|
1
|
Moser B and Loetscher P: Lymphocyte
traffic control by chemokines. Nat Immunol. 2:123–128. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lee EY, Lee ZH and Song YW: CXCL10 and
autoimmune diseases. Autoimmun Rev. 8:379–383. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Swaminathan GJ, Holloway DE, Colvin RA, et
al: Crystal structures of oligomeric forms of the IP-10/CXCL10
chemokine. Structure. 11:521–532. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zlotnik A and Yoshie O: Chemokines: a new
classification system and their role in immunity. Immunity.
12:121–127. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Loetscher P and Clark-Lewis I: Agonistic
and antagonistic activities of chemokines. J Leukoc Biol.
69:881–884. 2001.PubMed/NCBI
|
|
6
|
Loetscher M, Gerber B, Loetscher P, et al:
Chemokine receptor specific for IP10 and mig: structure, function,
and expression in activated T-lymphocytes. J Exp Med. 184:963–969.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sallusto F, Lenig D, Mackay CR and
Lanzavecchia A: Flexible programs of chemokine receptor expression
on human polarized T helper 1 and 2 lymphocytes. J Exp Med.
187:875–883. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Loetscher M, Loetscher P, Brass N, Meese E
and Moser B: Lymphocyte-specific chemokine receptor CXCR3:
regulation, chemokine binding and gene localization. Eur J Immunol.
28:3696–3705. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Qin S, Rottman JB, Myers P, et al: The
chemokine receptors CXCR3 and CCR5 mark subsets of T cells
associated with certain inflammatory reactions. J Clin Invest.
101:746–754. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cole KE, Strick CA, Paradis TJ, et al:
Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel
non-ELR CXC chemokine with potent activity on activated T cells
through selective high affinity binding to CXCR3. J Exp Med.
187:2009–2021. 1998. View Article : Google Scholar
|
|
11
|
Clark-Lewis I, Mattioli I, Gong JH and
Loetscher P: Structure-function relationship between the human
chemokine receptor CXCR3 and its ligands. J Biol Chem. 278:289–295.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dyer KD, Percopo CM, Fischer ER,
Gabryszewski SJ and Rosenberg HF: Pneumoviruses infect eosinophils
and elicit MyD88-dependent release of chemoattractant cytokines and
interleukin-6. Blood. 114:2649–2656. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Luster AD and Ravetch JV: Biochemical
characterization of a gamma interferon-inducible cytokine (IP-10).
J Exp Med. 166:1084–1097. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lo BK, Yu M, Zloty D, Cowan B, Shapiro J
and McElwee KJ: CXCR3/ligands are significantly involved in the
tumorigenesis of basal cell carcinomas. Am J Pathol. 176:2435–2446.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bonecchi R, Bianchi G, Bordignon PP, et
al: Differential expression of chemokine receptors and chemotactic
responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med.
187:129–134. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hancock WW, Gao W, Csizmadia V, Faia KL,
Shemmeri N and Luster AD: Donor-derived IP-10 initiates development
of acute allograft rejection. J Exp Med. 193:975–980. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Khan IA, MacLean JA, Lee FS, et al: IP-10
is critical for effector T cell trafficking and host survival in
Toxoplasma gondii infection. Immunity. 12:483–494. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kanda N, Shimizu T, Tada Y and Watanabe S:
IL-18 enhances IFN-gamma-induced production of CXCL9, CXCL10, and
CXCL11 in human keratinocytes. Eur J Immunol. 37:338–350. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kanda N and Watanabe S: Prolactin enhances
interferon-gamma induced production of CXC ligand 9 (CXCL9),
CXCL10, and CXCL11 in human keratinocytes. Endocrinology.
148:2317–2325. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mee JB, Johnson CM, Morar N, Burslem F and
Groves RW: The psoriatic transcriptome closely resembles that
induced by interleukin-1 in cultured keratinocytes: dominance of
innate immune responses in psoriasis. Am J Pathol. 171:32–42. 2007.
