|
1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
|
2
|
Schoof CR, Botelho EL, Izzotti A and dos
Vasques LR: MicroRNAs in cancer treatment and prognosis. Am J
Cancer Res. 2:414–433. 2012.PubMed/NCBI
|
|
3
|
Yu BQ, Su LP, Li JF, Cai Q, Yan M, Chen
XH, et al: microRNA expression signature of gastric cancer cells
relative to normal gastric mucosa. Mol Med Rep. 6:821–826.
2012.PubMed/NCBI
|
|
4
|
Ueda T, Volinia S, Okumura H, Shimizu M,
Taccioli C, Rossi S, et al: Relation between microRNA expression
and progression and prognosis of gastric cancer: a microRNA
expression analysis. Lancet Oncol. 11:136–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Tsujiura M, Ichikawa D, Komatsu S,
Shiozaki A, Takeshita H, Kosuga T, et al: Circulating microRNAs in
plasma of patients with gastric cancers. Br J Cancer.
102:1174–1179. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lee RC, Feinbaum RL and Ambros V: The
C. elegans heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. Cell. 75:843–854. 1993.
|
|
7
|
Wightman B, Ha I and Ruvkun G:
Posttranscriptional regulation of the heterochronic gene lin-14 by
lin-4 mediates temporal pattern formation in C. elegans.
Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Reinhart BJ, Slack FJ, Basson M,
Pasquinelli AE, Bettinger JC, Rougvie AE, et al: The 21-nucleotide
let-7 RNA regulates developmental timing in Caenorhabditis
elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hutvagner G, McLachlan J, Pasquinelli AE,
et al: A cellular function for the RNA-interference enzyme Dicer in
the maturation of the let-7 small temporal RNA. Science.
293:834–838. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee
JK, et al: Molecular basis for the recognition of primary microRNAs
by the Drosha-DGCR8 complex. Cell. 125:887–901. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Klase Z, Houzet L and Jeang KT:
Replication competent HIV-1 viruses that express intragenomic
microRNA reveal discrete RNA-interference mechanisms that affect
viral replication. Cell Biosci. 1:382011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bernstein E, Caudy AA, Hammond SM and
Hannon GJ: Role for a bidentate ribonuclease in the initiation step
of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Han J, Lee Y, Yeom KH, Kim YK, Jin H and
Kim VN: The Drosha-DGCR8 complex in primary microRNA processing.
Genes Dev. 18:3016–3027. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek
SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II.
EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cai X, Hagedorn CH and Cullen BR: Human
microRNAs are processed from capped, polyadenylated transcripts
that can also function as mRNAs. RNA. 10:1957–1966. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kim YK and Kim VN: Processing of intronic
microRNAs. EMBO J. 26:775–783. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kim VN: MicroRNA biogenesis: coordinated
cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kusenda B, Mraz M, Mayer J and Pospisilova
S: MicroRNA biogenesis, functionality and cancer relevance. Biomed
Pap Med Fac Univ Palacky Olomouc Czech Repub. 150:205–215. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Place RF, Li LC, Pookot D, Noonan EJ and
Dahiya R: MicroRNA-373 induces expression of genes with
complementary promoter sequences. Proc Natl Acad Sci USA.
105:1608–1613. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Vasudevan S, Tong Y and Steitz JA:
Switching from repression to activation: microRNAs can up-regulate
translation. Science. 318:1931–1934. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mattaj IW, Tollervey D and Séraphin B:
Small nuclear RNAs in messenger RNA and ribosomal RNA processing.
FASEB J. 7:47–53. 1993.PubMed/NCBI
|
|
22
|
Bachellerie JP, Cavaillé J and Hüttenhofer
A: The expanding snoRNA world. Biochimie. 84:775–790. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ambros V, Lee RC, Lavanway A, Williams PT
and Jewell D: MicroRNAs and other tiny endogenous RNAs in C.
elegans. Curr Biol. 13:807–818. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Du T and Zamore PD: microPrimer: the
biogenesis and function of microRNA. Development. 132:4645–4652.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lim LP, Glasner ME, Yekta S, Burge CB and
Bartel DP: Vertebrate microRNA genes. Science. 299:15402003.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chan JA, Krichevsky AM and Kosik KS:
MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.
Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cheng AM, Byrom MW, Shelton J and Ford LP:
Antisense inhibition of human miRNAs and indications for an
involvement of miRNA in cell growth and apoptosis. Nucleic Acids
Res. 33:1290–1297. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Santarpia L, Nicoloso M and Calin GA:
MicroRNAs: a complex regulatory network drives the acquisition of
malignant cell phenotype. Endocr Relat Cancer. 17:F51–F75. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mattie MD, Benz CC, Bowers J, et al:
Optimized high-throughput microRNA expression profiling provides
novel biomarker assessment of clinical prostate and breast cancer
biopsies. Mol Cancer. 5:242006. View Article : Google Scholar
|
|
30
|
Volinia S, Calin GA, Liu CG, Ambs S,
Cimmino A, Petrocca F, et al: A microRNA expression signature of
human solid tumors defines cancer gene targets. Proc Natl Acad Sci
USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Grady WM, Parkin RK, Mitchell PS, Lee JH,
Kim YH, Tsuchiya KD, et al: Epigenetic silencing of the intronic
microRNA hsa-miR-342 and its host gene EVL in colorectal cancer.
Oncogene. 27:3880–3888. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lanza G, Ferracin M, Gafà R, Veronese A,
Spizzo R, Pichiorri F, et al: mRNA/microRNA gene expression profile
in microsatellite unstable colorectal cancer. Mol Cancer. 6:542007.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gaur A, Jewell DA, Liang Y, Ridzon D,
Moore JH, Chen C, et al: Characterization of microRNA expression
levels and their biological correlates in human cancer cell lines.
Cancer Res. 67:2456–2468. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Saito Y, Suzuki H and Hibi T: The role of
microRNAs in gastrointestinal cancers. J Gastroenterol. 44(Suppl
19): 18–22. 2009. View Article : Google Scholar
|
|
35
|
Ma L, Young J, Prabhala H, Pan E, Mestdagh
P, Muth D, et al: miR-9, a MYC/MYCN-activated microRNA, regulates
E-cadherin and cancer metastasis. Nat Cell Biol. 12:247–256.
2010.PubMed/NCBI
|
|
36
|
Noonan EJ, Place RF, Basak S, Pookot D and
Li LC: miR-449a causes Rb-dependent cell cycle arrest and
senescence in prostate cancer cells. Oncotarget. 1:349–358.
2010.PubMed/NCBI
|
|
37
|
Pulikkan JA, Dengler V, Peramangalam PS,
Peer Zada AA, Müller-Tidow C, Bohlander SK, et al: Cell-cycle
regulator E2F1 and microRNA-223 comprise an autoregulatory negative
feedback loop in acute myeloid leukemia. Blood. 115:1768–1778.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hermeking H: The miR-34 family in cancer
and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vogt M, Munding J, Grüner M, Liffers ST,
Verdoodt B, Hauk J, et al: Frequent concomitant inactivation of
miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic,
mammary, ovarian, urothelial, and renal cell carcinomas and soft
tissue sarcomas. Virchows Arch. 458:313–322. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Allgayer H: Pdcd4, a colon cancer
prognostic that is regulated by a microRNA. Crit Rev Oncol Hematol.
73:185–191. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu Z, Liu M, Stribinskis V, Klinge CM,
Ramos KS, Colburn NH and Li Y: MicroRNA-21 promotes cell
transformation by targeting the programmed cell death 4 gene.
Oncogene. 27:4373–4379. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dews M, Homayouni A, Yu D, Murphy D,
Sevignani C, Wentzel E, et al: Augmentation of tumor angiogenesis
by a Myc-activated microRNA cluster. Nat Genet. 38:1060–1065. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Spizzo R, Nicoloso MS, Lupini L, Lu Y,
Fogarty J, Rossi S, et al: miR-145 participates with TP53 in a
death-promoting regulatory loop and targets estrogen receptor-alpha
in human breast cancer cells. Cell Death Differ. 17:246–254. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hao J, Zhang S, Zhou Y, Hu X and Shao C:
MicroRNA 483–3p suppresses the expression of DPC4/Smad4 in
pancreatic cancer. FEBS Lett. 585:207–213. 2011.
|
|
45
|
Hao J, Zhang S, Zhou Y, Liu C, Hu X and
Shao C: MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer.
