Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2014 Volume 7 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2014 Volume 7 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review)

  • Authors:
    • Qiong Zhu
    • Yuxiao Chang
    • Jin Yang
    • Quanfang Wei
  • View Affiliations / Copyright

    Affiliations: Battalion Two of Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China, Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
  • Pages: 1363-1369
    |
    Published online on: March 5, 2014
       https://doi.org/10.3892/ol.2014.1943
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Previous studies have shown that the post‑translational modifications of proliferating cell nuclear antigen (PCNA) may be crucial in influencing the cellular choice between different pathways, such as the cell cycle checkpoint, DNA repair or apoptosis pathways, in order to maintain genomic stability. DNA damage leads to replication stress and the subsequent induction of PCNA modification by small ubiquitin (Ub)‑related modifiers and Ub, which has been identified to affect multiple biological processes of genomic DNA. Thus far, much has been learned concerning the behavior of modified PCNA as a key signal integrator in response to DNA damage. In humans and yeast, modified PCNA activates DNA damage bypass via an error‑prone or error‑free pathway to prevent the breakage of DNA replication forks, which may potentially induce double‑strand breaks and subsequent chromosomal rearrangements. However, the exact mechanisms by which these pathways work and by what means the modified PCNA is involved in these processes remain elusive. Thus, the improved understanding of PCNA modification and its implications for DNA damage response may provide us with more insight into the mechanisms by which human cells regulate aberrant recombination events, and cancer initiation and development. The present review focuses on the post‑translational modifications of PCNA and its important functions in mediating mammalian cellular response to different types of DNA damage.
View Figures

Figure 1

View References

1 

Jónsson ZO and Hübscher U: Proliferating cell nuclear antigen: more than a clamp for DNA polymerases. Bioessays. 19:967–975. 1997.PubMed/NCBI

2 

Kelman Z and O’Donnell M: Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res. 23:3613–3620. 1995. View Article : Google Scholar : PubMed/NCBI

3 

Wyman C and Botchan M: DNA replication. A familiar ring to DNA polymerase processivity. Curr Biol. 5:334–337. 1995. View Article : Google Scholar : PubMed/NCBI

4 

Krishna TS, Kong XP, Gary S, et al: Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell. 79:1233–1243. 1994. View Article : Google Scholar : PubMed/NCBI

5 

Warbrick E, Lane DP, Glover DM and Cox LS: Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair. Oncogene. 14:2313–2321. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Tsurimoto T: PCNA binding proteins. Front Biosci. 4:D849–D858. 1999. View Article : Google Scholar

7 

Dieckman LM, Freudenthal BD and Washington MT: PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA. Subcell Biochem. 62:281–299. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Maga G and Hubscher U: Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci. 116:3051–3060. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Watanabe K, Tateishi S, Kawasuji M, et al: RAD18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23:3886–3896. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Bi X, Barkley LR, Slater DM, et al: RAD18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol. 26:3527–3540. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Johnson RE, Haracska L, Prakash S and Prakash L: Role of DNA polymerase zeta in the bypass of a (6-4) TT photoproduct. Mol Cell Biol. 21:3558–3563. 2001. View Article : Google Scholar

12 

Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar

13 

Yeh ET, Gong L and Kamitani T: Ubiquitin-like proteins: new wines in new bottles. Gene. 248:1–14. 2000. View Article : Google Scholar : PubMed/NCBI

14 

Pickart CM: Back to the future with ubiquitin. Cell. 116:181–190. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Tsui C, Raguraj A and Pickart CM: Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway. J Biol Chem. 280:19829–19835. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Ulrich HD: Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair (Amst). 8:461–469. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Chiu RK, Brun J, Ramaekers C, et al: Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLoS Genet. 2:e1162006. View Article : Google Scholar : PubMed/NCBI

18 

Andersen PL, Xu F and Xiao W: Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 18:162–173. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Prakash L: Characterization of postreplication repair in Saccharomyces cerevisiae and effects of RAD6, RAD18, rev3 and RAD52 mutations. Mol Gen Genet. 184:471–478. 1981.

