PIK3CG as a hub in septic myocardial injury using network pharmacology and weighted gene co-expression network analysis. Bioeng Transl Med. 8:e103842022. View Article : Google Scholar : PubMed/NCBI

88 

Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI

89 

Ren C, Zhang H, Wu TT and Yao YM: Autophagy: A potential therapeutic target for reversing sepsis-induced immunosuppression. Front Immunol. 8:18322017. View Article : Google Scholar : PubMed/NCBI

90 

Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW and Zhao G: The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 8:3042023. View Article : Google Scholar : PubMed/NCBI

91 

Shan X, Tao W, Li J, Tao W, Li D, Zhou L, Yang X, Dong C, Huang S, Chu X and Zhang C: Kai-Xin-San ameliorates Alzheimer's disease-related neuropathology and cognitive impairment in APP/PS1 mice via the mitochondrial autophagy-NLRP3 inflammasome pathway. J Ethnopharmacol. 329:1181452024. View Article : Google Scholar : PubMed/NCBI

92 

Lei X, Wang J, Zhang F, Tang X, He F, Cheng S, Zou F and Yan W: Micheliolide ameliorates lipopolysaccharide-induced acute kidney injury through suppression of NLRP3 activation by promoting mitophagy via Nrf2/PINK1/Parkin axis. Int Immunopharmacol. 138:1125272024. View Article : Google Scholar : PubMed/NCBI

93 

Zhou F, Lian W, Yuan X, Wang Z, Xia C, Yan Y, Wang W, Tong Z, Cheng Y, Xu J, et al: Cornuside alleviates cognitive impairments induced by Aβ1-42 through attenuating NLRP3-mediated neurotoxicity by promoting mitophagy. Alzheimers Res Ther. 17:472025. View Article : Google Scholar : PubMed/NCBI

94 

Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ and Ren J: Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends Mol Med. 28:836–849. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Zhu L, Wang Z, Sun X, Yu J, Li T, Zhao H, Ji Y, Peng B and Du M: STAT3/Mitophagy axis coordinates macrophage NLRP3 inflammasome activation and inflammatory bone loss. J Bone Miner Res. 38:335–353. 2023. View Article : Google Scholar : PubMed/NCBI

96 

Luo L, Wang F, Xu X, Ma M, Kuang G, Zhang Y, Wang D, Li W, Zhang N and Zhao K: STAT3 promotes NLRP3 inflammasome activation by mediating NLRP3 mitochondrial translocation. Exp Mol Med. 56:1980–1990. 2024. View Article : Google Scholar : PubMed/NCBI

97 

Nedel W, Deutschendorf C and Portela LVC: Sepsis-induced mitochondrial dysfunction: A narrative review. World J Crit Care Med. 12:139–152. 2023. View Article : Google Scholar : PubMed/NCBI

98 

Jing J, Yang F, Wang K, Cui M, Kong N, Wang S, Qiao X, Kong F, Zhao D, Ji J, et al: UFMylation of NLRP3 prevents its autophagic degradation and facilitates inflammasome activation. Adv Sci (Weinh). 12:e24067862025. View Article : Google Scholar : PubMed/NCBI

99 

Yang S, Huang G and Ting JP: Mitochondria and NLRP3: To die or inflame. Immunity. 58:5–7. 2025. View Article : Google Scholar : PubMed/NCBI

100 

Meyers AK, Wang Z, Han W, Zhao Q, Zabalawi M, Duan L, Liu J, Zhang Q, Manne RK, Lorenzo F, et al: Pyruvate dehydrogenase kinase supports macrophage NLRP3 inflammasome activation during acute inflammation. Cell Rep. 42:1119412023. View Article : Google Scholar : PubMed/NCBI

101 

Thorburn J, Xu S and Thorburn A: MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J. 16:1888–1900. 1997. View Article : Google Scholar : PubMed/NCBI