Biochem Biophys Res Commun. 406:552–557. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang Y, Takahashi S, Tasaka A, Yoshima T,
Ochi H and Chayama K: Involvement of microRNA-224 in cell
proliferation, migration, invasion and anti-apoptosis in
hepatocellular carcinoma. J Gastroenterol Hepatol. 28:565–575.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hudson RS, Yi M, Esposito D, Glynn SA,
Starks AM, Yang Y, et al: MicroRNA-106b-25 cluster expression is
associated with early disease recurrence and targets caspase-7 and
focal adhesion in human prostate cancer. Oncogene. Sep
17–2012.(Epub ahead of print).
|
|
48
|
Kasinski AL and Slack FJ: miRNA-34
prevents cancer initiation and progression in a therapeutically
resistant K-ras and p53-induced mouse model of lung adenocarcinoma.
Cancer Res. 72:5576–5587. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Panarelli NC and Yantiss RK: MicroRNA
Expression in Selected Carcinomas of the Gastrointestinal Tract.
Patholog Res Int. 2011:1246082011.PubMed/NCBI
|
|
50
|
Tokumaru Y, Yamashita K, Osada M, et al:
Inverse correlation between cyclin A1 hypermethylation and p53
mutation in head and neck cancer identified by reversal of
epigenetic silencing. Cancer Res. 64:5982–5987. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wittmann J and Jäck HM: Serum microRNAs as
powerful cancer biomarkers. Biochim Biophys Acta. 1806:200–207.
2010.PubMed/NCBI
|
|
52
|
Krutovskikh VA and Herceg Z: Oncogenic
microRNAs (OncomiRs) as a new class of cancer biomarkers.
Bioessays. 32:894–904. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Brase JC, Wuttig D, Kuner R and Sültmann
H: Serum microRNAs as non-invasive biomarkers for cancer. Mol
Cancer. 9:3062010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lawrie CH, Gal S, Dunlop HM, Pushkaran B,
Liggins AP, Pulford K, et al: Detection of elevated levels of
tumour-associated microRNAs in serum of patients with diffuse large
B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang J, Chen J, Chang P, LeBlanc A, Li D,
Abbruzzesse JL, et al: MicroRNAs in plasma of pancreatic ductal
adenocarcinoma patients as novel blood-based biomarkers of disease.
Cancer Prev Res (Phila). 2:807–813. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR,
Wyman SK, Pogosova-Agadjanyan EL, et al: Circulating microRNAs as
stable blood-based markers for cancer detection. Proc Natl Acad Sci
USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ng EK, Chong WW, Jin H, Lam EK, Shin VY,
Yu J, et al: Differential expression of microRNAs in plasma of
patients with colorectal cancer: a potential marker for colorectal
cancer screening. Gut. 58:1375–1381. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cheng H, Zhang L, Cogdell DE, Zheng H,
Schetter AJ, Nykter M, et al: Circulating plasma MiR-141 is a novel
biomarker for metastatic colon cancer and predicts poor prognosis.
PLoS One. 6:e177452011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Huang Z, Huang D, Ni S, Peng Z, Sheng W
and Du X: Plasma microRNAs are promising novel biomarkers for early
detection of colorectal cancer. Int J Cancer. 127:118–126. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang LG and Gu J: Serum microRNA-29a is a
promising novel marker for early detection of colorectal liver
metastasis. Cancer Epidemiol. 36:e61–e67. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Luo X, Burwinkel B, Tao S and Brenner H:
MicroRNA signatures: novel biomarker for colorectal cancer? Cancer
Epidemiol Biomarkers Prev. 20:1272–1286. 2011. View Article : Google Scholar
|
|
62
|
Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye
S, et al: Circulating miR-221 directly amplified from plasma is a
potential diagnostic and prognostic marker of colorectal cancer and
is correlated with p53 expression. J Gastroenterol Hepatol.
25:1674–1680. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hennessey PT, Sanford T, Choudhary A,
Mydlarz WW, Brown D, Adai AT, et al: Serum microRNA biomarkers for
detection of non-small cell lung cancer. PLoS One. 7:e323072012.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yuxia M, Zhennan T and Wei Z: Circulating
miR-125b is a novel biomarker for screening non-small-cell lung
cancer and predicts poor prognosis. J Cancer Res Clin Oncol.