20 

Lawrence CW and Christensen R: UV mutagenesis in radiation-sensitive strains of yeast. Genetics. 82:207–232. 1976.PubMed/NCBI

21 

Bailly V, Lamb J, Sung P, et al: Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 8:811–820. 1994. View Article : Google Scholar

22 

Brun J, Chiu R, Lockhart K, et al: hMMS2 serves a redundant role in human PCNA polyubiquitination. BMC Mol Biol. 9:242008. View Article : Google Scholar : PubMed/NCBI

23 

Pfander B, Moldovan GL, Sacher M, et al: SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature. 436:428–433. 2005.PubMed/NCBI

24 

Haracska L, Torres-Ramos CA, Johnson RE, et al: Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol Cell Biol. 24:4267–4274. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Johnson ES: Protein modification by SUMO. Annu Rev Biochem. 73:355–382. 2004. View Article : Google Scholar

26 

Melchior F: SUMO - nonclassical ubiquitin. Annu Rev Cell Dev Biol. 16:591–626. 2000. View Article : Google Scholar

27 

Su HL and Li SS: Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene. 296:65–73. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Matunis MJ: On the road to repair: PCNA encounters SUMO and ubiquitin modifications. Mol Cell. 10:441–442. 2002. View Article : Google Scholar

29 

Johnson ES and Blobel G: Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol. 147:981–994. 1999. View Article : Google Scholar

30 

Ladner JE, Pan M, Hurwitz J and Kelman Z: Crystal structures of two active proliferating cell nuclear antigens (PCNAs) encoded by Thermococcus kodakaraensis. Proc Natl Acad Sci USA. 108:2711–2716. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Amin NS and Holm C: In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics. 144:479–493. 1996.

32 

Eissenberg JC, Ayyagari R, Gomes XV and Burgers PM: Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol Cell Biol. 17:6367–6378. 1997.

33 

Gali H, Juhasz S, Morocz M, et al: Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res. 40:6049–6059. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Müller S, Hoege C, Pyrowolakis G and Jentsch S: SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol. 2:202–210. 2001.

35 

Ulrich HD, Vogel S and Davies AA: SUMO keeps a check on recombination during DNA replication. Cell Cycle. 4:1699–1702. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Bergink S and Jentsch S: Principles of ubiquitin and SUMO modifications in DNA repair. Nature. 458:461–467. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Branzei D and Foiani M: The DNA damage response during DNA replication. Curr Opin Cell Biol. 17:568–575. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Kerscher O: SUMO junction - what’s your function? New insights through SUMO-interacting motifs. EMBO J. 8:550–555. 2007.

39 

Branzei D and Foiani M: RecQ helicases queuing with Srs2 to disrupt RAD51 filaments and suppress recombination. Genes Dev. 21:3019–3026. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Santiago A, Godsey AC, Hossain J, et al: Identification of two independent SUMO-interacting motifs in Daxx: evolutionary conservation from Drosophila to humans and their biochemical functions. Cell Cycle. 8:76–87. 2009. View Article : Google Scholar

41 

Ting L, Jun H and Junjie C: RAD18 lives a double life: Its implication in DNA double-strand break repair. DNA Repair (Amst). 9:1241–1248. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Lehmann AR, Niimi A, Ogi T, et al: Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst). 6:891–899. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Pâques F and Habe JE: Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 63:349–404. 1999.PubMed/NCBI

44 

Goldfless SJ, Morag AS, Belisle KA, et al: DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell. 21:595–604. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Hishida T, Ohya T, Kubota Y, et al: Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance. Mol Cell Biol. 26:5509–5517. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Lehmann AR: Translesion synthesis in mammalian cells. Exp Cell Res. 312:2673–2676. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Zhang H and Lawrence CW: The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc Natl Acad Sci USA. 102:15954–15959. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Washington MT, Johnson RE, Prakash S, et al: Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase eta. Proc Natl Acad Sci USA. 97:3094–3099. 2000.PubMed/NCBI

49 

Johnson RE, Prakash S and Prakash L: Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science. 283:1001–1004. 1999. View Article : Google Scholar : PubMed/NCBI

50 

Kannouche PL, Wing J and Lehmann AR: Interaction of human DNA polymerase eta with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage. Mol Cell. 14:491–500. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Freudenthal BD, Gakhar L, Ramaswamy S and Washington MT: Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nat Struct Mol Biol. 17:479–484. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Broomfield S, Chow BL and Xiao W: MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci USA. 95:5678–5683. 2010. View Article : Google Scholar

53 

Michel B, Ehrlich SD and Uzest M: DNA double-strand breaks caused by replication arrest. EMBO J. 16:430–438. 1997. View Article : Google Scholar : PubMed/NCBI

54 

Ward JF: DNA damage produced by ionizing RADiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 35:95–125. 1988. View Article : Google Scholar : PubMed/NCBI

55 

Weinstock DM, Richardson CA, Elliott B and Jastin M: Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst). 5:1065–1074. 2006. View Article : Google Scholar

56 

Hoege C, Pfander B, Moldovan GL, et al: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 419:135–141. 2002. View Article : Google Scholar

