|
1
|
Kreso A and Dick JE: Evolution of the
cancer stem cell model. Cell Stem Cell. 14:275–291. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Eppert K, Takenaka K, Lechman ER, Waldron
L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J,
Canty AJ, et al: Stem cell gene expression programs influence
clinical outcome in human leukemia. Nat Med. 17:1086–1093. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Laurenti E, Doulatov S, Zandi S, Plumb I,
Chen J, April C, Fan JB and Dick JE: The transcriptional
architecture of early human hematopoiesis identifies multilevel
control of lymphoid commitment. Nat Immunol. 14:756–763. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tang DG: Understanding cancer stem cell
heterogeneity and plasticity. Cell Res. 22:457–472. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hope KJ, Jin L and Dick JE: Acute myeloid
leukemia originates from a hierarchy of leukemic stem cell classes
that differ in self-renewal capacity. Nat Immunol. 5:738–743. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sarry JE, Murphy K, Perry R, Sanchez PV,
Secreto A, Keefer C, Swider CR, Strzelecki AC, Cavelier C, Récher
C, et al: Human acute myelogenous leukemia stem cells are rare and
heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice. J
Clin Invest. 121:384–395. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Anderson K, Lutz C, van Delft FW, Bateman
CM, Guo Y, Colman SM, Kempski H, Moorman AV, Titley I, Swansbury J,
et al: Genetic variegation of clonal architecture and propagating
cells in leukaemia. Nature. 469:356–361. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Park SY, Gönen M, Kim HJ, Michor F and
Polyak K: Cellular and genetic diversity in the progression of in
situ human breast carcinomas to an invasive phenotype. J Clin
Invest. 120:636–644. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lottaz C, Beier D, Meyer K, Kumar P,
Hermann A, Schwarz J, Junker M, Oefner PJ, Bogdahn U, Wischhusen J,
et al: Transcriptional profiles of CD133+ and CD133-
glioblastoma-derived cancer stem cell lines suggest different cells
of origin. Cancer Res. 70:2030–2040. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Proia TA, Keller PJ, Gupta PB, Klebba I,
Jones AD, Sedic M, Gilmore H, Tung N, Naber SP, Schnitt S, et al:
Genetic predisposition directs breast cancer phenotype by dictating
progenitor cell fate. Cell Stem Cell. 8:149–163. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jin L, Hope KJ, Zhai Q, Smadja-Joffe F and
Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic
stem cells. Nat Med. 12:1167–74. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jin L, Lee EM, Ramshaw HS, et al:
Monoclonal antibody-mediated targeting of CD123, IL-3 receptor
alpha chain, eliminates human acute myeloid leukemic stem cells.
Cell Stem Cell. 5:31–42. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kikushige Y, Shima T, Takayanagi S, Urata
S, Miyamoto T, Iwasaki H, Takenaka K, Teshima T, Tanaka T, Inagaki
Y and Akashi K: TIM-3 is a promising target to selectively kill
acute myeloid leukemia stem cells. Cell Stem Cell. 7:708–717. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT,
Chen P, Wang Y, Yan M, Qian Z, et al: Distinct microRNA expression
profiles in acute myeloid leukemia with common translocations. In:
Proc Natl Acad Sci USA. 105. pp. 15535–15540. 2008; View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bousquet M, Harris MH, Zhou B and Lodish
HF: MicroRNA mir-125b causes leukemia. In: Proc Natl Acad Sci USA.
