|
1
|
Chou AJ and Gorlick R: Chemotherapy
resistance in osteosarcoma: current challenges and future
directions. Expert Rev Anticancer There. 6:1075–1085. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Longhi A, Errani C, De Paolis M, Mercuri M
and Bacci G: Primary bone osteosarcoma in the pediatric age: state
of the art. Cancer Treat Rev. 32:423–436. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chou AJ, Geller DS and Gorlick R: Therapy
for osteosarcoma: where do we go from here? Paediatr Drugs.
10:315–327. 2008. View Article : Google Scholar
|
|
4
|
Eilber FR and Rosen G: Adjuvant
chemotherapy for osteosarcoma. Semin Oncol. 16:312–322.
1989.PubMed/NCBI
|
|
5
|
Sakamoto A and Iwamoto Y: Current status
and perspectives regarding the treatment of osteo-sarcoma:
chemotherapy. Rev Recent Clin Trials. 3:228–231. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bertino JR: Karnofsky memorial lecture.
Ode to methotrexate. J Clin Oncol. 11:5–14. 1993.PubMed/NCBI
|
|
7
|
Hattinger CM, Reverter-Branchat G,
Remondini D, et al: Genomic imbalances associated with methotrexate
resistance in human osteosarcoma cell lines detected by comparative
genomic hybridization-based techniques. Eur J Cell Biol.
82:483–493. 2003. View Article : Google Scholar
|
|
8
|
Guo W, Healey JH, Meyers PA, Ladanyi M,
Huvos AG, Bertino JR and Gorlick R: Mechanisms of methotrexate
resistance in osteosarcoma. Clin Cancer Res. 5:621–627. 1999.
|
|
9
|
Patiño-García A, Zalacaín M, Marrodán L,
San-Julián M and Sierrasesúmaga L: Methotrexate in pediatric
osteosarcoma: response and toxicity in relation to genetic
polymorphisms and dihydrofolate reductase and reduced folate
carrier 1 expression. J Pediatr. 154:688–693. 2009.
|
|
10
|
Ifergan I, Meller I, Issakov J and Assaraf
YG: Reduced folate carrier protein expression in osteosarcoma:
implications for the prediction of tumor chemosensitivity. Cancer.
98:1958–1966. 2003. View Article : Google Scholar
|
|
11
|
Flintoff WF, Sadlish H, Gorlick R, Yang R
and Williams FM: Functional analysis of altered reduced folate
carrier sequence changes identified in osteosarcomas. Biochim
Biophys Acta. 1690:110–117. 2004. View Article : Google Scholar
|
|
12
|
Serra M, Reverter-Branchat G, Maurici D,
et al: Analysis of dihydrofolate reductase and reduced folate
carrier gene status in relation to methotrexate resistance in
osteosarcoma cells. Ann Oncol. 15:151–160. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yang R, Sowers R, Mazza BA, et al:
Sequence alterations in the reduced folate carrier are observed in
osteosarcoma tumor samples. Clin Cancer Res. 9:837–844. 2003.
|
|
14
|
Trippett T, Meyers P, Gorlick R, et al:
High dose trimetrexate with leucovorin protection in recurrent
childhood malignancies: a phase II trial. J Clin Oncol (ASCO Annual
Meeting Abstracts). 9:8891999.
|
|
15
|
Weinstein RS, Kuszak JR, Kluskens LF and
Coon JS: P-glycoproteins in pathology: the multidrug resistance
gene family in humans. Hum Pathol. 21:34–48. 1990. View Article : Google Scholar
|
|
16
|
Safa AR, Stern RK, Choi K, et al:
Molecular basis of preferential resistance to colchicine in
multidrug-resistant human cells conferred by Gly-185→Val-185
substitution in P-glycoprotein. Proc Natl Acad Sci USA.
87:7225–7229. 1990.PubMed/NCBI
|
|
17
|
Bramwell VH: osteosarcomas and other
cancers of bone. Curr Opin Oncol. 12:330–336. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Park YB, Kim HS, Oh JH and Lee SH: The
co-expression of p53 protein and P-glycoprotein is correlated to a
poor prognosis in osteosarcoma. Int Orthop. 24:307–310. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gomes CM, van Paassen H, Romeo S, et al:
Multidrug resistance mediated by ABC transporters in osteosarcoma
cell lines: mRNA analysis and functional radiotracer studies. Nucl
Med Biol. 33:831–840. 2006. View Article : Google Scholar
|
|
20
|
Serra M, Pasello M, Manara MC, et al: May
P-glycoprotein status be used to stratify high-grade osteosarcoma
patients? Results from the Italian/Scandinavian Sarcoma Group 1
treatment protocol. Int J Oncol. 29:1459–1468. 2006.
|
|
21
|
Baldini N, Scotlandi K, Serra M, Picci P,
Bacci G, Sottili S and Campanacci M: P-glycoprotein expression in
osteosarcoma: a basis for risk-adapted adjuvant chemotherapy. J
Orthop Res. 17:629–632. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kusuzaki K, Hirata M, Takeshita H, Murata
H, Hashiguchi S, Ashihara T and Hirasawa Y: Relationship between
P-glycoprotein positivity, doxorubicin binding ability and
histologic response to chemotherapy in osteosarcomas. Cancer Lett.