View Article : Google Scholar
|
|
21
|
Angiolillo AL, Sgadari C, Taub DD, et al:
Human interferon-inducible protein 10 is a potent inhibitor of
angiogenesis in vivo. J Exp Med. 182:155–162. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Persano L, Crescenzi M and Indraccolo S:
Anti-angiogenic gene therapy of cancer: current status and future
prospects. Mol Aspects Med. 28:87–114. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Belperio JA, Keane MP, Arenberg DA, et al:
CXC chemokines in angiogenesis. J Leukoc Biol. 68:1–8. 2000.
|
|
24
|
Monteagudo C, Martin JM, Jorda E and
Llombart-Bosch A: CXCR3 chemokine receptor immunoreactivity in
primary cutaneous malignant melanoma: correlation with
clinicopathological prognostic factors. J Clin Pathol. 60:596–599.
2007. View Article : Google Scholar
|
|
25
|
Furuya M, Suyama T, Usui H, et al:
Up-regulation of CXC chemokines and their receptors: implications
for proinflammatory microenvironments of ovarian carcinomas and
endometriosis. Hum Pathol. 38:1676–1687. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pellegrino A, Antonaci F, Russo F, et al:
CXCR3-binding chemokines in multiple myeloma. Cancer Lett.
207:221–227. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jones D, Benjamin RJ, Shahsafaei A and
Dorfman DM: The chemokine receptor CXCR3 is expressed in a subset
of B-cell lymphomas and is a marker of B-cell chronic lymphocytic
leukemia. Blood. 95:627–632. 2000.PubMed/NCBI
|
|
28
|
Farina C, Aloisi F and Meinl E: Astrocytes
are active players in cerebral innate immunity. Trends Immunol.
28:138–145. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Vinet J, de Jong EK, Boddeke HW, et al:
Expression of CXCL10 in cultured cortical neurons. J Neurochem.
112:703–714. 2009. View Article : Google Scholar
|
|
30
|
Van Weering HR, Boddeke HW, Vinet J, et
al: CXCL10/CXCR3 signaling in glia cells differentially affects
NMDA-induced cell death in CA and DG neurons of the mouse
hippocampus. Hippocampus. 21:220–232. 2011.PubMed/NCBI
|
|
31
|
Luster AD, Unkeless JC and Ravetch JV:
Gamma-interferon transcriptionally regulates an early-response gene
containing homology to platelet proteins. Nature. 315:672–676.
1985. View
Article : Google Scholar : PubMed/NCBI
|
|
32
|
Luster AD, Jhanwar SC, Chaganti RS, Kersey
JH and Ravetch JV: Interferon-inducible gene maps to a chromosomal
band associated with a (4;11) translocation in acute leukemia
cells. Proc Natl Acad Sci USA. 84:2868–2871. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Booth V, Keizer DW, Kamphuis MB,
Clark-Lewis I and Sykes BD: The CXCR3 binding chemokine
IP-10/CXCL10: structure and receptor interactions. Biochemistry.
41:10418–10425. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Campanella GS, Grimm J, Manice LA, et al:
Oligomerization of CXCL10 is necessary for endothelial cell
presentation and in vivo activity. J Immunol. 177:6991–6998. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jabeen T, Leonard P, Jamaluddin H and
Acharya KR: Structure of mouse IP-10, a chemokine. Acta Crystallogr
D Biol Crystallogr. 64:611–619. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Colvin RA, Campanella GS, Sun J and Luster
AD: Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and
CXCL11 function. J Biol Chem. 279:30219–30227. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Enderlin M, Kleinmann EV, Struyf S, et al:
TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10)
delivered by parvoviral vectors act in synergy to induce antitumor
effects in mouse glioblastoma. Cancer Gene Ther. 16:149–160. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu L, Callahan MK, Huang D and Ransohoff
RM: Chemokine receptor CXCR3: an unexpected enigma. Curr Top Dev
Biol. 68:149–181. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Neville LF, Mathiak G and Bagasra O: The
immunobiology of interferon-gamma inducible protein 10 kDa (IP-10):
a novel, pleiotropic member of the C-X-C chemokine superfamily.