107. pp. 21558–21563. 2010; View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Blower PE, Chung JH, Verducci JS, Lin S,
Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, et
al: MicroRNAs modulate the chemosensitivity of tumor cells. Mol
Cancer Ther. 7:1–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
de Leeuw DC, Denkers F, Olthof MC, Rutten
AP, Pouwels W, Schuurhuis GJ, Ossenkoppele GJ and Smit L:
Attentuation of microRNA-126 expression that drives CD34+38-
stem/progenitor cells in acute myeloid leukemia leads to tumor
eradication. Cancer Res. 74:2094–2105. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Guo W, Schubbert S, Chen JY, Valamehr B,
Mosessian S, Shi H, Dang NH, Garcia C, Theodoro MF, Varella-Garcia
M and Wu H: Suppression of leukemia development caused by PTEN
loss. In: Proc Natl Acad Sci USA. 108. pp. 1409–1414. 2011;
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pece S, Tosoni D, Confalonieri S, Mazzarol
G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG and Di Fiore
PP: Biological and molecular heterogeneity of breast cancers
correlates with their cancer stem cell content. Cell. 140:62–73.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lim E, Vaillant F, Wu D, Forrest NC, Pal
B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, et al:
Aberrant luminal progenitors as the candidate target population for
basal tumor development in BRCA1 mutation carriers. Nat Med.
15:907–913. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Molyneux G, Geyer FC, Magnay FA, McCarthy
A, Kendrick H, Natrajan R, Mackay A, Grigoriadis A, Tutt A,
Ashworth A, et al: BRCA1 basal-like breast cancers originate from
luminal epithelial progenitors and not from basal stem cells. Cell
Stem Cell. 7:403–417. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Luo M, Zhao X, Chen S, Liu S, Wicha MS and
Guan JL: Distinct FAK activities determine progenitor and mammary
stem cell characteristics. Cancer Res. 73:5591–5602. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li X, Lewis MT, Huang J, Gutierrez C,
Osborne CK, Wu MF, et al: Intrinsic resistance of tumorigenic
breast cancer cells to chemotherapy. J Natl Cancer Inst.
100:672–679. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Creighton CJ, Li X, Landis M, Dixon JM,
Neumeister VM, Sjolund A, et al: Residual breast cancers after
conventional therapy display mesenchymal as well as
tumor-initiating features. In: Proc Natl Acad Sci USA. 106. pp.
13820–13825. 2009; View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Reya T and Clevers H: Wnt signaling in
stem cells and cancer. Nature. 434:843–850. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Harrison H, Farnie G, Howell SJ, Rock RE,
Stylianou S, Brennan KR, Bundred NJ and Clarke RB: Regulation of
breast cancer stem cell activity by signaling through the Notch4
receptor. Cancer Res. 70:709–718. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schott AF, Landis MD, Dontu G, Griffith
KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT,
et al: Preclinical and clinical studies of gamma secretase
inhibitors with docetaxel on human breast tumors. Clin Cancer Res.
19:1512–1524. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang X, Kruithof-de Julio M, Economides
KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C and
Shen MM: A luminal epithelial stem cell that is a cell of origin
for prostate cancer. Nature. 461:495–500. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Aytes A, Mitrofanova A, Kinkade CW,
Lefebvre C, Lei M, Phelan V, LeKaye HC, Koutcher JA, Cardiff RD,
Califano A, et al: ETV4 promotes metastasis in response to
activation of PI3-kinase and Ras signaling in a mouse model of
advanced prostate cancer. In: Proc Natl Acad Sci USA. 110. pp.