138:2045–2050. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kosaka N, Iguchi H and Ochiya T:
Circulating microRNA in body fluid: a new potential biomarker for
cancer diagnosis and prognosis. Cancer Sci. 101:2087–2092. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bou Kheir T, Futoma-Kazmierczak E,
Jacobsen A, Krogh A, Bardram L, Hother C, et al: miR-449 inhibits
cell proliferation and is down-regulated in gastric cancer. Mol
Cancer. 10:292011.PubMed/NCBI
|
|
67
|
Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu
W, et al: miR-21 plays a pivotal role in gastric cancer
pathogenesis and progression. Lab Invest. 88:1358–1366. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY and
Yan M: microRNA-21 promotes tumor proliferation and invasion in
gastric cancer by targeting PTEN. Oncol Rep. 27:1019–1026.
2012.PubMed/NCBI
|
|
69
|
Luo H, Zhang H, Zhang Z, Zhang X, Ning B,
Guo J, et al: Down-regulated miR-9 and miR-433 in human gastric
carcinoma. J Exp Clin Cancer Res. 28:822009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kim YK, Yu J, Han TS, Park SY, Namkoong B,
Kim DH, et al: Functional links between clustered microRNAs:
suppression of cell-cycle inhibitors by microRNA clusters in
gastric cancer. Nucleic Acids Res. 37:1672–1681. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tsukamoto Y, Nakada C, Noguchi T, Tanigawa
M, Nguyen LT, Uchida T, et al: MicroRNA-375 is downregulated in
gastric carcinomas and regulates cell survival by targeting PDK1
and 14-3-3zeta. Cancer Res. 70:2339–2349. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y,
et al: MiR-375 frequently downregulated in gastric cancer inhibits
cell proliferation by targeting JAK2. Cell Res. 20:784–793. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xu Y, Deng Y, Yan X and Zhou T: Targeting
miR-375 in gastric cancer. Expert Opin Ther Targets. 15:961–972.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wan HY, Guo LM, Liu T, Liu M, Li X and
Tang H: Regulation of the transcription factor NF-kappaB1 by
microRNA-9 in human gastric adenocarcinoma. Mol Cancer. 9:162010.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Du Y, Xu Y, Ding L, Yao H, Yu H, Zhou T
and Si J: Down-regulation of miR-141 in gastric cancer and its
involvement in cell growth. J Gastroenterol. 44:556–561. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang Y, Fan KJ, Sun Q, Chen AZ, Shen WL,
Zhao ZH, et al: Functional screening for miRNAs targeting Smad4
identified miR-199a as a negative regulator of TGF-β signalling
pathway. Nucleic Acids Res. 40:9286–9297. 2012.PubMed/NCBI
|
|
77
|
Zhang X, Nie Y, Du Y, Cao J, Shen B and Li
Y: MicroRNA-181a promotes gastric cancer by negatively regulating
tumor suppressor KLF6. Tumour Biol. 33:1589–1597. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chen L, Yang Q, Kong WQ, Liu T, Liu M, Li
X and Tang H: MicroRNA-181b targets cAMP responsive element binding
protein 1 in gastric adenocarcinomas. IUBMB Life. 64:628–635. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xia J, Wu Z, Yu C, He W, Zheng H, He Y, et
al: miR-124 inhibits cell proliferation in gastric cancer through
down-regulation of SPHK1. J Pathol. 227:470–480. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li C, Nie H, Wang M, Su L, Li J, Yu B, et
al: MicroRNA-409-3p regulates cell proliferation and apoptosis by
targeting PHF10 in gastric cancer. Cancer Lett. 320:189–197. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X
and Tang H: MicroRNA-182 targets cAMP-responsive element-binding
protein 1 and suppresses cell growth in human gastric
adenocarcinoma. FEBS J. 279:1252–1260. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li J, Guo Y, Liang X, Sun M, Wang G, De W
and Wu W: MicroRNA-223 functions as an oncogene in human gastric
cancer by targeting FBXW7/hCdc4. J Cancer Res Clin Oncol.
