Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2016 Volume 11 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2016 Volume 11 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Structure, functional regulation and signaling properties of Rap2B (Review)

  • Authors:
    • Debao Qu
    • Hui Huang
    • Jiehui Di
    • Keyu Gao
    • Zheng Lu
    • Junnian Zheng
  • View Affiliations / Copyright

    Affiliations: Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
  • Pages: 2339-2346
    |
    Published online on: February 23, 2016
       https://doi.org/10.3892/ol.2016.4261
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The Ras family small guanosine 5'-triphosphate (GTP)-binding protein Rap2B is is a member of the Ras oncogene family and a novel target of p53 that regulates the p53-mediated pro-survival function of cells. The Rap2B protein shares ~90% homology with Rap2A, and its sequence is 70% identical to other members of the Rap family such as RaplA and RaplB. As a result, Rap2B has been theorized to have similar signaling effectors to the GTPase‑binding protein Rap, which mediates various biological functions, including the regulation of sterile 20/mitogen‑activated proteins. Since its identification in the early 1990s, Rap2B has elicited a considerable interest. Numerous studies indicate that Rap2B exerts specific biological functions, including binding and stimulating phospholipase C‑ε and interferon‑γ. In addition, downregulation of Rap2B affects the growth of melanoma cells. The present review summarizes the possible effectors and biological functions of Rap2B. Increasing evidence clearly supports the association between Rap2B function and tumor development. Therefore, it is conceivable that anticancer drugs targeting Rap2B may be generated as novel therapies against cancer.
View Figures

Figure 1

Figure 2

View References

1 

Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu X, Kovalchuk A, Zhang W and Huang J: Rap2b, a novel p53 target, regulates p53-mediated pro-survival function. Cell cycle. 12:1279–1291. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Takashima A and Faller DV: Targeting the RAS oncogene. Expert Opin Ther Targets. 17:507–531. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Mackay DJ and Hall A: Rho GTPases. J Biol Chem. 273:20685–20688. 1998. View Article : Google Scholar : PubMed/NCBI

4 

Vojtek AB and Der CJ: Increasing complexity of the Ras signaling pathway. J Biol Chem. 273:19925–19928. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Takai Y, Sasaki T and Matozaki T: Small GTP-binding proteins. Physiol Rev. 81:153–208. 2001.PubMed/NCBI

6 

Bourne HR, Sanders DA and McCormick F: The GTPase superfamily: A conserved switch for diverse cell functions. Nature. 348:125–132. 1990. View Article : Google Scholar : PubMed/NCBI

7 

Bourne HR, Sanders DA and McCormick F: The GTPase superfamily: Conserved structure and molecular mechanism. Nature. 349:117–127. 1991. View Article : Google Scholar : PubMed/NCBI

8 

Paganini S, Guidetti GF, Catricalà S, Trionfini P, Panelli S, Balduini C and Torti M: Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie. 88:285–295. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Greco F, Ciana A, Pietra D, Balduini C, Minetti G and Torti M: Rap2, but not Rap1 GTPase is expressed in human red blood cells and is involved in vesiculation. Biochim Biophys Acta. 1763:330–335. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Ohmstede CA, Farrell FX, Reep BR, Clemetson KJ and Lapetina EG: RAP2B: A RAS-related GTP-binding protein from platelets. Proc Natl Acad Sci USA. 87:6527–6531. 1990. View Article : Google Scholar : PubMed/NCBI

11 

Lapetina EG, Lacal JC, Reep BR and Vedia Molinay L: A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci USA. 86:3131–3134. 1989. View Article : Google Scholar : PubMed/NCBI

12 

Klinz FJ, Seifert R, Schwaner I, Gausepohl H, Frank R and Schultz G: Generation of specific antibodies against the rap1A, rap1B and rap2 small GTP-binding proteins. Analysis of rap and ras proteins in membranes from mammalian cells. Eur J Biochem. 207:207–213. 1992. View Article : Google Scholar : PubMed/NCBI

13 

Winegar DA, Molina y Vedia L and Lapetina EG: Isoprenylation of rap2 proteins in platelets and human erythroleukemia cells. J Biol Chem. 266:4381–4386. 1991.PubMed/NCBI

