|
1
|
Sayed SI, Dwivedi RC, Katna R, et al:
Implications of understanding cancer stem cell (CSC) biology in
head and neck squamous cell cancer. Oral Oncol. 47:237–243. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sinha N, Mukhopadhyay S, Das DN, Panda PK
and Bhutia SK: Relevance of cancer initiating/stem cells in
carcinogenesis and therapy resistance in oral cancer. Oral Oncol.
49:854–862. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Biehs B, Hu JK, Strauli NB, et al: BMI1
represses Ink4a/Arf and Hox genes to regulate stem cells in the
rodent incisor. Nat Cell Biol. 15:846–852. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lukacs RU, Memarzadeh S, Wu H and Witte
ON: Bmi-1 is a crucial regulator of prostate stem cell self-renewal
and malignant transformation. Cell Stem Cell. 7:682–693. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Abdouh M, Facchino S, Chatoo W, Balasingam
V, Ferreira J and Bernier G: BMI1 sustains human glioblastoma
multiforme stem cell renewal. J Neurosci. 29:8884–8896. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gavrilescu MM, Todosi AM, Aniţei MG, Filip
B and Scripcariu V: Expression of bmi-1 protein in cervical, breast
and ovarian cancer. Rev Med Chir Soc Med Nat Iasi. 116:1112–1117.
2012.PubMed/NCBI
|
|
7
|
Alkema MJ, Wiegant J, Raap AK, Berns A and
van Lohuizen M: Characterization and chromosomal localization of
the human proto-oncogene BMI-1. Hum Mol Genet. 2:1597–1603. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yang DD, Cui BB, Sun LY, et al: The
co-expression of USP22 and BMI-1 may promote cancer progression and
predict therapy failure in gastric carcinoma. Cell Biochem Biophys.
61:703–710. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yang GF, He WP, Cai MY, et al: Intensive
expression of Bmi-1 is a new independent predictor of poor outcome
in patients with ovarian carcinoma. BMC Cancer. 10:1332010.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Guo BH, Feng Y, Zhang R, et al: Bmi-1
promotes invasion and metastasis and its elevated expression is
correlated with an advanced stage of breast cancer. Mol Cancer.
10:102011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Häyry V, Mäkinen LK, Atula T, et al: Bmi-1
expression predicts prognosis in squamous cell carcinoma of the
tongue. Br J Cancer. 102:892–897. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Song LB, Zeng MS, Liao WT, et al: Bmi-1 is
a novel molecular marker of nasopharyngeal carcinoma progression
and immortalizes primary human nasopharyngeal epithelial cells.
Cancer Res. 66:6225–6232. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chang Z, Li Z, Wang X, et al: Deciphering
the mechanisms of tumorigenesis in human pancreatic ductal
epithelial cells. Clin Cancer Res. 19:549–559. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang X, Sun J, Wang H, et al: IGF-1R and
Bmi-1 expressions in lung adenocarcinoma and their
clinicopathologic and prognostic significance. Tumour Biol.
35:739–745. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li X, Yang Z, Song W, et al:
Overexpression of Bmi-1 contributes to the invasion and metastasis
of hepatocellular carcinoma by increasing the expression of matrix
metalloproteinase (MMP) 2, MMP-9 and vascular endothelial growth
factor via the PTEN/PI3K/Akt pathway. Int J Oncol. 43:793–802.
2013.PubMed/NCBI
|
|
16
|
Engelsen IB, Mannelqvist M, Stefansson IM,
et al: Low BMI-1 expression is associated with an activated
BMI-1-driven signature, vascular invasion and hormone receptor loss
in endometrial carcinoma. Br J Cancer. 98:1662–1669. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Molofsky AV, He S, Bydon M, Morrison SJ
and Pardal R: Bmi-1 promotes neural stem cell self-renewal and
neural development but not mouse growth and survival by repressing
the p16Ink4a and p19Arf senescence pathways. Genes Dev.
19:1432–1437. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mihara K, Chowdhury M, Nakaju N, et al:
Bmi-1 is useful as a novel molecular marker for predicting
progression of myelodysplastic syndrome and patient prognosis.
Blood. 107:305–308. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mohty M, Yong AS, Szydlo RM, Apperley JF
and Melo JV: The polycomb group BMI1 gene is a molecular marker for
predicting prognosis of chronic myeloid leukemia. Blood.
