|
1
|
Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu
X, Kovalchuk A, Zhang W and Huang J: Rap2b, a novel p53 target,
regulates p53-mediated pro-survival function. Cell cycle.
12:1279–1291. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Takashima A and Faller DV: Targeting the
RAS oncogene. Expert Opin Ther Targets. 17:507–531. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mackay DJ and Hall A: Rho GTPases. J Biol
Chem. 273:20685–20688. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Vojtek AB and Der CJ: Increasing
complexity of the Ras signaling pathway. J Biol Chem.
273:19925–19928. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Takai Y, Sasaki T and Matozaki T: Small
GTP-binding proteins. Physiol Rev. 81:153–208. 2001.PubMed/NCBI
|
|
6
|
Bourne HR, Sanders DA and McCormick F: The
GTPase superfamily: A conserved switch for diverse cell functions.
Nature. 348:125–132. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bourne HR, Sanders DA and McCormick F: The
GTPase superfamily: Conserved structure and molecular mechanism.
Nature. 349:117–127. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Paganini S, Guidetti GF, Catricalà S,
Trionfini P, Panelli S, Balduini C and Torti M: Identification and
biochemical characterization of Rap2C, a new member of the Rap
family of small GTP-binding proteins. Biochimie. 88:285–295. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Greco F, Ciana A, Pietra D, Balduini C,
Minetti G and Torti M: Rap2, but not Rap1 GTPase is expressed in
human red blood cells and is involved in vesiculation. Biochim
Biophys Acta. 1763:330–335. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ohmstede CA, Farrell FX, Reep BR,
Clemetson KJ and Lapetina EG: RAP2B: A RAS-related GTP-binding
protein from platelets. Proc Natl Acad Sci USA. 87:6527–6531. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lapetina EG, Lacal JC, Reep BR and Vedia
Molinay L: A ras-related protein is phosphorylated and translocated
by agonists that increase cAMP levels in human platelets. Proc Natl
Acad Sci USA. 86:3131–3134. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Klinz FJ, Seifert R, Schwaner I, Gausepohl
H, Frank R and Schultz G: Generation of specific antibodies against
the rap1A, rap1B and rap2 small GTP-binding proteins. Analysis of
rap and ras proteins in membranes from mammalian cells. Eur J
Biochem. 207:207–213. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Winegar DA, Molina y Vedia L and Lapetina
EG: Isoprenylation of rap2 proteins in platelets and human
erythroleukemia cells. J Biol Chem. 266:4381–4386. 1991.PubMed/NCBI
|
|
14
|
Farrell FX, Yamamoto K and Lapetina EG:
Prenyl group identification of rap2 proteins: A ras superfamily
member other than ras that is farnesylated. Biochem J. 289:349–355.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Farrell FX, Ohmstede CA, Reep BR and
Lapetina EG: cDNA sequence of a new ras-related gene (rap2b)
isolated from human platelets with sequence homology to rap2.
Nucleic Acids Res. 18:42811990. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lerosey I, Chardin P, de Gunzburg J and
Tavitian A: The product of the rap2 gene, member of the ras
superfamily. Biochemical characterization and site-directed
mutagenesis. J Biol Chem. 266:4315–4321. 1991.PubMed/NCBI
|
|
17
|
Torti M and Lapetina EG: Structure and
function of rap proteins in human platelets. Thromb Haemost.
71:533–543. 1994.PubMed/NCBI
|
|
18
|
Greco F, Sinigaglia F, Balduini C and
Torti M: Activation of the small GTPase Rap2B in agonist-stimulated
human platelets. J Thromb Haemost. 2:2223–2230. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen J, Liang H and Fernández A: Protein
structure protection commits gene expression patterns. Genome Biol.