57 

Stelter P and Ulrich HD: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature. 425:188–191. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Davies AA, Huttner D, Daigaku Y, et al: Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol Cell. 29:625–636. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Yang XH and Zou L: Dual functions of DNA replication forks in checkpoint signaling and PCNA ubiquitination. Cell Cycle. 8:191–194. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Huttner D and Ulrich HD: Cooperation of replication protein A with the ubiquitin ligase RAD18 in DNA damage bypass. Cell Cycle. 7:3629–3633. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Chen S, Davies AA, Sagan D and Ulrich HD: The RING finger ATPase RAD5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner. Nucleic Acids Res. 33:5878–5886. 2005.PubMed/NCBI

62 

Frampton J, Irmisch A, Green CM, et al: Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell. 17:2976–2985. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Daigaku Y, Davies AA and Ulrich HD: Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature. 465:951–955. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Hirano Y, Reddy J and Sugimoto K: Role of budding yeast RAD18 in repair of HO-induced double-strand breaks. DNA Repair (Amst). 8:51–59. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Podust VN and Hübscher U: Lagging strand DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and epsilon in the presence of auxiliary proteins. Nucleic Acids Res. 21:841–846. 1993. View Article : Google Scholar : PubMed/NCBI

66 

Garg P and Burgers PM: Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc Natl Acad Sci USA. 102:18361–18366. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Kastan MB and Bartek J: Cell-cycle checkpoints and cancer. Nature. 432:316–323. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Branzei D, Vanoli F and Foiani M: Sumoylation regulates RAD18-mediated template switch. Nature. 456:915–920. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Nyberg KA, Michelson RJ, Putnam CW and Weinert TA: Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet. 36:617–656. 2002. View Article : Google Scholar : PubMed/NCBI

70 

McHugh PJ and Sarkar S: DNA interstrand cross-link repair in the cell cycle: a critical role for polymerase zeta in G1 phase. Cell Cycle. 5:1044–1047. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Moldovan GL, Pfander B and Jentsch S: PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell. 23:723–732. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Bi X, Barkley LR, Slater DM, et al: RAD18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol. 26:3527–3540. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Branzei D, Sollier J, Liberi G, et al: Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell. 127:509–522. 2006. View Article : Google Scholar

74 

Niu H, Chung WH, Zhu Z, et al: Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature. 467:108–111. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Krejci L, Van Komen S, Li Y, et al: DNA helicase Srs2 disrupts the RAD51 presynaptic filament. Nature. 423:305–309. 2003. View Article : Google Scholar : PubMed/NCBI

76 

Chen J, Bozza W and Zhuang Z: Ubiquitination of PCNA and its essential role in eukaryotic translesion synthesis. Cell Biochem Biophys. 60:47–60. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Haracska L, Kondratick CM, Unk I, et al: Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell. 8:407–415. 2001. View Article : Google Scholar : PubMed/NCBI

78 

Lee KY and Myung K: PCNA modifications for regulation of post-replication repair pathways. Mol Cells. 26:5–11. 2008.PubMed/NCBI

79 

Papouli E, Chen S, Davies AA, et al: Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell. 19:123–133. 2005. View Article : Google Scholar

80 

Schwartz DC and Hochstrasser M: A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci. 28:321–328. 2003. View Article : Google Scholar : PubMed/NCBI

81 

Chiu RK, Brun J, Ramaekers C, et al: Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLoS Genet. 2:e1162006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu Q, Chang Y, Yang J and Wei Q: Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review). Oncol Lett 7: 1363-1369, 2014.
APA
Zhu, Q., Chang, Y., Yang, J., & Wei, Q. (2014). Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review). Oncology Letters, 7, 1363-1369. https://doi.org/10.3892/ol.2014.1943
MLA
Zhu, Q., Chang, Y., Yang, J., Wei, Q."Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review)". Oncology Letters 7.5 (2014): 1363-1369.
Chicago
Zhu, Q., Chang, Y., Yang, J., Wei, Q."Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review)". Oncology Letters 7, no. 5 (2014): 1363-1369. https://doi.org/10.3892/ol.2014.1943
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu Q, Chang Y, Yang J and Wei Q: Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review). Oncol Lett 7: 1363-1369, 2014.
APA
Zhu, Q., Chang, Y., Yang, J., & Wei, Q. (2014). Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review). Oncology Letters, 7, 1363-1369. https://doi.org/10.3892/ol.2014.1943
MLA
Zhu, Q., Chang, Y., Yang, J., Wei, Q."Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review)". Oncology Letters 7.5 (2014): 1363-1369.
Chicago
Zhu, Q., Chang, Y., Yang, J., Wei, Q."Post‑translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review)". Oncology Letters 7, no. 5 (2014): 1363-1369. https://doi.org/10.3892/ol.2014.1943
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team