14 

Farrell FX, Yamamoto K and Lapetina EG: Prenyl group identification of rap2 proteins: A ras superfamily member other than ras that is farnesylated. Biochem J. 289:349–355. 1993. View Article : Google Scholar : PubMed/NCBI

15 

Farrell FX, Ohmstede CA, Reep BR and Lapetina EG: cDNA sequence of a new ras-related gene (rap2b) isolated from human platelets with sequence homology to rap2. Nucleic Acids Res. 18:42811990. View Article : Google Scholar : PubMed/NCBI

16 

Lerosey I, Chardin P, de Gunzburg J and Tavitian A: The product of the rap2 gene, member of the ras superfamily. Biochemical characterization and site-directed mutagenesis. J Biol Chem. 266:4315–4321. 1991.PubMed/NCBI

17 

Torti M and Lapetina EG: Structure and function of rap proteins in human platelets. Thromb Haemost. 71:533–543. 1994.PubMed/NCBI

18 

Greco F, Sinigaglia F, Balduini C and Torti M: Activation of the small GTPase Rap2B in agonist-stimulated human platelets. J Thromb Haemost. 2:2223–2230. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Chen J, Liang H and Fernández A: Protein structure protection commits gene expression patterns. Genome Biol. 9:R1072008. View Article : Google Scholar : PubMed/NCBI

20 

Heo WD and Meyer T: Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases. Cell. 113:315–328. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Sun W, Zhang K, Zhang X, Lei W, Xiao T, Ma J, Guo S, Shao S, Zhang H, Liu Y, et al: Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization. Cancer Lett. 212:83–93. 2004. View Article : Google Scholar : PubMed/NCBI

22 

An Q, Pacyna-Gengelbach M, Schlüns K, Deutschmann N, Guo S, Gao Y, Zhang J, Cheng S and Petersen I: Identification of differentially expressed genes in immortalized human bronchial epithelial cell line as a model for in vitro study of lung carcinogenesis. Int J Cancer. 103:194–204. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Schlicker A, Domingues FS, Rahnenführer J and Lengauer T: A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinformatics. 7:3022006. View Article : Google Scholar : PubMed/NCBI

24 

Colicelli J: Human RAS superfamily proteins and related GTPases. Sci STKE. 2004:RE132004.PubMed/NCBI

25 

Myagmar BE, Umikawa M, Asato T, Taira K, Oshiro M, Hino A, Takei K, Uezato H and Kariya K: PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector. Biochem Biophys Res Commun. 329:1046–1052. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Taguchi T and Misaki R: Palmitoylation pilots ras to recycling endosomes. Small GTPases. 2:82–84. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Canobbio I, Trionfini P, Guidetti GF, Balduini C and Torti M: Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets. Cell Signal. 20:1662–1670. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Raaijmakers JH and Bos JL: Specificity in Ras and Rap signaling. J Biol Chem. 284:10995–10999. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Hattori M and Minato N: Rap1 GTPase: Functions, regulation, and malignancy. J Biochem. 134:479–484. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Molinay Vedia L, Ohmstede CA and Lapetina EG: Properties of the exchange rate of guanine nucleotides to the novel rap-2B protein. Biochem Biophys Res Commun. 171:319–324. 1990. View Article : Google Scholar : PubMed/NCBI

31 

de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A and Bos JL: Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 396:474–477. 1998. View Article : Google Scholar : PubMed/NCBI