110:380–383. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Abd Al Kader L, Oka T, Takata K, et al: In
aggressive variants of non-Hodgkin lymphomas, Ezh2 is strongly
expressed and polycomb repressive complex PRC1.4 dominates over
PRC1.2. Virchows Arch. 463:697–711. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen Y, Lian G, Zhang Q, et al:
Overexpression of Bmi-1 induces the malignant transformation of
gastric epithelial cells in vitro. Oncol Res. 21:33–41. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gao FL, Li WS, Liu CL and Zhao GQ:
Silencing Bmi-1 enhances the senescence and decreases the
metastasis of human gastric cancer cells. World J Gastroenterol.
19:8764–8769. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yin T, Wei H, Leng Z, et al: Bmi-1
promotes the chemoresistance, invasion and tumorigenesis of
pancreatic cancer cells. Chemotherapy. 57:488–496. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Song W, Tao K, Li H, et al: Bmi-1 is
related to proliferation, survival and poor prognosis in pancreatic
cancer. Cancer Sci. 101:1754–1760. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Guo S, Xu X, Tang Y, et al: miR-15a
inhibits cell proliferation and epithelial to mesenchymal
transition in pancreatic ductal adenocarcinoma by down-regulating
Bmi-1 expression. Cancer Lett. 344:40–46. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kuang BH, Zhang MQ, Xu LH, et al:
Proline-rich tyrosine kinase 2 and its phosphorylated form pY881
are novel prognostic markers for non-small-cell lung cancer
progression and patients' overall survival. Br J Cancer.
109:1252–1263. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Song LB, Li J, Liao WT, et al: The
polycomb group protein Bmi-1 represses the tumor suppressor PTEN
and induces epithelial-mesenchymal transition in human
nasopharyngeal epithelial cells. J Clin Invest. 119:3626–3636.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dong P, Kaneuchi M, Watari H, et al:
MicroRNA-194 inhibits epithelial to mesenchymal transition of
endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer.
10:992011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu PW, Lin Y and Chen XY: Expression of
B-cell-specific Moloney murine leukemia virus integration site 1
mRNA and protein in gastric cancer. J Dig Dis. 15:166–173. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Meng X, Wang Y, Zheng X, et al:
shRNA-mediated knockdown of Bmi-1 inhibit lung adenocarcinoma cell
migration and metastasis. Lung Cancer. 77:24–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Huang J, Qiu Y, Chen G, Huang L and He J:
The relationship between Bmi-1 and the epithelial-mesenchymal
transition in lung squamous cell carcinoma. Med Oncol.
29:1606–1613. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Colas E, Pedrola N, Devis L, et al: The
EMT signaling pathways in endometrial carcinoma. Clin Transl Oncol.
14:715–720. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Huber GF, Albinger-Hegyi A, Soltermann A,
et al: Expression patterns of Bmi-1 and p16 significantly correlate
with overall, disease-specific and recurrence-free survival in
oropharyngeal squamous cell carcinoma. Cancer. 117:4659–4670. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dimri GP, Martinez JL, Jacobs JJ, et al:
The Bmi-1 oncogene induces telomerase activity and immortalizes
human mammary epithelial cells. Cancer Res. 62:4736–4745.
2002.PubMed/NCBI
|
|
35
|
Wang Y, Zhe H, Ding Z, Gao P, Zhang N and
Li G: Cancer stem cell marker Bmi-1 expression is associated with
basal-like phenotype and poor survival in breast cancer. World J
Surg. 36:1189–1194. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Joensuu K, Hagstrom J, Leidenius M, et al:
Bmi-1, c-myc and Snail expression in primary breast cancers and
their metastases - elevated Bmi-1 expression in late breast cancer
relapses. Virchows Arch. 459:31–39. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wu J, Hu D and Zhang R: Depletion of Bmi-1
enhances 5-fluorouracil-induced apoptosis and autophagy in
hepatocellular carcinoma cells. Oncol Lett. 4:723–726.