138:203–208. 1999. View Article : Google Scholar
|
|
23
|
Trammell RA, Johnson CB, Barker JR, Bell
RS and Allan DG: Multidrug resistance-1 gene expression does not
increase during tumor progression in the MGH-OGS murine
osteosarcoma tumor model. J Orthop Res. 18:449–455. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wunder JS, Bull SB, Aneliunas V, et al:
MDR1 gene expression and outcome in osteosarcoma: a prospective,
multicenter study. J Clin Oncol. 18:2685–2694. 2000.PubMed/NCBI
|
|
25
|
Pakos EE and Ioannidis JP: The association
of P-glycoprotein with response to chemotherapy and clinical
outcome in patients with osteosarcoma. A meta-analysis. Cancer.
98:581–589. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sorensen FB, Jensen K, Vaeth M, et al:
Immunohistochemical estimates of angiogenesis, proliferative
activity, p53 expression, and multiple drug resistance have no
prognostic impact in osteosarcoma: A comparative
clinicopathological investigation. Sarcoma. 2008:8740752008.
View Article : Google Scholar
|
|
27
|
Takeshita H, Kusuzaki K, Murata H, et al:
Osteoblastic differentiation and P-glycoprotein multidrug
resistance in a murine osteosarcoma model. Br J Cancer.
82:1327–1331. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Susa M, Iyer AK, Ryu K, Choy E, Hornicek
FJ, Mankin H, Milane L, Amiji MM and Duan Z: Inhibition of ABCB1
(MDR1) expression by an siRNA nanoparticulate delivery system to
overcome drug resistance in osteosarcoma. PLoS One. 5:e107642010.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Susa M, Iyer AK, Ryu K, Hornicek FJ,
Mankin H, Amiji MM and Duan Z: Doxorubicin loaded polymeric
nanoparticulate delivery system to overcome drug resistance in
osteosarcoma. BMC Cancer. 9:3992009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kobayashi E, Iyer AK, Hornicek FJ, Amiji
MM and Duan Z: Lipid-functionalized dextran nanosystems to overcome
multidrug resistance in cancer: a pilot study. Clin Orthop Relat
Res. 471:915–925. 2013. View Article : Google Scholar
|
|
31
|
Townsend DM and Tew KD: The role of
glutathione-S-transferase in anti-cancer drug resistance. Oncogene.
22:7369–7375. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tew KD: Glutathione-associated enzymes in
anticancer drug resistance. Cancer Res. 54:4313–4320.
1994.PubMed/NCBI
|
|
33
|
Shoieb A and Hahn K: Detection and
significance of glutathione-S-transferase pi in osteogenic tumors
of dogs. Int J Oncol. 10:635–639. 1997.
|
|
34
|
Uozaki H, Horiuchi H, Ishida T, Iijima T,
Imamura T and Machinami R: Overexpression of resistance-related
proteins (metallothioneins, glutathione-S-transferase pi, heat
shock protein 27, and lung resistance-related protein) in
osteosarcoma. Relationship with poor prognosis. Cancer.
79:2336–2344. 1997. View Article : Google Scholar
|
|
35
|
Wei L, Song XR, Wang XW, Li M and Zuo WS:
Expression of MDR1 and GST-pi in osteosarcoma and soft tissue
sarcoma and their correlation with chemotherapy resistance.
Zhonghua Zhong Liu Za Zhi. 28:445–448. 2006.(In Chinese).
|
|
36
|
Bruheim S, Bruland OS, Breistol K,
Maelandsmo GM and Fodstad O: Human osteosarcoma xenografts and
their sensitivity to chemotherapy. Pathol Oncol Res. 10:133–141.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Huang G, Mills L and Worth LL: Expression
of human glutathione S-transferase P1 mediates the chemosensitivity
of osteosarcoma cells. Mol Cancer Ther. 6:1610–1619. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Windsor RE, Strauss SJ, Kallis C, Wood NE
and Whelan JS: Germline genetic polymorphisms may influence
chemotherapy response and disease outcome in osteosarcoma: a pilot
study. Cancer. 118:1856–1867. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang SL, Mao NF, Sun JY, Shi ZC, Wang B
and Sun YJ: Predictive potential of glutathione S-transferase
polymorphisms for prognosis of osteosarcoma patients on
chemotherapy. Asian Pac J Cancer Prev. 13:2705–2709. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang LM, Li XH and Bao CF: Glutathione
S-transferase P1 and DNA polymorphisms influence response to
chemotherapy and prognosis of bone tumors. Asian Pac J Cancer Prev.