Cytokine Growth Factor Rev. 8:207–219. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Rice D and Barone S Jr: Critical periods
of vulnerability for the developing nervous system: evidence from
humans and animal models. Environ Health Perspect. 108(Suppl 3):
511–533. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang LL, Ping C, Luo S, et al: CXCL10 gene
therapy efficiently inhibited the growth of cervical carcinoma
based on the antiangiogenic and antiviral activity. Biotechnol Appl
Biochem. Mar 3–2009.(Epub ahead of print).
|
|
42
|
Aksoy MO, Yang Y, Ji R, et al: CXCR3
surface expression in human airway epithelial cells: cell cycle
dependence and effect on cell proliferation. Am J Physiol Lung Cell
Mol Physiol. 290:L909–L918. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ji R, Lee CM, Gonzales LW, et al: Human
type II pneumocyte chemotactic responses to CXCR3 activation are
mediated by splice variant A. Am J Physiol Lung Cell Mol Physiol.
294:L1187–L1196. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Maru SV, Holloway KA, Flynn G, et al:
Chemokine production and chemokine receptor expression by human
glioma cells: role of CXCL10 in tumour cell proliferation. J
Neuroimmunol. 199:35–45. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shen Q, Zhang R and Bhat NR: MAP kinase
regulation of IP10/CXCL10 chemokine gene expression in microglial
cells. Brain Res. 1086:9–16. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Datta D, Flaxenburg JA, Laxmanan S, et al:
Ras-induced modulation of CXCL10 and its receptor splice variant
CXCR3-B in MDA-MB-435 and MCF-7 cells: relevance for the
development of human breast cancer. Cancer Res. 66:9509–9518. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Giuliani N, Bonomini S, Romagnani P, et
al: CXCR3 and its binding chemokines in myeloma cells: expression
of isoforms and potential relationships with myeloma cell
proliferation and survival. Haematologica. 91:1489–1497.
2006.PubMed/NCBI
|
|
48
|
Kim S, Bakre M, Yin H and Varner JA:
Inhibition of endothelial cell survival and angiogenesis by protein
kinase A. J Clin Invest. 110:933–941. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sato E, Fujimoto J and Tamaya T:
Expression of interferon-gamma-inducible protein 10 related to
angiogenesis in uterine endometrial cancers. Oncology. 73:246–251.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Aronica SM, Raiber L, Hanzly M and Kisela
C: Antitumor/antiestrogenic effect of the chemokine interferon
inducible protein 10 (IP-10) involves suppression of VEGF
expression in mammary tissue. J Interferon Cytokine Res. 29:83–92.
2009. View Article : Google Scholar
|
|
51
|
Aronica SM, Fanti P, Kaminskaya K, et al:
Estrogen disrupts chemokine-mediated chemokine release from mammary
cells: implications for the interplay between estrogen and IP-10 in
the regulation of mammary tumor formation. Breast Cancer Res Treat.
84:235–245. 2004. View Article : Google Scholar
|
|
52
|
Jiang Z, Xu Y and Cai S: CXCL10 expression
and prognostic significance in stage II and III colorectal cancer.
Mol Biol Rep. 37:3029–3036. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Romagnani P, Lasagni L, Annunziato F,
Serio M and Romagnani S: CXC chemokines: the regulatory link
between inflammation and angiogenesis. Trends Immunol. 25:201–209.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shahabuddin S, Ji R, Wang P, et al: CXCR3
chemokine receptor-induced chemotaxis in human airway epithelial
cells: role of p38 MAPK and PI3K signaling pathways. Am J Physiol
Cell Physiol. 291:C34–C39. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Han C, Fu J, Liu Z, Huang H, Luo L and Yin
Z: Dipyrithione inhibits IFN-gamma-induced JAK/STAT1 signaling
pathway activation and IP-10/CXCL10 expression in RAW264.7 cells.