9:R1072008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Heo WD and Meyer T: Switch-of-function
mutants based on morphology classification of Ras superfamily small
GTPases. Cell. 113:315–328. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sun W, Zhang K, Zhang X, Lei W, Xiao T, Ma
J, Guo S, Shao S, Zhang H, Liu Y, et al: Identification of
differentially expressed genes in human lung squamous cell
carcinoma using suppression subtractive hybridization. Cancer Lett.
212:83–93. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
An Q, Pacyna-Gengelbach M, Schlüns K,
Deutschmann N, Guo S, Gao Y, Zhang J, Cheng S and Petersen I:
Identification of differentially expressed genes in immortalized
human bronchial epithelial cell line as a model for in vitro study
of lung carcinogenesis. Int J Cancer. 103:194–204. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Schlicker A, Domingues FS, Rahnenführer J
and Lengauer T: A new measure for functional similarity of gene
products based on Gene Ontology. BMC Bioinformatics. 7:3022006.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Colicelli J: Human RAS superfamily
proteins and related GTPases. Sci STKE. 2004:RE132004.PubMed/NCBI
|
|
25
|
Myagmar BE, Umikawa M, Asato T, Taira K,
Oshiro M, Hino A, Takei K, Uezato H and Kariya K: PARG1, a
protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2
effector. Biochem Biophys Res Commun. 329:1046–1052. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Taguchi T and Misaki R: Palmitoylation
pilots ras to recycling endosomes. Small GTPases. 2:82–84. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Canobbio I, Trionfini P, Guidetti GF,
Balduini C and Torti M: Targeting of the small GTPase Rap2b, but
not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176
and Cys177 and is required for efficient protein activation in
human platelets. Cell Signal. 20:1662–1670. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Raaijmakers JH and Bos JL: Specificity in
Ras and Rap signaling. J Biol Chem. 284:10995–10999. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hattori M and Minato N: Rap1 GTPase:
Functions, regulation, and malignancy. J Biochem. 134:479–484.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Molinay Vedia L, Ohmstede CA and Lapetina
EG: Properties of the exchange rate of guanine nucleotides to the
novel rap-2B protein. Biochem Biophys Res Commun. 171:319–324.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
de Rooij J, Zwartkruis FJ, Verheijen MH,
Cool RH, Nijman SM, Wittinghofer A and Bos JL: Epac is a Rap1
guanine-nucleotide-exchange factor directly activated by cyclic
AMP. Nature. 396:474–477. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
32
|
de Rooij J, Rehmann H, van Triest M, Cool
RH, Wittinghofer A and Bos JL: Mechanism of regulation of the Epac
family of cAMP-dependent RapGEFs. J Biol Chem. 275:20829–20836.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lopez I, Mak EC, Ding J, Hamm HE and
Lomasney JW: A novel bifunctional phospholipase c that is regulated
by Galpha 12 and stimulates the Ras/mitogen-activated protein
kinase pathway. J Biol Chem. 276:2758–2765. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kelley GG, Reks SE, Ondrako JM and Smrcka
AV: Phospholipase C(epsilon): A novel Ras effector. EMBO J.
20:743–754. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Song C, Hu CD, Masago M, Kariyai K,
Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T and Kataoka T:
Regulation of a novel human phospholipase C, PLCepsilon, through
membrane targeting by Ras. J Biol Chem. 276:2752–2757. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cherfils J and Chardin P: GEFs: Structural
basis for their activation of small GTP-binding proteins. Trends
Biochem Sci. 24:306–311. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Stork PJ: Does Rap1 deserve a bad Rap?
Trends Biochem Sci. 28:267–275. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Keiper M, Stope MB, Szatkowski D, Böhm A,
Tysack K, Dorp Vom F, Saur O, Weernink Oude PA, Evellin S, Jakobs
KH and Schmidt M: Epac- and Ca2+-controlled activation
of Ras and extracellular signal-regulated kinases by Gs-coupled
receptors. J Biol Chem. 279:46497–46508. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rebhun JF, Castro AF and Quilliam LA:
Identification of guanine nucleotide exchange factors (GEFs) for
the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction. J
Biol Chem. 275:34901–34908. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gasper R, Sot B and Wittinghofer A: GTPase
activity of Di-Ras proteins is stimulated by Rap1GAP proteins.