E3506–E3515. 2013; View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sun Y, Wang BE, Leong KG, Yue P, Li L,
Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, et al: Androgen
deprivation causes epithelial-mesenchymal transition in the
prostate: implications for androgen-deprivation therapy. Cancer
Res. 72:527–536. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lu TL, Huang YF, You LR, Chao NC, Su FY,
Chang JL and Chen CM: Conditionally ablated Pten in prostate basal
cells promotes basal-to-luminal differentiation and causes invasive
prostate cancer in mice. Am J Pathol. 182:975–991. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Qin J, Liu X, Laffin B, Chen X, Choy G,
Jeter CR, Calhoun-Davis T, Li H, Palapattu GS, Pang S, et al: The
PSA(-/lo) prostate cancer cell population harbors self-renewing
long-term tumor-propagating cells that resist castration. Cell Stem
Cell. 10:556–569. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jeter CR, Liu B, Liu X, Chen X, Liu C,
Calhoun-Davis T, Repass J, Zaehres H, Shen JJ and Tang DG: NANOG
promotes cancer stem cell characteristics and prostate cancer
resistance to androgen deprivation. Oncogene. 30:3833–3845. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu C, Kelnar K, Liu B, Chen X,
Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et
al: The microRNA miR-34a inhibits prostate cancer stem cells and
metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stephenson RA, Dinney CP, Gohji K, Ordóñez
NG, Killion JJ and Fidler IJ: Metastatic model for human prostate
cancer using orthotopic implantation in nude mice. J Natl Cancer
Inst. 84:951–957. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jeter CR, Badeaux M, Choy G, Chandra D,
Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ and Tang
DG: Functional evidence that the self-renewal gene NANOG regulates
human tumor development. Stem Cells. 27:993–1005. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Liu C, Kelnar K, Vlassov AV, Brown D, Wang
J and Tang DG: Distinct microRNA expression profiles in prostate
cancer stem/progenitor cells and tumor-suppressive functions of
let-7. Cancer Res. 72:3393–3404. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jin M, Zhang T, Liu C, Badeaux MA, Liu B,
Liu R, Jeter C, Chen X, Vlassov AV and Tang DG: MicroRNA-128
suppresses prostate cancer by inhibiting BMI-1 to inhibit
tumor-initiating cells. Cancer Res. 74:4183–4195. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chan CH, Morrow JK, Li CF, Gao Y, Jin G,
Moten A, Stagg LJ, Ladbury JE, Cai Z, Xu D, et al: Pharmacological
inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem
cell traits and cancer progression. Cell. 154:556–568. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Eyler CE, Wu Q, Yan K, MacSwords JM,
Chandler-Militello D, Misuraca KL, Lathia JD, Forrester MT, Lee J,
Stamler JS, et al: Glioma stem cell proliferation and tumor growth
are promoted by nitric oxide synthase-2. Cell. 146:53–66. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Beier D, Hau P, Proescholdt M, Lohmeier A,
Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U and Beier
CP: CD133(+) and CD133(–) glioblastoma-derived cancer stem cells
show differential growth characteristics and molecular profiles.
Cancer Res. 67:4010–4015. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Inda MM, Bonavia R, Mukasa A, Narita Y,
Sah DW, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, et
al: Tumor heterogeneity is an active process maintained by a mutant
EGFR-induced cytokine circuit in glioblastoma. Genes Dev.
24:1731–1745. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Paola B, Barbara O, Lorenzo F, Daniel L,
Giovanni B and Giuliana P: CD133 is essential for glioblastoma stem
cell maintenance. Stem Cells. 31:857–869. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhou Y, Zhou Y, Shingu T, Feng L, Chen Z,
Ogasawara M, Keating MJ, Kondo S and Huang P: Metabolic alterations
in highly tumorigenic glioblastoma cells: preference for hypoxia
and high dependency on glycolysis. J Biol Chem. 286:32843–32853.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yuan S, Wang F, Chen G, Zhang H, Feng L,
Wang L, Colman H, Keating MJ, Li X, Xu RH, et al: Effective
elimination of cancer stem cells by a novel drug combination
strategy. Stem Cells. 31:23–34. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Heimberger AB, Suki D, Yang D, Shi W and
Aldape K: The natural history of EGFR and EGFRvIII in glioblastoma