Inflamm Res. 59:809–816. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nakamichi K, Inoue S, Takasaki T, Morimoto
K and Kurane I: Rabies virus stimulates nitric oxide production and
CXC chemokine ligand 10 expression in macrophages through
activation of extracellular signal-regulated kinases 1 and 2. J
Virol. 78:9376–9388. 2004. View Article : Google Scholar
|
|
57
|
Nakamichi K, Saiki M, Sawada M, et al:
Rabies virus-induced activation of mitogen-activated protein kinase
and NF-kappaB signaling pathways regulates expression of CXC and CC
chemokine ligands in microglia. J Virol. 79:11801–11812. 2005.
View Article : Google Scholar
|
|
58
|
Fujita M, Zhu X, Ueda R, et al: Effective
immunotherapy against murine gliomas using type 1 polarizing
dendritic cells – significant roles of CXCL10. Cancer Res.
69:1587–1595. 2009.PubMed/NCBI
|
|
59
|
Lu XL, Jiang XB, Liu RE and Zhang SM: The
enhanced antiangiogenic and antitumor effects of combining
flk1-based DNA vaccine and IP-10. Vaccine. 26:5352–5357. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jiang XB, Lu XL, Hu P and Liu RE: Improved
therapeutic efficacy using vaccination with glioma lysate-pulsed
dendritic cells combined with IP-10 in murine glioma. Vaccine.
27:6210–6216. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Okada H: Brain tumor immunotherapy with
type-1 polarizing strategies. Ann NY Acad Sci. 1174:18–23. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kang TH, Bae HC, Kim SH, et al:
Modification of dendritic cells with interferon-gamma-inducible
protein-10 gene to enhance vaccine potency. J Gene Med. 11:889–898.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mei K, Wang L, Tian L, Yu J, Zhang Z and
Wei Y: Antitumor efficacy of combination of
interferon-gamma-inducible protein 10 gene with gemcitabine, a
study in murine model. J Exp Clin Cancer Res. 27:632008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Balkwill F and Mantovani A: Inflammation
and cancer: back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Oppenheim JJ, Murphy WJ, Chertox O,
Schirrmacher V and Wang JM: Prospects for cytokine and chemokine
biotherapy. Clin Cancer Res. 3:2682–2686. 1997.PubMed/NCBI
|
|
66
|
Moriai S, Takahara M, Ogino T, et al:
Production of interferon-{gamma}-inducible protein-10 and its role
as an autocrine invasion factor in nasal natural killer/T-cell
lymphoma cells. Clin Cancer Res. 15:6771–6779. 2009.
|
|
67
|
Kawada K, Hosogi H, Sonoshita M, et al:
Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph
nodes. Oncogene. 26:4679–4688. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sanchez-Carbayo M, Socci ND, Lozano J,
Saint F and Cordon-Cardo C: Defining molecular profiles of poor
outcome in patients with invasive bladder cancer using
oligonucleotide microarrays. J Clin Oncol. 24:778–789. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sun L, Hui AM, Su Q, et al: Neuronal and
glioma-derived stem cell factor induces angiogenesis within the
brain. Cancer Cell. 9:287–300. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lee J, Kotliarova S, Kotliarov Y, et al:
Tumor stem cells derived from glioblastomas cultured in bFGF and
EGF more closely mirror the phenotype and genotype of primary
tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Richardson AL, Wang ZC, De Nicolo A, et
al: X chromosomal abnormalities in basal-like human breast cancer.