Small GTPases. 1:133–141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ryu J, Futai K, Feliu M, Weinberg R and
Sheng M: Constitutively active Rap2 transgenic mice display fewer
dendritic spines, reduced extracellular signal-regulated kinase
signaling, enhanced long-term depression, and impaired spatial
learning and fear extinction. J Neurosci. 28:8178–8188. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Taira K, Umikawa M, Takei K, Myagmar BE,
Shinzato M, Machida N, Uezato H, Nonaka S and Kariya K: The Traf2-
and Nck-interacting kinase as a putative effector of Rap2 to
regulate actin cytoskeleton. J Biol Chem. 279:49488–49496. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nonaka H, Takei K, Umikawa M, Oshiro M,
Kuninaka K, Bayarjargal M, Asato T, Yamashiro Y, Uechi Y, Endo S,
et al: MINK is a Rap2 effector for phosphorylation of the
postsynaptic scaffold protein TANC1. Biochem Biophys Res Commun.
377:573–578. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Machida N, Umikawa M, Takei K, Sakima N,
Myagmar BE, Taira K, Uezato H, Ogawa Y and Kariya K:
Mitogen-activated protein kinase kinase kinase kinase 4 as a
putative effector of Rap2 to activate the c-Jun N-terminal kinase.
J Biol Chem. 279:15711–15714. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wright JH, Wang X, Manning G, LaMere BJ,
Le P, Zhu S, Khatry D, Flanagan PM, Buckley SD, Whyte DB, et al:
The STE20 kinase HGK is broadly expressed in human tumor cells and
can modulate cellular transformation, invasion, and adhesion. Mol
Cell Biol. 23:2068–2082. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Collins CS, Hong J, Sapinoso L, Zhou Y,
Liu Z, Micklash K, Schultz PG and Hampton GM: A small interfering
RNA screen for modulators of tumor cell motility identifies MAP4K4
as a promigratory kinase. Proc Natl Acad Sci USA. 103:3775–3780.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Uechi Y, Bayarjargal M, Umikawa M, Oshiro
M, Takei K, Yamashiro Y, Asato T, Endo S, Misaki R, Taguchi T and
Kariya K: Rap2 function requires palmitoylation and recycling
endosome localization. Biochem Biophys Res Commun. 378:732–737.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Raguz S, De Bella MT, Slade MJ, Higgins
CF, Coombes RC and Yagüe E: Expression of RPIP9 (Rap2 interacting
protein 9) is activated in breast carcinoma and correlates with a
poor prognosis. Int J Cancer. 117:934–941. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang S, Zhang Z, Ying K, Chen JZ, Meng XF,
Yang QS, Xie Y and Mao YM: Cloning, expression, and genomic
structure of a novel human Rap2 interacting gene (RPIP9). Biochem
Genet. 41:13–25. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Okamura SM, Oki-Idouchi CE and Lorenzo PS:
The exchange factor and diacylglycerol receptor RasGRP3 interacts
with dynein light chain 1 through its C-terminal domain. J Biol
Chem. 281:36132–36139. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nomura K, Kanemura H, Satoh T and Kataoka
T: Identification of a novel domain of Ras and Rap1 that directs
their differential subcellular localizations. J Biol Chem.
279:22664–22673. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vousden KH and Prives C: Blinded by the
light: The growing complexity of p53. Cell. 137:413–431. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rozan LM and El-Deiry WS: p53 downstream
target genes and tumor suppression: A classical view in evolution.
Cell Death Differ. 14:3–9. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kruse JP and Gu W: Modes of p53
regulation. Cell. 137:609–622. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fischer TH, Gatling MN, Lacal JC and White
GC II: rap1B, a cAMP-dependent protein kinase substrate, associates
with the platelet cytoskeleton. J Biol Chem. 265:19405–19408.