13:5883–5886. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pasello M, Michelacci F, Scionti I,
Hattinger CM, Zuntini M, Caccuri AM, Scotlandi K, Picci P and Serra
M: Overcoming glutathione S-transferase P1-related cisplatin
resistance in osteosarcoma. Cancer Res. 68:6661–6668. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pasello M, Manara MC, Michelacci F, et al:
Targeting glutathione-S transferase enzymes in musculoskeletal
sarcomas: a promising therapeutic strategy. Anal Cell Pathol
(Amst). 34:131–145. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sau A, Filomeni G, Pezzola S, et al:
Targeting GSTP1-1 induces JNK activation and leads to apoptosis in
cisplatin-sensitive and -resistant human osteosarcoma cell lines.
Mol Biosyst. 8:994–1006. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sak SC, Harnden P, Johnston CF, Paul AB
and Kiltie AE: APE1 and XRCC1 protein expression levels predict
cancer-specific survival following radical radiotherapy in bladder
cancer. Clin Cancer Res. 11:6205–6211. 2005. View Article : Google Scholar
|
|
45
|
Evans AR, Limp-Foster M and Kelley MR:
Going APE over ref-1. Mutat Res. 461:83–108. 2000. View Article : Google Scholar
|
|
46
|
Silber JR, Bobola MS, Blank A, Schoeler
KD, Haroldson PD, Huynh MB and Kolstoe DD: The
apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1
contributes to human glioma cell resistance to alkylating agents
and is elevated by oxidative stress. Clin Cancer Res. 8:3008–3018.
2002.
|
|
47
|
Yang S, Irani K, Heffron SE, Jurnak F and
Meyskens FL Jr: Alterations in the expression of the
apurinic/apyrimidinic endonuclease-1/redox factor-1 (Ape/Ref-1) in
human melanoma and identification of the therapeutic potential of
resveratrol as an Ape1/Ref-1 inhibitor. Mol Cancer Ther.
4:1923–1935. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang D, Luo M and Kelley MR: Human
apurinic endonuclease 1 (APE1) expression and prognostic
significance in osteosarcoma: enhanced sensitivity of osteosarcoma
to DNA damaging agents using silencing RNA APE1 expression
inhibition. Mol Cancer Ther. 3:679–686. 2004.
|
|
49
|
Wang D, Zhong ZY, Li MX, Xiang DB and Li
ZP: Vector-based Ape1 small interfering RNA enhances the
sensitivity of human osteosarcoma cells to endostatin in
vivo. Cancer Sci. 98:1993–2001. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang JL, Yang D, Cogdell D, et al: APEX1
gene amplification and its protein overexpression in osteosarcoma:
correlation with recurrence, metastasis, and survival. Technol
Cancer Res Treat. 9:161–169. 2010. View Article : Google Scholar
|
|
51
|
Luo M and Kelley MR: Inhibition of the
human apurinic/apyrimidinic endonuclease (APE1) repair activity and
sensitization of breast cancer cells to DNA alkylating agents with
lucanthone. Anticancer Res. 24:2127–2134. 2004.PubMed/NCBI
|
|
52
|
Madhusudan S, Smart F, Shrimpton P, et al:
Isolation of a small molecule inhibitor of base excision repair.
Nucleic Acids Res. 33:4711–4724. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Seiple LA, Cardellina JH II, Akee R and
Stivers JT: Potent inhibition of human apurinic/apyrimidinic
endonuclease 1 by arylstibonic acids. Mol Pharmacol. 73:669–677.
2008. View Article : Google Scholar
|
|
54
|
Fishel ML and Kelley MR: The DNA base
excision repair protein Ape1/Ref-1 as a therapeutic and
chemopreventive target. Mol Aspects Med. 28:375–395. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nathrath M, Kremer M, Letzel H, Remberger
K, Höfler H and Ulle T: Expression of genes of potential importance
in the response to chemotherapy in osteosarcoma patients. Klin
Padiatr. 214:230–235. 2002.(In German).
|
|
56
|
Li X, Guo W, Shen DH, Yang RL, Liu J and
Zhao H: Expressions of ERCC2 and ERCC4 genes in osteosarcoma and
peripheral blood lymphocytes and their clinical significance.
