International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
MPE is a rare benign variant of ependymoma that occurs most commonly in the cauda equina and filum terminale of the spinal cord (1,2). The majority of patients with MPEs are young adults and only a limited number of MPEs have been reported in elderly patients. MPEs are considered to represent grade I tumors characterized by slow growth. The tumor is often intradural, although local invasion and distant metastases are occasionally observed (3,4). The typical histopathological features of MPEs have been well described, whereas reports of hyaline changes and low cellular variants are rarely published. The current study presents an unusual case of MPE with marked hyaline degeneration in an elderly male. The clinicopathological observations of the case are described and analyzed. Written informed consent was obtained from the patient.
A 72-year-old male presented with a 10-month history of lower back pain and dysesthesia at the lower abdominal level. The pain was of sudden onset with radiation to the legs. Weakness in the legs was also reported and the clinical signs were worsened by sitting. There was no history of trauma. The patient showed intermittent claudication after walking 200 m. Magnetic resonance imaging revealed a mass involving the L4 and L5 vertebrae with local bone destruction. The mass was hypointense on T1-weighted images, hyperintense on T2-weighted images and enhanced heterogeneously on post-contrast T1-weighted images (Fig. 1A–C). A total resection was performed and the patient’s post-operative course was uneventful. No subsequent adjuvant therapy was deemed necessary.
Microscopically, the tumor largely consisted of areas with low cellularity. In less cellular areas, marked hyaline changes were observed in the blood vascular walls and stroma (Fig. 2A). In other areas, the tumor showed pseudopapillary or reticular patterning formed by cuboidal cells on a hyaline background (Fig. 2B and C). Mitotic figures and necrosis were absent. The tumor cells showed marked positivity for glial fibrillary acidic protein (GFAP; Fig. 2D) and S-100 proteins, whereas the cells were negative for epithelial membrane antigen (EMA), cytokeratins (CK) and epidermal growth factor receptor (EGFR). The Ki-67 labeling index was ∼3%. Since EGFR may be a predictor of relapse in MPE (5), the EGFR gene was analyzed by fluorescence in situ hybridization. No amplification of the EGFR gene was observed (Fig. 2E). The results of pathological and immunohistochemical studies were consistent with the ependymal nature of neoplastic cells.
MPE is a benign variant of ependymoma that has a peak incidence between the third and fifth decades of life. It generally occurs in the filum terminale, but has also been identified in extra-spinal locations, including subcutaneous tissue and the brain (6,7). Clinical symptoms are directly associated with the mass location of the tumor. Histologically, it is typically characterized by papillae formed by the arrangement of cuboidal to columnar cells surrounding a central core, which contains blood vessels and myxoid change. The genesis of the stromal myxoid changes are indicative of an inundation of the plasma proteins generally located within blood vessels (8). In the current case, the pronounced deposition of hyaline materials was distributed among the tumor cells and within the blood vessel walls. Lim et al (9) previously hypothesized that the ‘proteinaceous’ deposits and hyaline vascular change were a result of increased vascular permeability that led to inundation of plasma proteins surrounding extravascular spaces. MPEs are generally slow-growing, therefore, the chronic long-standing anoxic conditions may lead to various regressive changes and necrosis. An additional explanation for the stromal change is the complicated structure of the conus medullaris and filum terminale, as this region is composed of an admixture of connective tissue, nerve fibers and neuroglia. It may be possible that these unique structural features result from the anatomical relationships of the MPE (10). Certain studies have indicated that, in specific circumstances, MPE cells produce basal lamina material, particularly in regions where ependymal cells are opposed to connective tissue (11,12). In the present case, tumor cells showed marked cytoplasmic staining for GFAP and S-100 protein, whereas immunoreactivity for CK, EMA, chromogranin, EGFR and synaptophysin were all negative. In addition, marked hyaline deposits were identified around the tumor cells, and pseudopapillary patterns or ependymal rosettes were rare. Therefore, in cases such as these, it is important to rule out the possibility of schwannomas, chordomas and metastatic mucinous adenocarcinomas. Spinal schwannomas appear on the myelin sheath of the spine and represent between one-quarter to one-third of all spinal tumors. Diagnostic features include a fibrous capsule and Antoni A and Antoni B areas. Similar to in MPEs, hyaline vessels and stroma are common in schwannomas and S100 is markedly expressed. However, GFAP is negative. It is extremely important to differentiate between a schwannoma and MPE prior to surgery, as an MPE has the potential to disseminate through the cerebrospinal fluid throughout the neuraxis and must be removed completely. The most common differential diagnosis at this location is that of a chordoma. The tumor cells are large with characteristic physaliferous cytoplasm, and the immunocytochemistry of CK is positive (13). Metastatic mucinous adenocarcinomas show epithelial cords and groups with an acinar arrangement. The cancer cells are more pleomorphic and are CK- and EMA-positive. An analysis using electron microscopy is extremely important for forming a differential diagnosis. Specific ultrastructural features, including microvilli, cilia, desmosomal attachments and cytoplasmic filaments, are indicative of a diagnosis of MPE (14,15).