32 

de Rooij J, Rehmann H, van Triest M, Cool RH, Wittinghofer A and Bos JL: Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem. 275:20829–20836. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Lopez I, Mak EC, Ding J, Hamm HE and Lomasney JW: A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem. 276:2758–2765. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Kelley GG, Reks SE, Ondrako JM and Smrcka AV: Phospholipase C(epsilon): A novel Ras effector. EMBO J. 20:743–754. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T and Kataoka T: Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem. 276:2752–2757. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Cherfils J and Chardin P: GEFs: Structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci. 24:306–311. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Stork PJ: Does Rap1 deserve a bad Rap? Trends Biochem Sci. 28:267–275. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Keiper M, Stope MB, Szatkowski D, Böhm A, Tysack K, Dorp Vom F, Saur O, Weernink Oude PA, Evellin S, Jakobs KH and Schmidt M: Epac- and Ca2+-controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J Biol Chem. 279:46497–46508. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Rebhun JF, Castro AF and Quilliam LA: Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction. J Biol Chem. 275:34901–34908. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Gasper R, Sot B and Wittinghofer A: GTPase activity of Di-Ras proteins is stimulated by Rap1GAP proteins. Small GTPases. 1:133–141. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Ryu J, Futai K, Feliu M, Weinberg R and Sheng M: Constitutively active Rap2 transgenic mice display fewer dendritic spines, reduced extracellular signal-regulated kinase signaling, enhanced long-term depression, and impaired spatial learning and fear extinction. J Neurosci. 28:8178–8188. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Taira K, Umikawa M, Takei K, Myagmar BE, Shinzato M, Machida N, Uezato H, Nonaka S and Kariya K: The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J Biol Chem. 279:49488–49496. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Nonaka H, Takei K, Umikawa M, Oshiro M, Kuninaka K, Bayarjargal M, Asato T, Yamashiro Y, Uechi Y, Endo S, et al: MINK is a Rap2 effector for phosphorylation of the postsynaptic scaffold protein TANC1. Biochem Biophys Res Commun. 377:573–578. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Machida N, Umikawa M, Takei K, Sakima N, Myagmar BE, Taira K, Uezato H, Ogawa Y and Kariya K: Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. J Biol Chem. 279:15711–15714. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Wright JH, Wang X, Manning G, LaMere BJ, Le P, Zhu S, Khatry D, Flanagan PM, Buckley SD, Whyte DB, et al: The STE20 kinase HGK is broadly expressed in human tumor cells and can modulate cellular transformation, invasion, and adhesion. Mol Cell Biol. 23:2068–2082. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Collins CS, Hong J, Sapinoso L, Zhou Y, Liu Z, Micklash K, Schultz PG and Hampton GM: A small interfering RNA screen for modulators of tumor cell motility identifies MAP4K4 as a promigratory kinase. Proc Natl Acad Sci USA. 103:3775–3780. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Uechi Y, Bayarjargal M, Umikawa M, Oshiro M, Takei K, Yamashiro Y, Asato T, Endo S, Misaki R, Taguchi T and Kariya K: Rap2 function requires palmitoylation and recycling endosome localization. Biochem Biophys Res Commun. 378:732–737. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Raguz S, De Bella MT, Slade MJ, Higgins CF, Coombes RC and Yagüe E: Expression of RPIP9 (Rap2 interacting protein 9) is activated in breast carcinoma and correlates with a poor prognosis. Int J Cancer. 117:934–941. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Wang S, Zhang Z, Ying K, Chen JZ, Meng XF, Yang QS, Xie Y and Mao YM: Cloning, expression, and genomic structure of a novel human Rap2 interacting gene (RPIP9). Biochem Genet. 41:13–25. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Okamura SM, Oki-Idouchi CE and Lorenzo PS: The exchange factor and diacylglycerol receptor RasGRP3 interacts with dynein light chain 1 through its C-terminal domain. J Biol Chem. 281:36132–36139. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Nomura K, Kanemura H, Satoh T and Kataoka T: Identification of a novel domain of Ras and Rap1 that directs their differential subcellular localizations. J Biol Chem. 279:22664–22673. 2004. View Article : Google Scholar : PubMed/NCBI

52 

Vousden KH and Prives C: Blinded by the light: The growing complexity of p53. Cell. 137:413–431. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Rozan LM and El-Deiry WS: p53 downstream target genes and tumor suppression: A classical view in evolution. Cell Death Differ. 14:3–9. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Kruse JP and Gu W: Modes of p53 regulation. Cell. 137:609–622. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Fischer TH, Gatling MN, Lacal JC and White GC II: rap1B, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton. J Biol Chem. 265:19405–19408. 1990.PubMed/NCBI