2012.PubMed/NCBI
|
|
38
|
Wang E, Bhattacharyya S, Szabolcs A, et
al: Enhancing chemotherapy response with Bmi-1 silencing in ovarian
cancer. PLoS One. 6:e179182011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xin T, Zhang FB, Sui GJ and Jin XM: Bmi-1
siRNA inhibited ovarian cancer cell line growth and decreased
telomerase activity. Br J Biomed Sci. 69:62–66. 2012.PubMed/NCBI
|
|
40
|
Bhattacharyya J, Mihara K, Ohtsubo M, et
al: Overexpression of BMI-1 correlates with drug resistance in
B-cell lymphoma cells through the stabilization of survivin
expression. Cancer Sci. 103:34–41. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhu Y, Yu F, Jiao Y, et al: Reduced
miR-128 in breast tumor-initiating cells induces chemotherapeutic
resistance via Bmi-1 and ABCC5. Clin Cancer Res. 17:7105–7115.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu ZG, Liu L, Xu LH, et al: Bmi-1 induces
radioresistance in MCF-7 mammary carcinoma cells. Oncol Rep.
27:1116–1122. 2012.PubMed/NCBI
|
|
43
|
Vrzalikova K, Skarda J, Ehrmann J, et al:
Prognostic value of Bmi-1 oncoprotein expression in NSCLC patients:
a tissue microarray study. J Cancer Res Clin Oncol. 134:1037–1042.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Balasubramanian S, Kanade S, Han B and
Eckert RL: A proteasome inhibitor-stimulated Nrf1 protein-dependent
compensatory increase in proteasome subunit gene expression reduces
polycomb group protein level. J Biol Chem. 287:36179–36189. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu S, Tetzlaff MT, Cui R and Xu X:
miR-200c inhibits melanoma progression and drug resistance through
down-regulation of BMI-1. Am J Pathol. 181:1823–1835. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Qin ZK, Yang JA, Ye YL, et al: Expression
of Bmi-1 is a prognostic marker in bladder cancer. BMC Cancer.
9:612009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Farivar S, Zati Keikha R, Shiari R and
Jadali F: Expression of bmi-1 in pediatric brain tumors as a new
independent prognostic marker of patient survival. Biomed Res Int.
2013:1925482013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mimeault M and Batra SK: Frequent gene
products and molecular pathways altered in prostate cancer- and
metastasis-initiating cells and their progenies and novel promising
multitargeted therapies. Mol Med. 17:949–964. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Park CH, Bergsagel DE and McCulloch EA:
Mouse myeloma tumor stem cells: A primary cell culture assay. J
Natl Cancer Inst. 46:411–422. 1971.PubMed/NCBI
|
|
50
|
Oishi N and Wang XW: Novel therapeutic
strategies for targeting liver cancer stem cells. Int J Biol Sci.
7:517–535. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Raaphorst FM: Self-renewal of
hematopoietic and leukemic stem cells: a central role for the
Polycomb-group gene Bmi-1. Trends Immunol. 24:522–524. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Iwama A, Oguro H, Negishi M, Kato Y and
Nakauchia H: Epigenetic regulation of hematopoietic stem cell
self-renewal by polycomb group genes. Int J Hematol. 81:294–300.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gong H, Zhang YC and Liu WL: Regulatory
effects of Bmi-1 gene on self-renewal of hematopoietic stem cells -
review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 14:413–415. 2006.(In
Chinese). PubMed/NCBI
|
|
54
|
Park IK, Qian D, Kiel M, et al: Bmi-1 is
required for maintenance of adult self-renewing haematopoietic stem
cells. Nature. 423:302–305. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lessard J and Sauvageau G: Bmi-1
determines the proliferative capacity of normal and leukaemic stem
cells. Nature. 423:255–260. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lee CJ, Dosch J and Simeone DM: Pancreatic
cancer stem cells. J Clin Oncol. 26:2806–2812. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Molofsky AV, Pardal R, Iwashita T, Park
IK, Clarke MF and Morrison SJ: Bmi-1 dependence distinguishes
neural stem cell self-renewal from progenitor proliferation.
Nature. 425:962–967. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yu X, Jiang X, Li H, Guo L, Jiang W and Lu
SH: miR-203 inhibits the proliferation and self-renewal of
esophageal cancer stem-like cells by suppressing stem renewal
factor Bmi-1. Stem Cells Dev. 23:576–585. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ma J, Lanza DG, Guest I, et al:
Characterization of mammary cancer stem cells in the MMTV-PyMT
mouse model. Tumour Biol. 33:1983–1996. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Choy B, Bandla S, Xia Y, et al:
Clinicopathologic characteristics of high expression of Bmi-1 in
esophageal adenocarcinoma and squamous cell carcinoma. BMC
Gastroenterol. 12:1462012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu W, Feng JQ, Shen XM, Wang HY, Liu Y
and Zhou ZT: Two stem cell markers, ATP-binding cassette, G2
subfamily (ABCG2) and BMI-1, predict the transformation of oral
leukoplakia to cancer: a long-term follow-up study. Cancer.