102 

Tan Y, Zhang Y, He J, Wu F, Wu D, Shi N, Liu W, Li Z, Liu W, Zhou H and Chen W: Dual specificity phosphatase 1 attenuates inflammation-induced cardiomyopathy by improving mitophagy and mitochondrial metabolism. Mol Metab. 64:1015672022. View Article : Google Scholar : PubMed/NCBI

103 

Li FJ, Hu H, Wu L, Luo B, Zhou Y, Ren J, Lin J, Reiter RJ, Wang S, Dong M, et al: Ablation of mitophagy receptor FUNDC1 accentuates septic cardiomyopathy through ACSL4-dependent regulation of ferroptosis and mitochondrial integrity. Free Radic Biol Med. 225:75–86. 2024. View Article : Google Scholar : PubMed/NCBI

104 

Nie J and Qiu H: DUSP1 mitigates MSU-induced immune response in gouty arthritis reinforcing autophagy. Front Biosci (Landmark Ed). 29:2222024. View Article : Google Scholar : PubMed/NCBI

105 

Jiang H, Chen F, Song D, Zhou X, Ren L and Zeng M: Dynamin-related protein 1 is involved in mitochondrial damage, defective mitophagy, and NLRP3 inflammasome activation induced by MSU crystals. Oxid Med Cell Longev. 2022:50644942022. View Article : Google Scholar : PubMed/NCBI

106 

Chen S, Ma J, Yin P and Liang F: The landscape of mitophagy in sepsis reveals PHB1 as an NLRP3 inflammasome inhibitor. Front Immunol. 14:11884822023. View Article : Google Scholar : PubMed/NCBI

107 

Song D, Tao W, Liu F, Wu X, Bi H, Shu J, Wang D and Li X: Lipopolysaccharide promotes NLRP3 inflammasome activation by inhibiting TFEB-mediated autophagy in NRK-52E cells. Mol Immunol. 163:127–135. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Zhang R, Guan S, Meng Z, Zhang D and Lu J: Ginsenoside Rb1 alleviates 3-MCPD-induced renal cell pyroptosis by activating mitophagy. Food Chem Toxicol. 186:1145222024. View Article : Google Scholar : PubMed/NCBI

109 

Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W and Liou YC: Mitochondrial dysfunction in sepsis: Mechanisms and therapeutic perspectives. Crit Care. 28:2922024. View Article : Google Scholar : PubMed/NCBI

110 

Silva RCMC: Mitochondria, autophagy and inflammation: Interconnected in aging. Cell Biochem Biophys. 82:411–426. 2024. View Article : Google Scholar : PubMed/NCBI

111 

Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG and Zerial M: APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell. 116:445–456. 2004. View Article : Google Scholar : PubMed/NCBI

112 

Wu KKL and Cheng KKY: A new role of the early endosome in restricting NLRP3 inflammasome via mitophagy. Autophagy. 18:1475–1477. 2022. View Article : Google Scholar : PubMed/NCBI

113 

Yu WM, Appler JM, Kim YH, Nishitani AM, Holt JR and Goodrich LV: A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife. 2:e013412013. View Article : Google Scholar : PubMed/NCBI

114 

Cui H, Banerjee S, Xie N, Dey T, Liu RM, Sanders YY and Liu G: MafB regulates NLRP3 inflammasome activation by sustaining p62 expression in macrophages. Commun Biol. 6:10472023. View Article : Google Scholar : PubMed/NCBI

115 

Wang J, Wu M, Magupalli VG, Dahlberg PD, Wu H and Jensen GJ: Human NLRP3 inflammasome activation leads to formation of condensate at the microtubule organizing center. bioRxiv [Preprint]. 2024.09.12.612739. 2024.