56 

Torti M, Ramaschi G, Sinigaglia F, Lapetina EG and Balduini C: Association of the low molecular weight GTP-binding protein rap2B with the cytoskeleton during platelet aggregation. Proc Natl Acad Sci USA. 90:7553–7557. 1993. View Article : Google Scholar : PubMed/NCBI

57 

Meyer D and Girma JP: von Willebrand factor: Structure and function. Thromb Haemost. 70:99–104. 1993.PubMed/NCBI

58 

Clemetson KJ: Platelet GPIb-V–IX complex. Thromb Haemost. 78:266–270. 1997.PubMed/NCBI

59 

Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG and Balduini C: Rap1B and Rap2B translocation to the cytoskeleton by von Willebrand factor involves FcgammaII receptor-mediated protein tyrosine phosphorylation. J Biol Chem. 274:13690–13697. 1999. View Article : Google Scholar : PubMed/NCBI

60 

Rosado JA and Sage SO: Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: Evidence for involvement of small GTP-binding proteins and actin cytoskeleton. Biochem J. 347:183–192. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Pike LJ: Lipid rafts: Heterogeneity on the high seas. Biochem J. 378:281–292. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Gousset K, Wolkers WF, Tsvetkova NM, Oliver AE, Field CL, Walker NJ, Crowe JH and Tablin F: Evidence for a physiological role for membrane rafts in human platelets. J Cell Physiol. 190:117–128. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Bodin S, Tronchère H and Payrastre B: Lipid rafts are critical membrane domains in blood platelet activation processes. Biochim Biophys Acta. 1610:247–257. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Torti M, Ramaschi G, Sinigaglia F, Lapetina EG and Balduini C: Glycoprotein IIb-IIIa and the translocation of Rap2B to the platelet cytoskeleton. Proc Natl Acad Sci USA. 91:4239–4243. 1994. View Article : Google Scholar : PubMed/NCBI

65 

Drin G and Scarlata S: Stimulation of phospholipase Cbeta by membrane interactions, interdomain movement, and G protein binding - how many ways can you activate an enzyme? Cell Signal. 19:1383–1392. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Hicks SN, Jezyk MR, Gershburg S, Seifert JP, Harden TK and Sondek J: General and versatile autoinhibition of PLC isozymes. Mol Cell. 31:383–394. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Ehrlich LS, Medina GN and Carter CA: ESCRT machinery potentiates HIV-1 utilization of the PI(4,5)P(2)-PLC-IP3R-Ca(2+) signaling cascade. J Mol Biol. 413:347–358. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW and Jakobs KH: A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 3:1020–1024. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Kelley GG, Reks SE and Smrcka AV: Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochem J. 378:129–139. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Seifert JP, Zhou Y, Hicks SN, Sondek J and Harden TK: Dual activation of phospholipase C-epsilon by Rho and Ras GTPases. J Biol Chem. 283:29690–29698. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Wing MR, Bourdon DM and Harden TK: PLC-epsilon: A shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv. 3:273–280. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Jin TG, Satoh T, Liao Y, Song C, Gao X, Kariya K, Hu CD and Kataoka T: Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling. J Biol Chem. 276:30301–30307. 2001. View Article : Google Scholar : PubMed/NCBI

73 

Song C, Satoh T, Edamatsu H, Wu D, Tadano M, Gao X and Kataoka T: Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene. 21:8105–8113. 2002. View Article : Google Scholar : PubMed/NCBI

74 

Wing MR, Snyder JT, Sondek J and Harden TK: Direct activation of phospholipase C-epsilon by Rho. J Biol Chem. 278:41253–41258. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Stope MB, Vom Dorp F, Szatkowski D, Böhm A, Keiper M, Nolte J, Oude Weernink PA, Rosskopf D, Evellin S, Jakobs KH and Schmidt M: Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol Cell Biol. 24:4664–4676. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, Weernink PA, Jakobs KH, Webb EJ, Lomasney JW and Schmidt M: Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem. 277:16805–16813. 2002. View Article : Google Scholar : PubMed/NCBI