118:1693–1700. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gonzalez S, Klatt P, Delgado S, et al:
Oncogenic activity of Cdc6 through repression of the INK4/ARF
locus. Nature. 440:702–706. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Koh CM, Iwata T, Zheng Q, Bethel C,
Yegnasubramanian S and De Marzo AM: Myc enforces overexpression of
EZH2 in early prostatic neoplasia via transcriptional and
post-transcriptional mechanisms. Oncotarget. 2:669–683.
2011.PubMed/NCBI
|
|
64
|
Sander S, Bullinger L, Klapproth K, et al:
MYC stimulates EZH2 expression by repression of its negative
regulator miR-26a. Blood. 112:4202–4212. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ma L, Young J, Prabhala H, et al: miR-9, a
MYC/MYCN-activated microRNA, regulates E-cadherin and cancer
metastasis. Nat Cell Biol. 12:247–256. 2010.PubMed/NCBI
|
|
66
|
Coskun V, Zhao J and Sun YE: Neurons or
glia? Can SHP2 know it all? Sci STKE. 2007:pe582007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ke Y, Zhang EE, Hagihara K, et al:
Deletion of Shp2 in the brain leads to defective proliferation and
differentiation in neural stem cells and early postnatal lethality.
Mol Cell Biol. 27:6706–6717. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gao C, Kong NR and Chai L: The role of
stem cell factor SALL4 in leukemogenesis. Crit Rev Oncog.
16:117–127. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yang J, Chai L, Liu F, et al: Bmi-1 is a
target gene for SALL4 in hematopoietic and leukemic cells. Proc
Natl Acad Sci USA. 104:10494–10499. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhu J, Wang H, Sun Q, et al: Nrf2 is
required to maintain the self-renewal of glioma stem cells. BMC
Cancer. 13:3802013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Won HY, Lee JY, Shin DH, et al: Loss of
Mel-18 enhances breast cancer stem cell activity and tumorigenicity
through activating Notch signaling mediated by the Wnt/TCF pathway.
FASEB J. 26:5002–5013. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jacobs JJ, Kieboom K, Marino S, DePinho RA
and van Lohuizen M: The oncogene and Polycomb-group gene bmi-1
regulates cell proliferation and senescence through the ink4a
locus. Nature. 397:164–168. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lowe SW and Sherr CJ: Tumor suppression by
Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev. 13:77–83.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Carnero A, Hudson JD, Price CM and Beach
DH: p16INK4A and p19ARF act in overlapping pathways in cellular
immortalization. Nat Cell Biol. 2:148–155. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chiba T, Seki A, Aoki R, et al: Bmi1
promotes hepatic stem cell expansion and tumorigenicity in both
Ink4a/Arf-dependent and -independent manners in mice. Hepatology.
52:1111–1123. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Grinstein E and Wernet P: Cellular
signaling in normal and cancerous stem cells. Cell Signal.
19:2428–2433. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Grinstein E and Mahotka C: Stem cell
divisions controlled by the proto-oncogene BMI-1. J Stem Cells.
4:141–146. 2009.PubMed/NCBI
|
|
78
|
Zacharek SJ, Fillmore CM, Lau AN, et al:
Lung stem cell self-renewal relies on BMI1-dependent control of
expression at imprinted loci. Cell Stem Cell. 9:272–281. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bruggeman SW, Hulsman D and van Lohuizen
M: Bmi1 deficient neural stem cells have increased integrin
dependent adhesion to self-secreted matrix. Biochim Biophys Acta.
1790:351–360. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fasano CA, Dimos JT, Ivanova NB, Lowry N,
Lemischka IR and Temple S: shRNA knockdown of Bmi-1 reveals a
critical role for p21-Rb pathway in NSC self-renewal during
development. Cell Stem Cell. 1:87–99. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jiang L, Song L, Wu J, et al: Bmi-1
promotes glioma angiogenesis by activating NF-κB signaling. PLoS
One. 8:e555272013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Vlachostergios PJ and Papandreou CN: The
Bmi-1/NF-κB/VEGF story: another hint for proteasome involvement in
glioma angiogenesis? J Cell Commun Signal. 7:235–237. 2013.
View Article : Google Scholar : PubMed/NCBI
|