1990.PubMed/NCBI
|
|
56
|
Torti M, Ramaschi G, Sinigaglia F,
Lapetina EG and Balduini C: Association of the low molecular weight
GTP-binding protein rap2B with the cytoskeleton during platelet
aggregation. Proc Natl Acad Sci USA. 90:7553–7557. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Meyer D and Girma JP: von Willebrand
factor: Structure and function. Thromb Haemost. 70:99–104.
1993.PubMed/NCBI
|
|
58
|
Clemetson KJ: Platelet GPIb-V–IX complex.
Thromb Haemost. 78:266–270. 1997.PubMed/NCBI
|
|
59
|
Torti M, Bertoni A, Canobbio I, Sinigaglia
F, Lapetina EG and Balduini C: Rap1B and Rap2B translocation to the
cytoskeleton by von Willebrand factor involves FcgammaII
receptor-mediated protein tyrosine phosphorylation. J Biol Chem.
274:13690–13697. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rosado JA and Sage SO: Farnesylcysteine
analogues inhibit store-regulated Ca2+ entry in human
platelets: Evidence for involvement of small GTP-binding proteins
and actin cytoskeleton. Biochem J. 347:183–192. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pike LJ: Lipid rafts: Heterogeneity on the
high seas. Biochem J. 378:281–292. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gousset K, Wolkers WF, Tsvetkova NM,
Oliver AE, Field CL, Walker NJ, Crowe JH and Tablin F: Evidence for
a physiological role for membrane rafts in human platelets. J Cell
Physiol. 190:117–128. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bodin S, Tronchère H and Payrastre B:
Lipid rafts are critical membrane domains in blood platelet
activation processes. Biochim Biophys Acta. 1610:247–257. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Torti M, Ramaschi G, Sinigaglia F,
Lapetina EG and Balduini C: Glycoprotein IIb-IIIa and the
translocation of Rap2B to the platelet cytoskeleton. Proc Natl Acad
Sci USA. 91:4239–4243. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Drin G and Scarlata S: Stimulation of
phospholipase Cbeta by membrane interactions, interdomain movement,
and G protein binding - how many ways can you activate an enzyme?
Cell Signal. 19:1383–1392. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hicks SN, Jezyk MR, Gershburg S, Seifert
JP, Harden TK and Sondek J: General and versatile autoinhibition of
PLC isozymes. Mol Cell. 31:383–394. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ehrlich LS, Medina GN and Carter CA: ESCRT
machinery potentiates HIV-1 utilization of the
PI(4,5)P(2)-PLC-IP3R-Ca(2+) signaling cascade. J Mol Biol.
413:347–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Schmidt M, Evellin S, Weernink PA, von
Dorp F, Rehmann H, Lomasney JW and Jakobs KH: A new
phospholipase-C-calcium signalling pathway mediated by cyclic AMP
and a Rap GTPase. Nat Cell Biol. 3:1020–1024. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kelley GG, Reks SE and Smrcka AV: Hormonal
regulation of phospholipase Cepsilon through distinct and
overlapping pathways involving G12 and Ras family G-proteins.
Biochem J. 378:129–139. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Seifert JP, Zhou Y, Hicks SN, Sondek J and
Harden TK: Dual activation of phospholipase C-epsilon by Rho and
Ras GTPases. J Biol Chem. 283:29690–29698. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wing MR, Bourdon DM and Harden TK:
PLC-epsilon: A shared effector protein in Ras-, Rho-, and G alpha
beta gamma-mediated signaling. Mol Interv. 3:273–280. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jin TG, Satoh T, Liao Y, Song C, Gao X,
Kariya K, Hu CD and Kataoka T: Role of the CDC25 homology domain of
phospholipase Cepsilon in amplification of Rap1-dependent
signaling. J Biol Chem. 276:30301–30307. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Song C, Satoh T, Edamatsu H, Wu D, Tadano
M, Gao X and Kataoka T: Differential roles of Ras and Rap1 in
growth factor-dependent activation of phospholipase C epsilon.