patients. J Transl Med. 3:382005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Emlet DR, Gupta P, Holgado-Madruga M, Del
Vecchio CA, Mitra SS, Han SY, Li G, Jensen KC, Vogel H, Xu LW, et
al: Targeting a glioblastoma cancer stem-cell populations defined
by EGF receptor variant III. Cancer Res. 74:1238–1249. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vermeulen L, de Sousa E, Melo F, van der
Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M,
Merz C, et al: Wnt activity defines colon cancer stem cells and is
regulated by the microenvironment. Nat Cell Biol. 12:468–476. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Glinsky GV, Berezovska O and Glinskii AB:
Microarray analysis identifies a death-from-cancer signature
predicting therapy failure in patients with multiple types of
cancer. J Clin Invest. 115:1503–1521. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kreso A, van Galen P, Pedley NM,
Lima-Fernandes E, Frelin C, Davis T, Cao L, Baiazitov R, Du W,
Sydorenko N, et al: Self-renewal as a therapeutic target in human
colorectal cancer. Nat Med. 20:29–36. 2014.PubMed/NCBI
|
|
52
|
Du L, Rao G, Wang H, Li B, Tian W, Cui J,
He L, Laffin B, Tian X, Hao C, et al: CD44-positive cancer stem
cells expressing cellular prion protein contribute to metastatic
capacity in colorectal cancer. Cancer Res. 73:2682–2694. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gratio V, Loriot C, Virca GD,
Oikonomopoulou K, Walker F, Diamandis EP, Hollenberg MD and Darmoul
D: Kallikrein-related peptidase 14 acts on proteinase-activated
receptor 2 to induce signaling pathway in colon cancer cells. Am J
Pathol. 179:2625–2636. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lee TK, Castilho A, Cheung VC, Tang KH, Ma
S and Ng IO: CD24(+) liver tumor-initiating cells drive
self-renewal and tumor initiation through STAT3-mediated NANOG
regulation. Cell Stem Cell. 9:50–63. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lee TK, Cheung VC, Lu P, Lau EY, Ma S,
Tang KH, Tong M, Lo J and Ng IO: Blockade of CD47-mediated
cathepsin S/protease-activated receptor 2 signaling provides a
therapeutic target for hepatocellular carcinoma. Hepatology.
60:179–191. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Teitz-Tennenbaum S, Wicha MS, Chang AE and
Li Q: Targeting cancer stem cells via dendritic-cell vaccination.
Oncoimmunology. 1:1401–1403. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li Q, Lu L, Tao H, Xue C, Teitz-Tennenbaum
S, Owen JH, Moyer JS, Prince ME, Chang AE and Wicha MS: Generation
of a novel dendritic-cell vaccine using melanoma and squamous
cancer stem cells. J Vis Exp. 6:e505612014.
|
|
58
|
Bertolini G, Roz L, Perego P, Tortoreto M,
Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S,
et al: Highly tumorigenic lung cancer CD133+ cells display
stem-like features and are spared by cisplatin treatment. In: Proc
Natl Acad Sci USA. 106. pp. 16281–16286. 2009; View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sarvi S, Mackinnon AC, Avlonitis N,
Bradley M, Rintoul RC, Rassl DM, Wang W, Forbes SJ, Gregory CD and
Sethi T: CD133+ cancer stem-like cells in small cell lung cancer
are highly tumorigenic and chemoresistant but sensitive to a novel
neuropeptide antagonist. Cancer Res. 74:1554–1565. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yan H, Chen X, Zhang Q, Qin J, Li H, Liu
C, Calhoun-Davis T, Coletta LD, Klostergaard J, Fokt I, et al:
Drug-tolerant cancer cells show reduced tumor-initiating capacity:
depletion of CD44 cells and evidence for epigenetic mechanisms.
PLoS One. 6:e243972011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong
C, Huang Y, Hu X, Su F, Lieberman J and Song E: let-7 regulates
self renewal and tumorigenicity of breast cancer cells. Cell.
131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Emmink BL, van Houdt WJ, Vries RG,
Hoogwater FJ, Govaert KM, Verheem A, Nijkamp MW, Steller EJ,
Jimenez CR, Clevers H, et al: Differentiated human colorectal
cancer cells protect tumor-initiating cells from irinotecan.
Gastroenterology. 141:269–278. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dubrovska A, Elliott J, Salamone RJ, Kim
S, Aimone LJ, Walker JR, Watson J, Sauveur-Michel M,
Garcia-Echeverria C, Cho CY, et al: Combination therapy targeting
both tumor-initiating and differentiated cell populations in
prostate carcinoma. Clin Cancer Res. 16:5692–5702. 2010. View Article : Google Scholar : PubMed/NCBI
|