116 

Chen X, Yuan T, Zheng D, Li F, Xu H, Ye M, Liu S and Li J: Cardiomyocyte mitochondrial mono-ADP-ribosylation dictates cardiac tolerance to sepsis by configuring bioenergetic reserve in male mice. Nat Commun. 16:81192025. View Article : Google Scholar : PubMed/NCBI

117 

Wan C and Wang Y: Integrated multi-omics of mitophagy-related molecular subtype characterization and biomarker identification in sepsis. Sci Rep. 16:7012025. View Article : Google Scholar : PubMed/NCBI

118 

Mohd S, Sharma V, Harish V, Kumar R and Pilli G: Exploring thiazolidinedione-naphthalene analogues as potential antidiabetic agents: Design, synthesis, molecular docking and in-vitro evaluation. Cell Biochem Biophys. 83:2213–2226. 2025. View Article : Google Scholar : PubMed/NCBI

119 

Hu C, He X, Zhang H, Hu X, Liao L, Cai M, Lin Z, Xiang J, Jia X, Lu G, et al: Tanshinone I limits inflammasome activation of macrophage via docking into Syk to alleviate DSS-induced colitis in mice. Mol Immunol. 173:88–98. 2024. View Article : Google Scholar : PubMed/NCBI

120 

Liang D, Tang S, Liu L, Zhao M, Ma X, Zhao Y, Shen C, Liu Q, Tang J, Zeng J and Chen N: Tanshinone I attenuates gastric precancerous lesions by inhibiting epithelial mesenchymal transition through the p38/STAT3 pathway. Int Immunopharmacol. 124:1109022023. View Article : Google Scholar : PubMed/NCBI

121 

Zhao J, Liu H, Hong Z, Luo W, Mu W, Hou X, Xu G, Fang Z, Ren L, Liu T, et al: Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC. Mol Med. 29:842023. View Article : Google Scholar : PubMed/NCBI

122 

Dai Y, Zhang X, Xu Y, Wu Y and Yang L: The protective effects of cinnamyl alcohol against hepatic steatosis, oxidative and inflammatory stress in nonalcoholic fatty liver disease induced by childhood obesity. Immunol Invest. 52:1008–1022. 2023. View Article : Google Scholar : PubMed/NCBI

123 

Yoshizaki K, Frias DP, Maier K, Smelan J, Correia AT, Oliveira LMDS, Amato-Lourenço LF, Santillo BT, Prado CM, Oshiro TM, et al: Exposure of cinnamyl alcohol in co-culture of BEAS-2B and dendritic cells: Interaction between CYP450 and cytokines. J Appl Toxicol. 44:1317–1328. 2024. View Article : Google Scholar : PubMed/NCBI

124 

Zou L, Li C, Chen X, Yu F, Huang Q, Chen L, Wu W and Liu Q: The anti-inflammatory effects of cinnamyl alcohol on sepsis-induced mice via the NLRP3 inflammasome pathway. Ann Transl Med. 10:482022. View Article : Google Scholar : PubMed/NCBI

125 

Cheng Z, Huang M, Li W, Hou L, Jin L, Fan Q, Zhang L, Li C, Zeng L, Yang C, et al: HECTD3 inhibits NLRP3 inflammasome assembly and activation by blocking NLRP3-NEK7 interaction. Cell Death Dis. 15:862024. View Article : Google Scholar : PubMed/NCBI

126 

Guo J, Miao Y, Nie F, Gao F, Li H, Wang Y, Liu Q, Zhang T, Yang X, Liu L, et al: Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis. J Nanobiotechnology. 21:4482023. View Article : Google Scholar : PubMed/NCBI

127 

Ding Y, Liu L, Wu Y, Wang Y and Zhao R: Optimization of the transdermal delivery system in astilbin microemulsion with improved stability and anti-psoriatic activity. Curr Drug Deliv. 20:281–291. 2023. View Article : Google Scholar : PubMed/NCBI

128 

Li C, Huang Y, Wu C, Qiu Y, Zhang L, Xu J, Zheng J, Zhang X, Li F and Xia D: Astilbin inhibited neutrophil extracellular traps in gouty arthritis through suppression of purinergic P2Y6 receptor. Phytomedicine. 130:1557542024. View Article : Google Scholar : PubMed/NCBI

129 

Geng X, Fu Z, Geng G, Chi K, Liu C, Hong H, Cai G, Chen X and Hong Q: Astilbin improves the therapeutic effects of mesenchymal stem cells in AKI-CKD mice by regulating macrophage polarization through PTGS2-mediated pathway. Stem Cell Res Ther. 15:4272024. View Article : Google Scholar : PubMed/NCBI