Oncogene. 21:8105–8113. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wing MR, Snyder JT, Sondek J and Harden
TK: Direct activation of phospholipase C-epsilon by Rho. J Biol
Chem. 278:41253–41258. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Stope MB, Vom Dorp F, Szatkowski D, Böhm
A, Keiper M, Nolte J, Oude Weernink PA, Rosskopf D, Evellin S,
Jakobs KH and Schmidt M: Rap2B-dependent stimulation of
phospholipase C-epsilon by epidermal growth factor receptor
mediated by c-Src phosphorylation of RasGRP3. Mol Cell Biol.
24:4664–4676. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Evellin S, Nolte J, Tysack K, vom Dorp F,
Thiel M, Weernink PA, Jakobs KH, Webb EJ, Lomasney JW and Schmidt
M: Stimulation of phospholipase C-epsilon by the M3 muscarinic
acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B.
J Biol Chem. 277:16805–16813. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ivins JK, Yurchenco PD and Lander AD:
Regulation of neurite outgrowth by integrin activation. J Neurosci.
20:6551–6560. 2000.PubMed/NCBI
|
|
78
|
Jeong HW, Nam JO and Kim IS: The
COOH-terminal end of R-Ras alters the motility and morphology of
breast epithelial cells through Rho/Rho-kinase. Cancer Res.
65:507–515. 2005.PubMed/NCBI
|
|
79
|
Keely PJ, Rusyn EV, Cox AD and Parise LV:
R-Ras signals through specific integrin alpha cytoplasmic domains
to promote migration and invasion of breast epithelial cells. J
Cell Biol. 145:1077–1088. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kwong L, Wozniak MA, Collins AS, Wilson SD
and Keely PJ: R-Ras promotes focal adhesion formation through focal
adhesion kinase and p130(Cas) by a novel mechanism that differs
from integrins. Mol Cell Biol. 23:933–949. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Self AJ, Caron E, Paterson HF and Hall A:
Analysis of R-Ras signalling pathways. J Cell Sci. 114:1357–1366.
2001.PubMed/NCBI
|
|
82
|
Sethi T, Ginsberg MH, Downward J and
Hughes PE: The small GTP-binding protein R-Ras can influence
integrin activation by antagonizing a Ras/Raf-initiated integrin
suppression pathway. Mol Biol Cell. 10:1799–1809. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wozniak MA, Kwong L, Chodniewicz D, Klemke
RL and Keely PJ: R-Ras controls membrane protrusion and cell
migration through the spatial regulation of Rac and Rho. Mol Biol
Cell. 16:84–96. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Schroder K, Hertzog PJ, Ravasi T and Hume
DA: Interferon-gamma: An overview of signals, mechanisms and
functions. J Leukoc Biol. 75:163–189. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gollob JA, Sciambi CJ, Huang Z and
Dressman HK: Gene expression changes and signaling events
associated with the direct antimelanoma effect of IFN-gamma. Cancer
Res. 65:8869–8877. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Avery-Kiejda KA, Bowden NA, Croft AJ,
Scurr LL, Kairupan CF, Ashton KA, Talseth-Palmer BA, Rizos H, Zhang
XD, Scott RJ and Hersey P: P53 in human melanoma fails to regulate
target genes associated with apoptosis and the cell cycle and may
contribute to proliferation. BMC Cancer. 11:2032011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Fu G, Liu Y, Yuan J, Zheng H, Shi T, Lei
W, Xiao T, Gao Y and Cheng S: Identification and functional
analysis of a novel candidate oncogene RAP2B in lung cancer.