77 

Ivins JK, Yurchenco PD and Lander AD: Regulation of neurite outgrowth by integrin activation. J Neurosci. 20:6551–6560. 2000.PubMed/NCBI

78 

Jeong HW, Nam JO and Kim IS: The COOH-terminal end of R-Ras alters the motility and morphology of breast epithelial cells through Rho/Rho-kinase. Cancer Res. 65:507–515. 2005.PubMed/NCBI

79 

Keely PJ, Rusyn EV, Cox AD and Parise LV: R-Ras signals through specific integrin alpha cytoplasmic domains to promote migration and invasion of breast epithelial cells. J Cell Biol. 145:1077–1088. 1999. View Article : Google Scholar : PubMed/NCBI

80 

Kwong L, Wozniak MA, Collins AS, Wilson SD and Keely PJ: R-Ras promotes focal adhesion formation through focal adhesion kinase and p130(Cas) by a novel mechanism that differs from integrins. Mol Cell Biol. 23:933–949. 2003. View Article : Google Scholar : PubMed/NCBI

81 

Self AJ, Caron E, Paterson HF and Hall A: Analysis of R-Ras signalling pathways. J Cell Sci. 114:1357–1366. 2001.PubMed/NCBI

82 

Sethi T, Ginsberg MH, Downward J and Hughes PE: The small GTP-binding protein R-Ras can influence integrin activation by antagonizing a Ras/Raf-initiated integrin suppression pathway. Mol Biol Cell. 10:1799–1809. 1999. View Article : Google Scholar : PubMed/NCBI

83 

Wozniak MA, Kwong L, Chodniewicz D, Klemke RL and Keely PJ: R-Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho. Mol Biol Cell. 16:84–96. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Schroder K, Hertzog PJ, Ravasi T and Hume DA: Interferon-gamma: An overview of signals, mechanisms and functions. J Leukoc Biol. 75:163–189. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Gollob JA, Sciambi CJ, Huang Z and Dressman HK: Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-gamma. Cancer Res. 65:8869–8877. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Avery-Kiejda KA, Bowden NA, Croft AJ, Scurr LL, Kairupan CF, Ashton KA, Talseth-Palmer BA, Rizos H, Zhang XD, Scott RJ and Hersey P: P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer. 11:2032011. View Article : Google Scholar : PubMed/NCBI

87 

Fu G, Liu Y, Yuan J, Zheng H, Shi T, Lei W, Xiao T, Gao Y and Cheng S: Identification and functional analysis of a novel candidate oncogene RAP2B in lung cancer. Zhongguo Fei Ai Za Zhi. 12:273–276. 2009.(In Chinese). PubMed/NCBI

88 

Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, Zhang X, Feng L, Lei W, Zhang Z, et al: Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer. 56:307–317. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Tang X, Mo C, Wang Y, Wei D and Xiao H: Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology. 138:93–104. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Boffetta P, Winn DM, Ioannidis JP, Thomas DC, Little J, Smith GD, Cogliano VJ, Hecht SS, Seminara D, Vineis P and Khoury MJ: Recommendations and proposed guidelines for assessing the cumulative evidence on joint effects of genes and environments on cancer occurrence in humans. Int J Epidemiol. 41:686–704. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Lee EY and Muller WJ: Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol. 2:a0032362010. View Article : Google Scholar : PubMed/NCBI

92 

Tsygankova OM, Wang H and Meinkoth JL: Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP). J Biol Chem. 288:24636–24646. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Pannekoek WJ, Linnemann JR, Brouwer PM, Bos JL and Rehmann H: Rap1 and Rap2 antagonistically control endothelial barrier resistance. PLoS One. 8:e579032013. View Article : Google Scholar : PubMed/NCBI

94 

Borland G, Smith BO and Yarwood SJ: EPAC proteins transduce diverse cellular actions of cAMP. Br J Pharmacol. 158:70–86. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Kennedy NJ, Sluss HK, Jones SN, Bar-Sagi D, Flavell RA and Davis RJ: Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev. 17:629–637. 2003. View Article : Google Scholar : PubMed/NCBI