130 

Dou JY, Zhou MJ, Xuan MY, Guo J, Liu SH, Lian LH, Cui ZY, Nan JX and Wu YL: Astilbin alleviates hepatic fibrosis through PXR-PINK1/Parkin pathway: A new strategy by regulating hepatic stellate cells-macrophage crosstalk. Phytomedicine. 135:1561442024. View Article : Google Scholar : PubMed/NCBI

131 

Yang D and Zhang QF: The natural source, physicochemical properties, biological activities and metabolism of astilbin. Crit Rev Food Sci Nutr. 63:9506–9518. 2023. View Article : Google Scholar : PubMed/NCBI

132 

Fang Z, Wang G, Huang R, Liu C, Yushanjiang F, Mao T and Li J: Astilbin protects from sepsis-induced cardiac injury through the NRF2/HO-1 and TLR4/NF-κB pathway. Phytother Res. 38:1044–1058. 2024. View Article : Google Scholar : PubMed/NCBI

133 

Liu YF, Li WQ, Hu ND, Ai B, Xia HX, Guo X, Chen Z and Xia H: Brevilin A ameliorates sepsis-induced cardiomyopathy through inhibiting NLRP3 inflammation. Ann Med Surg (Lond). 85:5952–5962. 2023. View Article : Google Scholar : PubMed/NCBI

134 

Fang H, Wang Y, Deng J, Zhang H, Wu Q, He L, Xu J, Shao X, Ouyang X, He Z, et al: Sepsis-induced gut dysbiosis mediates the susceptibility to sepsis-associated encephalopathy in mice. mSystems. 7:e01399212022. View Article : Google Scholar : PubMed/NCBI

135 

Zhuang H, Ren X, Jiang F and Zhou P: Indole-3-propionic acid alleviates chondrocytes inflammation and osteoarthritis via the AhR/NF-κB axis. Mol Med. 29:172023. View Article : Google Scholar : PubMed/NCBI

136 

Heumel S, de Rezende Rodovalho V, Urien C, Specque F, Brito Rodrigues P, Robil C, Delval L, Sencio V, Descat A, Deruyter L, et al: Shotgun metagenomics and systemic targeted metabolomics highlight indole-3-propionic acid as a protective gut microbial metabolite against influenza infection. Gut Microbes. 16:23250672024. View Article : Google Scholar : PubMed/NCBI

137 

Ilha M, Sehgal R, Matilainen J, Rilla K, Kaminska D, Gandhi S, Männistö V, Ling C, Romeo S, Pajukanta P, et al: Indole-3-propionic acid promotes hepatic stellate cells inactivation. J Transl Med. 23:2532025. View Article : Google Scholar : PubMed/NCBI

138 

Rapti E, Adamantidi T, Efthymiopoulos T, Kyzas GZ and Tsoupras A: Potential applications of the anti-inflammatory, antithrombotic and antioxidant health-promoting properties of curcumin: A critical review. Nutraceuticals. 4:562–595. 2024. View Article : Google Scholar

139 

Shi Y, Wu Q, Lu Y, Meng LP, Xu XL, Wang XJ and Chen W: Arginine-glycine-aspartic acid-anchored curcumin-based nanotherapeutics inhibit pyroptosis-induced cytokine release syndrome for in vivo and in vitro sepsis applications. Curr Pharm Des. 29:283–294. 2023. View Article : Google Scholar : PubMed/NCBI

140 

Karimi A, Pourreza S, Vajdi M, Mahmoodpoor A, Sanaie S, Karimi M and Tarighat-Esfanjani A: Evaluating the effects of curcumin nanomicelles on clinical outcome and cellular immune responses in critically ill sepsis patients: A randomized, double-blind, and placebo-controlled trial. Front Nutr. 9:10378612022. View Article : Google Scholar : PubMed/NCBI