Beijing Da Xue Xue Bao. 39:467–471. 2007.(In Chinese).
|
|
57
|
Caronia D, Patiño-García A, Milne RL,
Zalacain-Díez M, Pita G, Alonso MR, Moreno LT, et al: Common
variations in ERCC2 are associated with response to cisplatin
chemotherapy and clinical outcome in osteosarcoma patients.
Pharmacogenomics J. 9:347–353. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Biason P, Hattinger CM, Innocenti F,
Talamini R, Alberghini M, Scotlandi K, Zanusso C, Serra M and
Toffoli G: Nucleotide excision repair gene variants and association
with survival in osteosarcoma patients treated with neoadjuvant
chemotherapy. Pharmacogenomics J. 12:476–483. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hao T, Feng W, Zhang J, Sun YJ and Wang G:
Association of four ERCC1 and ERCC2 SNPs with survival of bone
tumour patients. Asian Pac J Cancer Prev. 13:3821–3824. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Meric-Bernstam F and Gonzalez-Angulo AM:
Targeting the mTOR signaling network for cancer therapy. J Clin
Oncol. 27:2278–2287. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gordon IK, Ye F and Kent MS: Evaluation of
the mammalian target of rapamycin pathway and the effect of
rapamycin on target expression and cellular proliferation in
osteosarcoma cells from dogs. Am J Vet Res. 69:1079–1084. 2008.
View Article : Google Scholar
|
|
62
|
Gazitt Y, Kolapathi V, Moncada K, Thomas C
and Freeman J: Targeted therapy of human osteosarcoma with 17AAG or
rapamycin: characterization of induced apoptosis and inhibition of
mTOR and Akt/MAPK/Wnt pathways. Int J Oncol. 34:551–561. 2009.
|
|
63
|
Zhou Q, Deng Z, Zhu Y, Long H, Zhang S and
Zhao J: mTOR/p70S6K signal transduction pathway contributes to
osteosarcoma progression and patients’ prognosis. Med Oncol.
27:1239–1245. 2010.
|
|
64
|
Houghton PJ, Morton CL, Kolb EA, et al:
Initial testing (stage 1) of the mTOR inhibitor rapamycin by the
pediatric preclinical testing program. Pediatr Blood Cancer.
50:799–805. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wan X, Mendoza A, Khanna C and Helman LJ:
Rapamycin inhibits ezrin-mediated metastatic behavior in a murine
model of osteosarcoma. Cancer Res. 65:2406–2411. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mu X, Isaac C, Schott T, Huard J and Weiss
K: Rapamycin inhibits ALDH activity, resistance to oxidative
stress, and metastatic potential in murine osteosarcoma cells.
Sarcoma. 2013:4807132013.
|
|
67
|
LeRoith D and Roberts CT Jr: The
insulin-like growth factor system and cancer. Cancer Lett.
195:127–137. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chitnis MM, Yuen JS, Protheroe AS, Pollak
M and Macaulay VM: The type 1 insulin-like growth factor receptor
pathway. Clin Cancer Res. 14:6364–6370. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chou AJ, Merola PR, Sowers R, et al:
Analysis of aberrant signal transduction pathways in osteosarcoma
cell lines. Proc Amer Assoc Cancer Res. 46:45512005.
|
|
70
|
Scotlandi K, Manara MC, Nicoletti G, et
al: Antitumor activity of the insulin-like growth factor-I receptor
kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res.
65:3868–3876. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tanno B, Mancini C, Vitali R, et al:
Down-regulation of insulin-like growth factor I receptor activity
by NVP-AEW541 has an antitumor effect on neuroblastoma cells in
vitro and in vivo. Clin Cancer Res. 12:6772–6780. 2006. View Article : Google Scholar
|
|
72
|
Hassan SE, Bekarev M, Kim MY, Lin J,
Piperdi S, Gorlick R and Geller DS: Cell surface receptor
expression patterns in osteosarcoma. Cancer. 118:740–749. 2012.
View Article : Google Scholar
|
|
73
|
Luk F, Yu Y, Walsh WR and Yang JL:
IGF1R-targeted therapy and its enhancement of doxorubicin
chemosensitivity in human osteosarcoma cell lines. Cancer Invest.
29:521–532. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang YH, Xiong J, Wang SF, Yu Y, Wang B,
Chen YX, Shi HF and Qiu Y: Lentivirus-mediated shRNA targeting
insulin-like growth factor-1 receptor (IGF-1R) enhances
chemosensitivity of osteosarcoma cells in vitro and in vivo. Mol
Cell Biochem. 341:225–233. 2010. View Article : Google Scholar
|
|
75
|
Rettew AN, Young ED, Lev DC, Kleinerman
ES, Abdul-Karim FW, Getty PJ and Greenfield EM: Multiple receptor
tyrosine kinases promote the in vitro phenotype of metastatic human
osteosarcoma cell lines. Oncogenesis. 1:e342012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang YH, Han XD, Qiu Y, et al: Increased
expression of insulin-like growth factor-1 receptor is correlated
with tumor metastasis and prognosis in patients with osteosarcoma.