Cancer Cell. 9:121–132. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Karnoub AE, Dash AB, Vo AP, et al:
Mesenchymal stem cells within tumour stroma promote breast cancer
metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pyeon D, Newton MA, Lambert PF, et al:
Fundamental differences in cell cycle deregulation in human
papillomavirus-positive and human papillomavirus-negative head/neck
and cervical cancers. Cancer Res. 67:4605–4619. 2007. View Article : Google Scholar
|
|
74
|
Ki DH, Jeung HC, Park CH, et al: Whole
genome analysis for liver metastasis gene signatures in colorectal
cancer. Int J Cancer. 121:2005–2012. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ginos MA, Page GP, Michalowicz BS, et al:
Identification of a gene expression signature associated with
recurrent disease in squamous cell carcinoma of the head and neck.
Cancer Res. 64:55–63. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Talbot SG, Estilo C, Maghami E, et al:
Gene expression profiling allows distinction between primary and
metastatic squamous cell carcinomas in the lung. Cancer Res.
65:3063–3071. 2005.PubMed/NCBI
|
|
77
|
Yusenko MV, Kuiper RP, Boethe T, Ljungberg
B, van Kessel AG and Kovacs G: High-resolution DNA copy number and
gene expression analyses distinguish chromophobe renal cell
carcinomas and renal oncocytomas. BMC Cancer. 9:1522009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gumz ML, Zou H, Kreinest PA, et al:
Secreted frizzled-related protein 1 loss contributes to tumor
phenotype of clear cell renal cell carcinoma. Clin Cancer Res.
13:4740–4749. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Andersson A, Ritz C, Lindgren D, et al:
Microarray-based classification of a consecutive series of 121
childhood acute leukemias: prediction of leukemic and genetic
subtype as well as of minimal residual disease status. Leukemia.
21:1198–1203. 2007. View Article : Google Scholar
|
|
80
|
Wurmbach E, Chen YB, Khitrov G, et al:
Genome-wide molecular profiles of HCV-induced dysplasia and
hepatocellular carcinoma. Hepatology. 45:938–947. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Rosenwald A, Alizadeh AA, Widhopf G, et
al: Relation of gene expression phenotype to immunoglobulin
mutation genotype in B cell chronic lymphocytic leukemia. J Exp
Med. 194:1639–1647. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rosenwald A, Wright G, Chan WC, et al: The
use of molecular profiling to predict survival after chemotherapy
for diffuse large-B-cell lymphoma. N Engl J Med. 346:1937–1947.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Storz MN, van de Rijn M, Kim YH,
Mraz-Gernhard S, Hoppe RT and Kohler S: Gene expression profiles of
cutaneous B cell lymphoma. J Invest Dermatol. 120:865–870. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Basso K, Margolin AA, Stolovitzky G, Klein
U, Dalla-Favera R and Califano A: Reverse engineering of regulatory
networks in human B cells. Nat Genet. 37:382–390. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Haqq C, Nosrati M, Sudilovsky D, et al:
The gene expression signatures of melanoma progression. Proc Natl
Acad Sci USA. 102:6092–6097. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Skotheim RI, Lind GE, Monni O, et al:
Differentiation of human embryonal carcinomas in vitro and in vivo
reveals expression profiles relevant to normal development. Cancer
Res. 65:5588–5598. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Morrison C, Farrar W, Kneile J, et al:
Molecular classification of parathyroid neoplasia by gene
expression profiling. Am J Pathol. 165:565–576. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Detwiller KY, Fernando NT, Segal NH, Ryeom
SW, D’Amore PA and Yoon SS: Analysis of hypoxia-related gene
expression in sarcomas and effect of hypoxia on RNA interference of
vascular endothelial cell growth factor A. Cancer Res.
65:5881–5889. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Korkola JE, Houldsworth J, Chadalavada RS,
et al: Down-regulation of stem cell genes, including those in a
200-kb gene cluster at 12p13.31, is associated with in vivo
differentiation of human male germ cell tumors. Cancer Res.
66:820–827. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Beroukhim R, Brunet JP, Di Napoli A, et
al: Patterns of gene expression and copy-number alterations in
von-hippel lindau disease-associated and sporadic clear cell
carcinoma of the kidney. Cancer Res. 69:4674–4681. 2009. View Article : Google Scholar : PubMed/NCBI
|