141 

Kim D, Kim S, Kang MS, Yin Z and Min B: Cell type specific IL-27p28 (IL-30) deletion in mice uncovers an unexpected regulatory function of IL-30 in autoimmune inflammation. Sci Rep. 13:18122023. View Article : Google Scholar : PubMed/NCBI

142 

Sung M, Lim S, Park S, Choi Y and Kim S: Anti-inflammatory effects of phytosphingosine-regulated cytokines and NF-kB and MAPK mechanism. Cell Mol Biol (Noisy-le-grand). 70:22–30. 2024. View Article : Google Scholar : PubMed/NCBI

143 

Shehata RR, Atta SA, Fatma AS, Aml RA and Gomaa AS: Association of serum IL-30 and soluble GP130 with the risk of psoriasis vulgaris. Egypt J Immunol. 31:61–70. 2024. View Article : Google Scholar : PubMed/NCBI

144 

Zhao M, Zheng Z, Zhang P, Xu Y, Zhang J, Peng S, Liu J, Pan W, Yin Z, Xu S, et al: IL-30 protects against sepsis-induced myocardial dysfunction by inhibiting pro-inflammatory macrophage polarization and pyroptosis. iScience. 26:1075442023. View Article : Google Scholar : PubMed/NCBI

145 

Arruri VK, Gundu C, Kalvala AK, Sherkhane B, Khatri DK and Singh SB: Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr Neurosci. 25:1731–1746. 2022. View Article : Google Scholar : PubMed/NCBI

146 

Joshi S, Kundu S, Priya VV, Kulhari U, Mugale MN and Sahu BD: Anti-inflammatory activity of carvacrol protects the heart from lipopolysaccharide-induced cardiac dysfunction by inhibiting pyroptosis via NLRP3/caspase1/gasdermin D signaling axis. Life Sci. 324:1217432023. View Article : Google Scholar : PubMed/NCBI

147 

Wu T, Ma W, Lu W, Huangshen Z, Chen S, Yang Q, Li C, Li Z, Li N, Feng X, et al: Vaccarin alleviates cisplatin-induced acute kidney injury via decreasing NOX4-derived ROS. Heliyon. 9:e212312023. View Article : Google Scholar : PubMed/NCBI

148 

Zhu X, Meng X, Du X, Zhao C, Ma X, Wen Y, Zhang S, Hou B, Cai W, Du B, et al: Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai). 56:1860–1874. 2024. View Article : Google Scholar : PubMed/NCBI

149 

Fan Q, Liu D, Chu C, Wang Y, Liu M, Liu Y, Huang Y, Zhang J and Wen J: Vaccarin alleviates renal ischemia-reperfusion injury by inhibiting inflammation and ferroptosis. Int Immunopharmacol. 153:1144632025. View Article : Google Scholar : PubMed/NCBI

150 

Zhu XX, Meng XY, Zhang AY, Zhao CY, Chang C, Chen TX, Huang YB, Xu JP, Fu X, Cai WW, et al: Vaccarin alleviates septic cardiomyopathy by potentiating NLRP3 palmitoylation and inactivation. Phytomedicine. 131:1557712024. View Article : Google Scholar : PubMed/NCBI

151 

Liao R, Sun ZC, Wang L, Xian C, Lin R, Zhuo G, Wang H, Fang Y, Liu Y, Yang R, et al: Inhalable and bioactive lipid-nanomedicine based on bergapten for targeted acute lung injury therapy via orchestrating macrophage polarization. Bioact Mater. 43:406–422. 2024.PubMed/NCBI

152 

Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH and Chai OH: Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed Pharmacother. 164:1149592023. View Article : Google Scholar : PubMed/NCBI

153 

Zhu S, Cheng L, Chen T, Liu X, Zhang C, Aji A, Guo W, Zhu J, Chu Y, Guo D and Li F: Bergapten ameliorates psoriatic skin lesions and IL-17A-induced activation of the NF-κB signaling pathway via the downregulation of CYP1B1. Phytother Res. 39:661–675. 2025. View Article : Google Scholar : PubMed/NCBI