138:763–774. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zheng B, Liang L, Huang S, Zha R, Liu L,
Jia D, et al: MicroRNA-409 suppresses tumour cell invasion and
metastasis by directly targeting radixin in gastric cancers.
Oncogene. 31:4509–4516. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang Z, Liu S, Shi R and Zhao G: miR-27
promotes human gastric cancer cell metastasis by inducing
epithelial-to-mesenchymal transition. Cancer Genet. 204:486–491.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang M, Li C, Nie H, Lv X, Qu Y, Yu B, et
al: Down-regulated miR-625 suppresses invasion and metastasis of
gastric cancer by targeting ILK. FEBS Lett. 586:2382–2388. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li Z, Cao Y, Jie Z, Liu Y, Li Y, Li J, et
al: miR-495 and miR-551a inhibit the migration and invasion of
human gastric cancer cells by directly interacting with PRL-3.
Cancer Lett. 323:41–47. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu Z, Zhu J, Cao H, Ren H and Fang X:
miR-10b promotes cell invasion through RhoC-AKT signaling pathway
by targeting HOXD10 in gastric cancer. Int J Oncol. 40:1553–1560.
2012.PubMed/NCBI
|
|
88
|
Liao YL, Hu LY, Tsai KW, Wu CW, Chan WC,
Li SC, et al: Transcriptional regulation of miR-196b by ETS2 in
gastric cancer cells. Carcinogenesis. 33:760–769. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gao P, Xing AY, Zhou GY, Zhang TG, Zhang
JP, Gao C, et al: The molecular mechanism of microRNA-145 to
suppress invasion-metastasis cascade in gastric cancer. Oncogene.
32:491–501. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang J, Zhang J, Wu J, Luo D, Su K, Shi W,
et al: MicroRNA-610 inhibits the migration and invasion of gastric
cancer cells by suppressing the expression of
vasodilator-stimulated phosphoprotein. Eur J Cancer. 48:1904–1913.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Leja M, Wex T and Malfertheiner P: Markers
for gastric cancer premalignant lesions: where do we go? Dig Dis.
30:268–276. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chan SH, Wu CW, Li AF, Chi CW and Lin WC:
miR-21 microRNA expression in human gastric carcinomas and its
clinical association. Anticancer Res. 28:907–911. 2008.PubMed/NCBI
|
|
94
|
Xu Y, Sun J, Xu J, Li Q, Guo Y and Zhang
Q: miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis
in Patients with Gastric Cancer. Gastroenterol Res Pract.
2012:6401682012.PubMed/NCBI
|
|
95
|
Xiao B, Guo J, Miao Y, Jiang Z, Huan R,
Zhang Y, et al: Detection of miR-106a in gastric carcinoma and its
clinical significance. Clin Chim Acta. 400:97–102. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chiang Y, Song Y, Wang Z, Chen Y, Yue Z,
Xu H, et al: Aberrant expression of miR-203 and its clinical
significance in gastric and colorectal cancers. J Gastrointest
Surg. 15:63–70. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Takagi T, Iio A, Nakagawa Y, Naoe T,
Tanigawa N and Akao Y: Decreased expression of microRNA-143 and
-145 in human gastric cancers. Oncology. 77:12–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J,
et al: Aberrant expression of microRNAs in gastric cancer and
biological significance of miR-574-3p. Int Immunopharmacol.
13:468–475. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Guo JX, Tao QS, Lou PR, Chen XC, Chen J
and Yuan GB: miR-181b as a potential molecular target for
anticancer therapy of gastric neoplasms. Asian Pac J Cancer Prev.
13:2263–2267. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhao X, Dou W, He L, Liang S, Tie J, Liu
C, et al: MicroRNA-7 functions as an anti-metastatic microRNA in
gastric cancer by targeting insulin-like growth factor-1 receptor.