J Surg Oncol. 105:235–243. 2012. View Article : Google Scholar
|
|
77
|
Gombos A, Metzger-Filho O, Dal Lago L and
Awada-Hussein A: Clinical development of insulin-like growth factor
receptor-1 (IGF-1R) inhibitors: at the crossroad? Invest New Drugs.
30:2433–2442. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tap WD, Demetri GD, Barnette P, et al: AMG
479 in relapsed or refractory Ewing’s family tumors (EFT) or
desmoplastic small round cell tumors (DSRCT): Phase II results. J
Clin Oncol. 28(15 Suppl): 100012010.
|
|
79
|
Natinoal Institutes of Health. A Study to
Determine the Activity of SCH 717454 in Subjects with Relapsed
Osteosarcoma or Ewing’s Sarcoma (Study P04720AM3). http://clinicaltrials.gov/ct2/show/NCT00617890?term=sch-717454&rank=2.
Accessed April 6, 2011
|
|
80
|
Akatsuka T, Wada T, Kokai Y, et al: ErbB2
expression is correlated with increased survival of patients with
osteosarcoma. Cancer. 94:1397–1404. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhou Q, Zhu Y, Deng Z, Long H, Zhang S and
Chen X: VEGF and EMMPRIN expression correlates with survival of
patients with osteosarcoma. Surg Oncol. 20:13–19. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Maris JM, Courtright J, Houghton PJ, et
al: Initial testing of the VEGFR inhibitor AZD2171 by the pediatric
preclinical testing program. Pediatr Blood Cancer. 50:581–587.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ebb D, Meyers P, Grier H, et al: Phase II
trial of trastuzumab in combination with cytotoxic chemotherapy for
treatment of metastatic osteosarcoma with human epidermal growth
factor receptor 2 overexpression: a report from the children’s
oncology group. J Clin Oncol. 30:2545–2551. 2012.PubMed/NCBI
|
|
84
|
Liebermann DA, Hoffman B and Steinman RA:
Molecular controls of growth arrest and apoptosis: p53-dependent
and independent pathways. Oncogene. 11:199–210. 1995.
|
|
85
|
Asada N, Tsuchiya H and Tomita K: De novo
deletions of p53 gene and wild-type p53 correlate with acquired
cisplatin-resistance in human osteosarcoma OST cell line.
Anticancer Res. 19:5131–5137. 1999.PubMed/NCBI
|
|
86
|
Wong RP, Tsang WP, Chau PY, Co NN, Tsang
TY and Kwok TT: p53-R273H gains new function in induction of drug
resistance through down-regulation of procaspase-3. Mol Cancer
Ther. 6:1054–1061. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Fan J and Bertino JR: Modulation of
cisplatinum cytotoxicity by p53: effect of p53-mediated apoptosis
and DNA repair. Mol Pharmacol. 56:966–972. 1999.PubMed/NCBI
|
|
88
|
Tsuchiya H, Mori Y, Ueda Y, Okada G and
Tomita K: Sensitization and caffeine potentiation of cisplatin
cytotoxicity resulting from introduction of wild-type p53 gene in
human osteosarcoma. Anticancer Res. 20:235–242. 2000.PubMed/NCBI
|
|
89
|
Sato N, Mizumoto K, Maehara N, Kusumoto M,
Nishio S, Urashima T, Ogawa T and Tanaka M: Enhancement of
drug-induced apoptosis by antisense oligodeoxynucleotides targeted
against Mdm2 and p21WAF1/CIP1. Anticancer Res. 20:837–842.
2000.PubMed/NCBI
|
|
90
|
Tang HJ, Qian D, Sondak VK, Stachura S and
Lin J: A modified p53 enhances apoptosis in sarcoma cell lines
mediated by doxorubicin. Br J Cancer. 90:1285–1292. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Goto A, Kanda H, Ishikawa Y, et al:
Association of loss of heterozygosity at the p53 locus with
chemoresistance in osteosarcomas. Jpn J Cancer Res. 89:539–547.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pápai Z, Féja CN, Hanna EN, Sztán M, Oláh
E and Szendrôi M: P53 overexpression as an indicator of overall
survival and response to treatment in osteosarcomas. Pathol Oncol
Res. 3:15–19. 1997.
|
|
93
|
Ozger H, Eralp L, Atalar AC, et al: The
effect of resistance-related proteins on the prognosis and survival
of patients with osteosarcoma: an immunohistochemical analysis.