154 

Luo T, Jia X, Feng WD, Wang JY, Xie F, Kong LD, Wang XJ, Lian R, Liu X, Chu YJ, et al: Bergapten inhibits NLRP3 inflammasome activation and pyroptosis via promoting mitophagy. Acta Pharmacol Sin. 44:1867–1878. 2023. View Article : Google Scholar : PubMed/NCBI

155 

Bai D, Du J, Bu X, Cao W, Sun T, Zhao J, Zhao Y and Lu N: ALDOA maintains NLRP3 inflammasome activation by controlling AMPK activation. Autophagy. 18:1673–1693. 2022. View Article : Google Scholar : PubMed/NCBI

156 

Honda TSB, Ku J and Anders HJ: Cell type-specific roles of NLRP3, inflammasome-dependent and -independent, in host defense, sterile necroinflammation, tissue repair, and fibrosis. Front Immunol. 14:12142892023. View Article : Google Scholar : PubMed/NCBI

157 

Yu Y, Yu S, Lu Z, Qiang L, Zhong Y, Ge P, Lei Z, Qiu C, Fang Y, Zhang X, et al: Pathogenic phosphorylation of linear ubiquitin machinery causes inflammasome sensor degradation. Cell Rep. 44:1162862025. View Article : Google Scholar : PubMed/NCBI

158 

Liang S, Zhou J, Cao C, Liu Y, Ming S, Liu X, Shang Y, Lao J, Peng Q, Yang J and Wu M: GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. Cell Mol Immunol. 21:674–688. 2024. View Article : Google Scholar : PubMed/NCBI

159 

Cui LG, Zhai MM, Yin JJ, Wang ZM, Wang SH, Zhou YJ, Li PP, Wang Y, Xia L, Wang P, et al: Targeting the ALKBH5-NLRP3 positive feedback loop alleviates cardiomyocyte pyroptosis after myocardial infarction. Eur J Pharmacol. 989:1772472025. View Article : Google Scholar : PubMed/NCBI

160 

Chen L, Zhang W, Chen H, Zhang Y, Guo B, Yang L, Yin C, Zuo Q, Ren L, Bai L, et al: HDAC3 activates endothelial NLRP3 inflammasome and promotes atherosclerosis via inhibiting the acetylation of specificity protein 1. Cell Death Differ. Nov 26–2025.(Epub ahead of print). View Article : Google Scholar

161 

Liu S, Wu Z, Su Y and Qiu F: Successful treatment of sepsis-induced cardiomyopathy with 36 h refractory ventricular fibrillation: A case report. Heliyon. 10:e350842024. View Article : Google Scholar : PubMed/NCBI

162 

Borkowski P, Borkowski M, Borkowska N, Modak V, Nazarenko N, Mangeshkar S, Osabutey A, Maliha M, Chowdhury I, Batikyan A, et al: The Complexities of sepsis-induced cardiomyopathy: A clinical case and review of inflammatory pathways and potential therapeutic targets. Cureus. 16:e751732024.PubMed/NCBI

163 

Silva EE, Skon-Hegg C, Badovinac VP and Griffith TS: The calm after the storm: Implications of sepsis immunoparalysis on host immunity. J Immunol. 211:711–719. 2023. View Article : Google Scholar : PubMed/NCBI

164 

Yu X, Song Y, Dong T, Ouyang W, Shao L, Quan C, Lee KE, Tan T, Tsung A, Kurabayashi K, et al: Loss of PADI2 and PADI4 ameliorates sepsis-induced acute lung injury by suppressing NLRP3+ macrophages. JCI Insight. 9:e1816862024. View Article : Google Scholar : PubMed/NCBI

165 

Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 47:1181–1247. 2021. View Article : Google Scholar : PubMed/NCBI

166 

Duan Y, Li Q, Wu J, Zhou C, Liu X, Yue J, Chen X, Liu J, Zhang Q, Zhang Y and Zhang L: A detrimental role of endothelial S1PR2 in cardiac ischemia-reperfusion injury via modulating mitochondrial dysfunction, NLRP3 inflammasome activation, and pyroptosis. Redox Biol. 75:1032442024. View Article : Google Scholar : PubMed/NCBI