Oncogene. 32:1363–1372. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jiang W, Chen X, Liao M, et al:
Identification of links between small molecules and miRNAs in human
cancers based on transcriptional responses. Sci Rep. 2:2822012.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liu T, Tang H, Lang Y, Liu M and Li X:
MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by
targeting prohibitin. Cancer Lett. 273:233–242. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jiang Z, Guo J, Xiao B, Miao Y, Huang R,
Li D and Zhang Y: Increased expression of miR-421 in human gastric
carcinoma and its clinical association. J Gastroenterol. 45:17–23.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Link A, Kupcinskas J, Wex T, et al:
Macro-role of microRNA in gastric cancer. Dig Dis. 30:255–267.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Tarasov V, Jung P, Verdoodt B, Lodygin D,
Epanchintsev A, Menssen A, et al: Differential regulation of
microRNAs by p53 revealed by massively parallel sequencing: miR-34a
is a p53 target that induces apoptosis and G1-arrest. Cell Cycle.
6:1586–1593. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ji Q, Hao X, Meng Y, Zhang M, Desano J,
Fan D and Xu L: Restoration of tumor suppressor miR-34 inhibits
human p53-mutant gastric cancer tumorspheres. BMC Cancer.
8:2662008. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun
S, et al: miR-15b and miR-16 modulate multidrug resistance by
targeting BCL2 in human gastric cancer cells. Int J Cancer.
123:372–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shen J, Wan R, Hu G, et al: miR-15b and
miR-16 induce the apoptosis of rat activated pancreatic stellate
cells by targeting Bcl-2 in vitro. Pancreatology. 12:91–99. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang J, Wang Q, Liu H, Hu B, Zhou W and
Cheng Y: MicroRNA expression and its implication for the diagnosis
and therapeutic strategies of gastric cancer. Cancer Lett.
297:137–143. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lastraioli E, Romoli MR and Arcangeli A:
Immunohistochemical biomarkers in gastric cancer research and
management. Int J Surg Oncol. 2012:8686452012.PubMed/NCBI
|
|
111
|
Grady WM and Tewari M: The next thing in
prognostic molecular markers: microRNA signatures of cancer. Gut.
59:706–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chen L, Jiang M, Yuan W and Tang H:
Prognostic value of miR-93 overexpression in resectable gastric
adenocarcinomas. Acta Gastroenterol Belg. 75:22–27. 2012.PubMed/NCBI
|
|
113
|
Inoue T, Iinuma H, Ogawa E, Inaba T and
Fukushima R: Clinicopathological and prognostic significance of
microRNA-107 and its relationship to DICER1 mRNA expression in
gastric cancer. Oncol Rep. 27:1759–1764. 2012.PubMed/NCBI
|
|
114
|
Tsai KW, Liao YL, Wu CW, Hu LY, Li SC,
Chan WC, et al: Aberrant expression of miR-196a in gastric cancers
and correlation with recurrence. Genes Chromosomes Cancer.
51:394–401. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hashiguchi Y, Nishida N, Mimori K, Sudo T,
Tanaka F, Shibata K, et al: Down-regulation of miR-125a-3p in human
gastric cancer and its clinicopathological significance. Int J
Oncol. 40:1477–1482. 2012.PubMed/NCBI
|
|
116
|
Konishi H, Ichikawa D, Komatsu S, Shiozaki
A, Tsujiura M, Takeshita H, et al: Detection of gastric
cancer-associated microRNAs on microRNA microarray comparing pre-
and post-operative plasma. Br J Cancer. 106:740–747. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang M, Gu H, Wang S, Qian H, Zhu W, Zhang
L, et al: Circulating miR-17-5p and miR-20a: molecular markers for
gastric cancer. Mol Med Report. 5:1514–1520. 2012.PubMed/NCBI
|
|
118
|
Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li
JY, et al: Identification of serum microRNAs as novel non-invasive
biomarkers for early detection of gastric cancer. PLoS One.
7:e336082012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang
W, et al: Genome-wide microRNA profiles identify miR-378 as a serum
biomarker for early detection of gastric cancer. Cancer Lett.
316:196–203. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Chim SS, Shing TK, Hung EC, Leung TY, Lau
TK, Chiu RW and Lo YM: Detection and characterization of placental
microRNAs in maternal plasma. Clin Chem. 54:482–490. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ohshima K, Inoue K, Fujiwara A, Hatakeyama
K, Kanto K, Watanabe Y, et al: Let-7 microRNA family is selectively
secreted into the extracellular environment via exosomes in a
metastatic gastric cancer cell line. PLoS One. 5:e132472010.
View Article : Google Scholar : PubMed/NCBI
|