Acta Orthop Traumatol Turc. 43:28–34. 2009.(In Turkish).
|
|
94
|
Wunder JS, Gokgoz N, Parkes R, et al: TP53
mutations and outcome in osteosarcoma: a prospective, multicenter
study. J Clin Oncol. 23:1483–1490. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chao DT and Korsmeyer SJ: BCL-2 family:
regulators of cell death. Ann Rev Immunol. 16:395–419. 1998.
View Article : Google Scholar
|
|
96
|
Reed JC: Double identity for proteins of
the Bcl-2 family. Nature. 387:773–776. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Korsmeyer SJ: BCL-2 gene family and the
regulation of programmed cell death. Cancer Res. 59(7 Suppl):
1693s–1700s. 1999.PubMed/NCBI
|
|
98
|
Ye D, Li H, Qian S, Sun Y, Zheng J and Ma
Y: bcl-2/bax expression and p53 gene status in human bladder
cancer: relationship to early recurrence with intravesical
chemotherapy after resection. J Urol. 160:2025–2029. 1998.
View Article : Google Scholar
|
|
99
|
Han JY, Chung YJ, Park SW, Kim JS, Rhyu
MG, Kim HK and Lee KS: The relationship between cisplatin-induced
apoptosis and p53, bcl-2 and bax expression in human lung cancer
cells. Korean J Intern Med. 14:42–52. 1999.PubMed/NCBI
|
|
100
|
Luo D, Cheng SC, Xie H and Xie Y:
Chemosensitivity of human hepatocellular carcinoma cell line
QGY-7703 is related to bcl-2 protein levels. Tumour Biol.
20:331–340. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Murata T, Haisa M, Uetsuka H, et al:
Molecular mechanism of chemoresistance to cisplatin in ovarian
cancer cell lines. Int J Mol Med. 13:865–868. 2004.PubMed/NCBI
|
|
102
|
Perego P, Righetti SC, Supino R, et al:
Role of apoptosis and apoptosis-related proteins in the
cisplatin-resistant phenotype of human tumor cell lines. Apoptosis.
2:540–548. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhao Y, Zhang CL, Zeng BF, Wu XS, Gao TT
and Oda Y: Enhanced chemosensitivity of drug-resistant osteosarcoma
cells by lentivirus-mediated Bcl-2 silencing. Biochem Biophys Res
Commun. 390:642–647. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang C, Zhao Y and Zeng B: Enhanced
chemosensitivity by simultaneously inhibiting cell cycle
progression and promoting apoptosis of drug-resistant osteosarcoma
MG63/DXR cells by targeting Cyclin D1 and Bcl-2. Cancer Biomark.
12:155–167. 2012.
|
|
105
|
Dey R and Moraes CT: Lack of oxidative
phosphorylation and low mitochondrial membrane potential decrease
susceptibility to apoptosis and do not modulate the protective
effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem.
275:7087–7094. 2000. View Article : Google Scholar
|
|
106
|
Zangemeister-Wittke U: Antisense to
apoptosis inhibitors facilitates chemotherapy and TRAIL-induced
death signaling. Ann NY Acad Sci. 1002:90–94. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhang L, Yu J, Park BH, et al: Role of BAX
in the apoptotic response to anticancer agents. Science.
290:989–992. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Eliseev RA, Dong YF, Sampson E, et al:
Runx2-mediated activation of the Bax gene increases osteosarcoma
cell sensitivity to apoptosis. Oncogene. 27:3605–3614. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Cao X, Bennett RL and May WS: c-Myc and
caspase-2 are involved in activating Bax during cytotoxic
drug-induced apoptosis. J Biol Chem. 283:14490–14496. 2008.
View Article : Google Scholar
|
|
110
|
Ferrari S, Bertoni F, Zanella L, et al:
Evaluation of P-glycoprotein, HER-2/ErbB-2, p53, and Bcl-2 in
primary tumor and metachronous lung metastases in patients with
high-grade osteosarcoma. Cancer. 100:1936–1942. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wu X, Cai ZD, Lou LM and Zhu YB:
Expressions of p53, c-MYC, BCL-2 and apoptotic index in human
osteosarcoma and their correlations with prognosis of patients.
Cancer Epidemiol. 36:212–216. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wang ZX, Yang JS, Pan X, Wang JR, Li J,
Yin YM and De W: Functional and biological analysis of Bcl-xL
expression in human osteosarcoma. Bone. 47:445–454. 2010.