167 

Liu S, Tan M, Cai J, Li C, Yang M, Sun X and He B: Ribosome-targeting antibiotic control NLRP3-mediated inflammation by inhibiting mitochondrial DNA synthesis. Free Radic Biol Med. 210:75–84. 2024. View Article : Google Scholar : PubMed/NCBI

168 

Licini C, Morroni G, Lucarini G, Vitto VAM, Orlando F, Missiroli S, D'Achille G, Perrone M, Spadoni T, Graciotti L, et al: ER-mitochondria association negatively affects wound healing by regulating NLRP3 activation. Cell Death Dis. 15:4072024. View Article : Google Scholar : PubMed/NCBI

169 

Zhao PY, Yao RQ, Ren C, Li SY, Li YX, Zhu SY, Yao YM and Du XH: De ritis ratio as a significant prognostic factor in patients with sepsis: A retrospective analysis. J Surg Res. 264:375–385. 2021. View Article : Google Scholar : PubMed/NCBI

170 

Vande Walle L and Lamkanfi M: Drugging the NLRP3 inflammasome: From signalling mechanisms to therapeutic targets. Nat Rev Drug Discov. 23:43–66. 2024. View Article : Google Scholar : PubMed/NCBI

171 

Tang F, Kunder R, Chu T, Hains A, Nguyen A, McBride JM, Zhong Y, Santagostino S, Wilson M, Trenchak A, et al: First-in-human phase 1 trial evaluating safety, pharmacokinetics, and pharmacodynamics of NLRP3 inflammasome inhibitor, GDC-2394, in healthy volunteers. Clin Transl Sci. 16:1653–1666. 2023. View Article : Google Scholar : PubMed/NCBI

172 

Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P and Glynn RJ; CANTOS Trial Group, : Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 390:1833–1842. 2017. View Article : Google Scholar : PubMed/NCBI

173 

Saresella M, Zoia CP, La Rosa F, Bazzini C, Sala G, Grassenis E, Marventano I, Hernis A, Piancone F, Conti E, et al: Glibenclamide-loaded engineered nanovectors (GNVs) modulate autophagy and NLRP3-inflammasome activation. Pharmaceuticals (Basel). 16:17252023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Y, Zhang Z and Zhou G: <p>Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies&nbsp;<br>(Review)</p>. Mol Med Rep 33: 98, 2026.
APA
Chen, Y., Zhang, Z., & Zhou, G. (2026). <p>Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies&nbsp;<br>(Review)</p>. Molecular Medicine Reports, 33, 98. https://doi.org/10.3892/mmr.2026.13808
MLA
Chen, Y., Zhang, Z., Zhou, G."<p>Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies&nbsp;<br>(Review)</p>". Molecular Medicine Reports 33.3 (2026): 98.
Chicago
Chen, Y., Zhang, Z., Zhou, G."<p>Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies&nbsp;<br>(Review)</p>". Molecular Medicine Reports 33, no. 3 (2026): 98. https://doi.org/10.3892/mmr.2026.13808
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Y, Zhang Z and Zhou G: <p>Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies&nbsp;<br>(Review)</p>. Mol Med Rep 33: 98, 2026.
APA
Chen, Y., Zhang, Z., & Zhou, G. (2026). <p>Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies&nbsp;<br>(Review)</p>. Molecular Medicine Reports, 33, 98. https://doi.org/10.3892/mmr.2026.13808
MLA
Chen, Y., Zhang, Z., Zhou, G."<p>Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies&nbsp;<br>(Review)</p>". Molecular Medicine Reports 33.3 (2026): 98.
Chicago
Chen, Y., Zhang, Z., Zhou, G."<p>Advances in the mechanisms of the NLRP3 inflammasome in sepsis‑induced cardiomyopathy and targeted therapeutic studies&nbsp;<br>(Review)</p>". Molecular Medicine Reports 33, no. 3 (2026): 98. https://doi.org/10.3892/mmr.2026.13808
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team