In conclusion, specific regressive changes are observed in MPE and marked hyaline degeneration may lead to an acellular growth pattern, therefore, it is important to rule out the possibility of other tumors. The best curative treatment lies in a complete surgical resection, and long-term follow-up of the whole neuraxis must be performed.
The authors would like to thank Dr Wanchun Li (Department of Pathology, Nanjing Jinling Hospital) for gathering clinical information from medical records and Dr Ozgur Sahin (Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center) for linguistic assistance.
|
Bagley CA, Kothbauer KF, Wilson S, Bookland MJ, Epstein FJ and Jallo GI: Resection of myxopapillary ependymomas in children. J Neurosurg. 106(4 Suppl): 261–267. 2007.PubMed/NCBI | |
|
Nakamura M, Ishii K, Watanabe K, et al: Long-term surgical outcomes for myxopapillary ependymomas of the cauda equina. Spine. (Phila Pa 1976). 34:E756–E760. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kulesza P, Tihan T and Ali SZ: Myxopapillary ependymoma: cytomorphologic characteristics and differential diagnosis. Diagn Cytopathol. 26:247–250. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zacharoulis S, Ji L, Pollack IF, et al: Metastatic ependymoma: a multi-institutional retrospective analysis of prognostic factors. Pediatr Blood Cancer. 50:231–235. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Verma A, Zhou H, Chin S, Bruggers C, Kestle J and Khatua S: EGFR as a predictor of relapse in myxopapillary ependymoma. Pediatr Blood Cancer. 59:746–748. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tseng YC, Hsu HL, Jung SM and Chen CJ: Primary intracranial myxopapillary ependymomas: report of two cases and review of the literature. Acta Radiol. 45:344–347. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Lee KJ, Min BW, Seo HJ and Cho CH: Subcutaneous sacrococcygeal myxopapillary ependymoma in asian female: a case report. J Clin Med Res. 4:61–63. 2012.PubMed/NCBI | |
|
Sato H, Ohmura K, Mizushima M, Ito J and Kuyama H: Myxopapillary ependymoma of the lateral ventricle. A study on the mechanism of its stromal myxoid change. Acta Pathol Jpn. 33:1017–1025. 1983.PubMed/NCBI | |
|
Lim SC and Jang SJ: Myxopapillary ependymoma of the fourth ventricle. Clin Neurol Neurosurg. 108:211–214. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Rawlinson DG, Herman MM and Rubinstein LJ: The fine structure of a myxopapillary ependymoma of the filum terminale. Acta Neuropathol. 25:1–13. 1973. View Article : Google Scholar : PubMed/NCBI | |
|
Miller C: The ultrastructure of the conus medullaris and filum terminale. J Comp Neurol. 132:547–566. 1968. View Article : Google Scholar : PubMed/NCBI | |
|
Matyja E, Naganska E, Zabek M and Koziara H: Myxopapillary ependymoma of the lateral ventricle with local recurrences: histopathological and ultrastructural analysis of a case. Folia Neuropathol. 41:51–57. 2003. | |
|
Estrozi B, Queiroga E, Bacchi CE, et al: Myxopapillary ependymoma of the posterior mediastinum. Ann Diagn Pathol. 10:283–287. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Stern JB and Helwig EB: Ultrastructure of subcutaneous sacrococcygeal myxopapillary ependymoma. Arch Pathol Lab Med. 105:524–526. 1981.PubMed/NCBI | |
|
Kindblom LG, Lodding P, Hagmar B and Stenman G: Metastasizing myxopapillary ependymoma of the sacrococcygeal region. A clinico-pathologic, light- and electronmicroscopic, immunohistochemical, tissue culture, and cytogenetic analysis of a case. Acta Pathol Microbiol Immunol Scand A. 94:79–90. 1986. |