View Article : Google Scholar
|
|
113
|
Nedelcu T, Kubista B, Koller A, et al:
Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res
Clin Oncol. 134:237–244. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kaseta MK, Khaldi L, Gomatos IP, et al:
Prognostic value of bax, bcl-2, and p53 staining in primary
osteosarcoma. J Surg Oncol. 97:259–266. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kaseta MK, Gomatos IP, Khaldi L, et al:
Prognostic value of bax, cytochrome C, and caspase-8 protein
expression in primary osteosarcoma. Hybridoma (Larchmt).
26:355–362. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Degenhardt K, Mathew R, Beaudoin B, et al:
Autophagy promotes tumor cell survival and restricts necrosis,
inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Klionsky DJ and Emr SD: Autophagy as a
regulated pathway of cellular degradation. Science. 290:1717–1721.
2000. View Article : Google Scholar
|
|
118
|
Maiuri MC, Zalckvar E, Kimchi A and
Kroemer G: Self-eating and self-killing: crosstalk between
autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Kroemer G and Levine B: Autophagic cell
death: the story of a misnomer. Nat Rev Mol Cell Biol. 9:1004–1010.
2008. View Article : Google Scholar
|
|
120
|
Han J, Hou W, Goldstein LA, et al:
Involvement of protective autophagy in TRAIL resistance of
apoptosis-defective tumor cells. J Biol Chem. 283:19665–19677.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Amaravadi RK, Yu D, Lum JJ, et al:
Autophagy inhibition enhances therapy-induced apoptosis in a
Myc-induced model of lymphoma. J Clin Invest. 117:326–336. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Carew JS, Medina EC, Esquivel JA II, et
al: Autophagy inhibition enhances vorinostat-induced apoptosis via
ubiquitinated protein accumulation. J Cell Mol Med. 14:2448–2459.
2010. View Article : Google Scholar
|
|
123
|
Wu Z, Chang PC, Yang JC, et al: Autophagy
blockade sensitizes prostate cancer cells towards Src family kinase
inhibitors. Genes Cancer. 1:40–49. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Li J, Hou N, Faried A, Tsutsumi S and
Kuwano H: Inhibition of autophagy augments 5-fluorouracil
chemotherapy in human colon cancer in vitro and in vivo model. Eur
J Cancer. 46:1900–1909. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
White E and DiPaola RS: The double-edged
sword of autophagy modulation in cancer. Clin Cancer Res.
15:5308–5316. 2009. View Article : Google Scholar
|
|
126
|
Katayama M, Kawaguchi T, Berger MS and
Pieper RO: DNA damaging agent-induced autophagy produces a
cytoprotective adenosine triphosphate surge in malignant glioma
cells. Cell Death Differ. 14:548–558. 2007. View Article : Google Scholar
|
|
127
|
Carew JS, Nawrocki ST, Kahue CN, et al:
Targeting autophagy augments the anticancer activity of the histone
deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug
resistance. Blood. 110:313–322. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lambert LA, Qiao N, Hunt KK, Lambert DH,
Mills GB, Meijer L and Keyomarsi K: Autophagy: a novel mechanism of
synergistic cytotoxicity between doxorubicin and roscovitine in a
sarcoma model. Cancer Res. 68:7966–7974. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Meschini S, Condello M, Calcabrini A, et
al: The plant alkaloid voacamine induces apoptosis-independent
autophagic cell death on both sensitive and multidrug resistant
human osteosarcoma cells. Autophagy. 4:1020–1033. 2008. View Article : Google Scholar
|
|
130
|
Kim HJ, Lee SG, Kim YJ, Park JE, Lee KY,
Yoo YH and Kim JM: Cytoprotective role of autophagy during
paclitaxel-induced apoptosis in Saos-2 osteosarcoma cells. Int J
Oncol. 42:1985–1992. 2013.PubMed/NCBI
|
|
131
|
Zhang Z, Shao Z, Xiong L, Che B, Deng C
and Xu W: Expression of Beclin1 in osteosarcoma and the effects of
down-regulation of autophagy on the chemotherapeutic sensitivity. J
Huazhong Univ Sci Technolog Med Sci. 29:737–740. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Coupienne I, Fettweis G and Piette J: RIP3
expression induces a death profile change in U2OS osteosarcoma
cells after 5-ALA-PDT. Lasers Surg Med. 43:557–564. 2011.
|
|
133
|
Huang J, Ni J, Liu K, et al: HMGB1
promotes drug resistance in osteosarcoma. Cancer Res. 72:230–238.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Huang J, Liu K, Yu Y, et al: Targeting
HMGB1-mediated autophagy as a novel therapeutic strategy for
osteosarcoma. Autophagy. 8:275–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Pillai RS, Bhattacharyya SN and
Fillipowicz W: Repression of protein synthesis by miRNAs: how many
mechanisms? Trends Cell Biol. 17:118–126. 2007. View Article : Google Scholar
|
|
136
|
Lu J, Getz G, Miska EA, et al: MicroRNA
expression profiles classify human cancers. Nature. 435:834–838.