96 

Potapova O, Gorospe M, Bost F, Dean NM, Gaarde WA, Mercola D and Holbrook NJ: c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells. J Biol Chem. 275:24767–24775. 2000. View Article : Google Scholar : PubMed/NCBI

97 

Bost F, McKay R, Bost M, Potapova O, Dean NM and Mercola D: The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol. 19:1938–1949. 1999. View Article : Google Scholar : PubMed/NCBI

98 

Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell. 103:239–252. 2000. View Article : Google Scholar : PubMed/NCBI

99 

Margaritopoulos GA, Tsitoura E, Tzanakis N, Spandidos DA, Siafakas NM, Sourvinos G and Antoniou KM: Self-eating: Friend or foe? The emerging role of autophagy in idiopathic pulmonary fibrosis. BioMed Res Int. 2013:4204972013. View Article : Google Scholar : PubMed/NCBI

100 

Haspel JA and Choi AM: Autophagy: A core cellular process with emerging links to pulmonary disease. Am J Respir Crit Care Med. 184:1237–1246. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Jarry TM, Memmi G and Cheung AL: The expression of alpha-haemolysin is required for Staphylococcus aureus phagosomal escape after internalization in CFT-1 cells. Cell Microbiol. 10:1801–1814. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Mestre MB, Fader CM, Sola C and Colombo MI: Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. Autophagy. 6:110–125. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Mestre MB and Colombo MI: Staphylococcus aureus promotes autophagy by decreasing intracellular cAMP levels. Autophagy. 8:1865–1867. 2012. View Article : Google Scholar : PubMed/NCBI

104 

McLeod SJ, Shum AJ, Lee RL, Takei F and Gold MR: The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem. 279:12009–12019. 2004. View Article : Google Scholar : PubMed/NCBI

105 

Di JH, Qu DB, Lu Z, Li LT, Cheng Q, Xin Y, Zhang LZ, Zhang Y and Zheng JN: Rap2B promotes migration and invasion of human suprarenal epithelioma. Tumour Biol. 35:9387–9394. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qu D, Huang H, Di J, Gao K, Lu Z and Zheng J: Structure, functional regulation and signaling properties of Rap2B (Review). Oncol Lett 11: 2339-2346, 2016.
APA
Qu, D., Huang, H., Di, J., Gao, K., Lu, Z., & Zheng, J. (2016). Structure, functional regulation and signaling properties of Rap2B (Review). Oncology Letters, 11, 2339-2346. https://doi.org/10.3892/ol.2016.4261
MLA
Qu, D., Huang, H., Di, J., Gao, K., Lu, Z., Zheng, J."Structure, functional regulation and signaling properties of Rap2B (Review)". Oncology Letters 11.4 (2016): 2339-2346.
Chicago
Qu, D., Huang, H., Di, J., Gao, K., Lu, Z., Zheng, J."Structure, functional regulation and signaling properties of Rap2B (Review)". Oncology Letters 11, no. 4 (2016): 2339-2346. https://doi.org/10.3892/ol.2016.4261
Copy and paste a formatted citation
x
Spandidos Publications style
Qu D, Huang H, Di J, Gao K, Lu Z and Zheng J: Structure, functional regulation and signaling properties of Rap2B (Review). Oncol Lett 11: 2339-2346, 2016.
APA
Qu, D., Huang, H., Di, J., Gao, K., Lu, Z., & Zheng, J. (2016). Structure, functional regulation and signaling properties of Rap2B (Review). Oncology Letters, 11, 2339-2346. https://doi.org/10.3892/ol.2016.4261
MLA
Qu, D., Huang, H., Di, J., Gao, K., Lu, Z., Zheng, J."Structure, functional regulation and signaling properties of Rap2B (Review)". Oncology Letters 11.4 (2016): 2339-2346.
Chicago
Qu, D., Huang, H., Di, J., Gao, K., Lu, Z., Zheng, J."Structure, functional regulation and signaling properties of Rap2B (Review)". Oncology Letters 11, no. 4 (2016): 2339-2346. https://doi.org/10.3892/ol.2016.4261
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team