Zhongguo Fei Ai Za Zhi. 12:273–276. 2009.(In Chinese). PubMed/NCBI
|
|
88
|
Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin
D, Zhang X, Feng L, Lei W, Zhang Z, et al: Identification of genes
differentially expressed in human primary lung squamous cell
carcinoma. Lung Cancer. 56:307–317. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tang X, Mo C, Wang Y, Wei D and Xiao H:
Anti-tumour strategies aiming to target tumour-associated
macrophages. Immunology. 138:93–104. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Boffetta P, Winn DM, Ioannidis JP, Thomas
DC, Little J, Smith GD, Cogliano VJ, Hecht SS, Seminara D, Vineis P
and Khoury MJ: Recommendations and proposed guidelines for
assessing the cumulative evidence on joint effects of genes and
environments on cancer occurrence in humans. Int J Epidemiol.
41:686–704. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lee EY and Muller WJ: Oncogenes and tumor
suppressor genes. Cold Spring Harb Perspect Biol. 2:a0032362010.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tsygankova OM, Wang H and Meinkoth JL:
Tumor cell migration and invasion are enhanced by depletion of Rap1
GTPase-activating protein (Rap1GAP). J Biol Chem. 288:24636–24646.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Pannekoek WJ, Linnemann JR, Brouwer PM,
Bos JL and Rehmann H: Rap1 and Rap2 antagonistically control
endothelial barrier resistance. PLoS One. 8:e579032013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Borland G, Smith BO and Yarwood SJ: EPAC
proteins transduce diverse cellular actions of cAMP. Br J
Pharmacol. 158:70–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kennedy NJ, Sluss HK, Jones SN, Bar-Sagi
D, Flavell RA and Davis RJ: Suppression of Ras-stimulated
transformation by the JNK signal transduction pathway. Genes Dev.
17:629–637. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Potapova O, Gorospe M, Bost F, Dean NM,
Gaarde WA, Mercola D and Holbrook NJ: c-Jun N-terminal kinase is
essential for growth of human T98G glioblastoma cells. J Biol Chem.
275:24767–24775. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bost F, McKay R, Bost M, Potapova O, Dean
NM and Mercola D: The Jun kinase 2 isoform is preferentially
required for epidermal growth factor-induced transformation of
human A549 lung carcinoma cells. Mol Cell Biol. 19:1938–1949. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Davis RJ: Signal transduction by the JNK
group of MAP kinases. Cell. 103:239–252. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Margaritopoulos GA, Tsitoura E, Tzanakis
N, Spandidos DA, Siafakas NM, Sourvinos G and Antoniou KM:
Self-eating: Friend or foe? The emerging role of autophagy in
idiopathic pulmonary fibrosis. BioMed Res Int. 2013:4204972013.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Haspel JA and Choi AM: Autophagy: A core
cellular process with emerging links to pulmonary disease. Am J
Respir Crit Care Med. 184:1237–1246. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jarry TM, Memmi G and Cheung AL: The
expression of alpha-haemolysin is required for Staphylococcus
aureus phagosomal escape after internalization in CFT-1 cells.
Cell Microbiol. 10:1801–1814. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Mestre MB, Fader CM, Sola C and Colombo
MI: Alpha-hemolysin is required for the activation of the
autophagic pathway in Staphylococcus aureus-infected cells.
Autophagy. 6:110–125. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Mestre MB and Colombo MI:
Staphylococcus aureus promotes autophagy by decreasing
intracellular cAMP levels. Autophagy. 8:1865–1867. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
McLeod SJ, Shum AJ, Lee RL, Takei F and
Gold MR: The Rap GTPases regulate integrin-mediated adhesion, cell
spreading, actin polymerization, and Pyk2 tyrosine phosphorylation
in B lymphocytes. J Biol Chem. 279:12009–12019. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Di JH, Qu DB, Lu Z, Li LT, Cheng Q, Xin Y,
Zhang LZ, Zhang Y and Zheng JN: Rap2B promotes migration and
invasion of human suprarenal epithelioma. Tumour Biol.
35:9387–9394. 2014. View Article : Google Scholar : PubMed/NCBI
|