2005. View Article : Google Scholar
|
|
137
|
Volinia S, Calin GA, Liu CG, et al: A
microRNA expression signature of human solid tumors defines cancer
gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Nakatani F, Ferracin M, Manara MC, et al:
miR-34a predicts survival of Ewing’s sarcoma patients and directly
influences cell chemo-sensitivity and malignancy. J Pathol.
226:796–805. 2012.PubMed/NCBI
|
|
139
|
Gougelet A, Pissaloux D, Besse A, et al:
Micro-RNA profiles in osteosarcoma as a predictive tool for
ifosfamide response. Int J Cancer. 129:680–690. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Song B, Wang Y, Xi Y, et al: Mechanism of
chemoresistance mediated by miR-140 in human osteosarcoma and colon
cancer cells. Oncogene. 28:4065–4074. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Song B, Wang Y, Titmus MA, Botchkina G,
Formentini A, Kornmann M and Ju J: Molecular mechanism of
chemoresistance by miR-215 in osteosarcoma and colon cancer cells.
Mol Cancer. 9:962010. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Cai CK, Zhao GY, Tian LY, et al: miR-15a
and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle
arrest in osteosarcoma. Oncol Rep. 28:1764–1770. 2012.PubMed/NCBI
|
|
143
|
Makino S: The role of tumor stem-cells in
regrowth of the tumor following drastic applications. Acta Unio Int
Contra Cancrum. 15(Suppl 1): 196–198. 1959.PubMed/NCBI
|
|
144
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Ignatova TN, Kukekov VG, Laywell ED,
Suslov ON, Vrionis FD and Steindler DA: Human cortical glial tumors
contain neural stem-like cells expressing astroglial and neuronal
markers in vitro. Glia. 39:193–206. 2002. View Article : Google Scholar
|
|
146
|
Singh SK, Clarke ID, Terasaki M, et al:
Identification of a cancer stem cell in human brain tumors. Cancer
Res. 63:5821–5828. 2003.PubMed/NCBI
|
|
147
|
Liu B, Ma W, Jha RK and Gurung K: Cancer
stem cells in osteosarcoma: recent progress and perspective. Acta
Oncol. 50:1142–1150. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Woodward WA and Sulman EP: Cancer stem
cells: markers or biomarkers? Cancer Metastasis Rev. 27:459–470.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Vangipuram SD, Wang ZJ and Lyman WD:
Resistance of stem-like cells from neuroblastoma cell lines to
commonly used chemotherapeutic agents. Pediatr Blood Cancer.
54:361–368. 2010. View Article : Google Scholar
|
|
150
|
Di Fiore R, Santulli A, Ferrante RD, et
al: Identification and expansion of human osteosarcoma-cancer-stem
cells by long-term 3-aminobenzamide treatment. J Cell Physiol.
219:301–313. 2009.PubMed/NCBI
|
|
151
|
Fujii H, Honoki K, Tsujiuchi T, Kido A,
Yoshitani K and Takakura Y: Sphere-forming stem-like cell
populations with drug resistance in human sarcoma cell lines. Int J
Oncol. 34:1381–1386. 2009.PubMed/NCBI
|
|
152
|
Honoki K, Fujii H, Kubo A, Kido A, Mori T,
Tanaka Y and Tsujiuchi T: Possible involvement of stem-like
populations with elevated ALDH1 in sarcomas for chemotherapeutic
drug resistance. Oncol Rep. 24:501–505. 2010. View Article : Google Scholar
|
|
153
|
Martins-Neves SR, Lopes ÁO, do Carmo A, et
al: Therapeutic implications of an enriched cancer stem-like cell
population in a human osteosarcoma cell line. BMC Cancer.
12:1392012. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Chou AJ, Merola PR, Wexler LH, et al:
Treatment of osteosarcoma at first recurrence after contemporary
therapy: the Memorial Sloan-Kettering Cancer Center experience.
Cancer. 104:2214–2221. 2005. View Article : Google Scholar
|
|
155
|
Alberts DS, Muggia FM, Carmichael J, et
al: Efficacy and safety of liposomal anthracyclines in phase I/II
clinical trials. Semin Oncol. 31(Suppl 13): S53–S90. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Maes H, Rubio N, Garg AD and Agostinis P:
Autophagy: shaping the tumor microenvironment and therapeutic
response. Trends Mol Med. 19:428–446. 2013. View Article : Google Scholar : PubMed/NCBI
|