|
1
|
Gottesman MM, Fojo T and Bates SE:
Multidrug resistance in cancer: Role of ATP-dependent transporters.
Nat Rev Cancer. 2:48–58. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gottesman MM and Ling V: The molecular
basis of multidrug resistance in cancer: The early years of
P-glycoprotein research. FEBS Lett. 580:998–1009. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Choi CH: ABC transporters as multidrug
resistance mechanisms and the development of chemosensitizers for
their reversal. Cancer Cell Int. 5:302005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Noguchi K, Katayama K, Mitsuhashi J and
Sugimoto Y: Functions of the breast cancer resistance protein
(BCRP/ABCG2) in chemotherapy. Adv Drug Deliv Rev. 61:26–33. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sugimoto Y, Tsukahara S, Ishikawa E and
Mitsuhashi J: Breast cancer resistance protein: Molecular target
for anticancer drug resistance and
pharmacokinetics/pharmacodynamics. Cancer Sci. 96:457–465. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang F, Wang YC, Dou S, Xiong MH, Sun TM
and Wang J: Doxorubicin-tethered responsive gold nanoparticles
facilitate intracellular drug delivery for overcoming multidrug
resistance in cancer cells. ACS Nano. 5:3679–3692. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Diao YY, Han M, Chen DW and Gao JQ:
Progress in the study of micelle delivery system reversing
multidrug resistance. Yao Xue Xue Bao. 44:710–715. 2009.(In
Chinese). PubMed/NCBI
|
|
8
|
Kapse-Mistry S, Govender T, Srivastava R
and Yergeri M: Nanodrug delivery in reversing multidrug resistance
in cancer cells. Front Pharmacol. 5:1592014.PubMed/NCBI
|
|
9
|
Hu CM and Zhang L: Therapeutic
nanoparticles to combat cancer drug resistance. Curr Drug Metab.
10:836–841. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chidambaram M, Manavalan R and Kathiresan
K: Nanotherapeutics to overcome conventional cancer chemotherapy
limitations. J Pharm Pharm Sci. 14:67–77. 2011.PubMed/NCBI
|
|
11
|
Cho K, Wang X, Nie S, Chen ZG and Shin DM:
Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer
Res. 14:1310–1316. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang J, Sui M and Fan W: Nanoparticles for
tumor targeted therapies and their pharmacokinetics. Curr Drug
Metab. 11:129–141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Markman JL, Rekechenetskiy A, Holler E and
Ljubimova JY: Nanomedicine therapeutic approaches to overcome
cancer drug resistance. Adv Drug Deliv Rev. 65:1866–1879. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kirtane AR, Kalscheuer SM and Panyam J:
Exploiting nanotechnology to overcome tumor drug resistance:
Challenges and opportunities. Adv Drug Deliv Rev. 65:1731–1747.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lao J, Madani J, Puértolas T, Alvarez M,
Hernández A, Pazo-Cid R, Artal A and Antón Torres A: Liposomal
doxorubicin in the treatment of breast cancer patients: A review. J
Drug Deliv. 2013:4564092013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rivera E: Liposomal anthracyclines in
metastatic breast cancer: Clinical update. Oncologist. 8(Suppl 2):
3–9. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lorusso V, Manzione L and Silvestris N:
Role of liposomal anthracyclines in breast cancer. Ann Oncol.
18(Suppl 6): vi70–vi73. 2007.PubMed/NCBI
|
|
18
|
Arias JL, Clares B, Morales ME, Gallardo V
and Ruiz MA: Lipid-based drug delivery systems for cancer
treatment. Curr Drug Targets. 12:1151–1165. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Samad A, Sultana Y and Aqil M: Liposomal
drug delivery systems: An update review. Curr Drug Deliv.
4:297–305. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lian T and Ho RJ: Trends and developments
in liposome drug delivery systems. J Pharm Sci. 90:667–680. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Goyal P, Goyal K, Kumar Vijaya SG, Singh
A, Katare OP and Mishra DN: Liposomal drug delivery
systems-clinical applications. Acta Pharm. 55:1–25. 2005.PubMed/NCBI
|
|
22
|
Zhou WJ, Zhou W, Jia SW, et al: The
cytology evaluation of doxorubicin liposomes to overcome multidrug
resistance in vitro. Zhong Guo Yi Yuan Yao Xue Za Zhi.
32:1349–1352. 2012.(In Chinese).
|
|
23
|
Kang DI, Kang HK, Gwak HS, Han HK and Lim
SJ: Liposome composition is important for retention of liposomal
rhodamine in p-glycoprotein-overexpressing cancer cells. Drug
Deliv. 16:261–267. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shidhaye SS, Vaidya R, Sutar S, Patwardhan
A and Kadam VJ: Solid lipid nanoparticles and nanostructured lipid
carriers-innovative generations of solid lipid carriers. Curr Drug
Deliv. 5:324–331. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li XW, Sun LX, Lin XH and Zeng LQ: Solid
lipid nanoparticles as drug delivery system. Prog Chem. 19:87–92.
2007.
|
|
26
|
Xu DH, Gao JQ, Liang WQ, Yang JM and Yao
Q: Progress of solid lipid nanoparticles in overcoming multidrug
resistance. Zhong Guo Yao Xue Za Zhi. 45:401–403. 2010.
|
|
27
|
Wong HL, Bendayan R, Rauth AM and Wu XY:
Development of solid lipid nanoparticles containing ionically
complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci.
93:1993–2008. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wong HL, Rauth AM, Bendayan R, Manias JL,
Ramaswamy M, Liu Z, Erhan SZ and Wu XY: A new polymer-lipid hybrid
nanoparticle system increases cytotoxicity of doxorubicin against
multidrug-resistant human breast cancer cells. Pharm Res.
23:1574–1585. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wong HL, Rauth AM, Bendayan R and Wu XY:
In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN)
formulation of doxorubicin in a murine solid tumor model. Eur J
Pharm Biopharm. 65:300–308. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wong HL, Bendayan R, Rauth AM and Wu XY:
Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new
polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of
multidrug-resistant breast cancer. J Control Release. 116:275–284.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shuhendler AJ, Prasad P, Zhang RX, Amini
MA, Sun M, Liu PP, Bristow RG, Rauth AM and Wu XY: Synergistic
nanoparticulate drug combination overcomes multidrug resistance,
increases efficacy, and reduces cardiotoxicity in a
nonimmunocompromised breast tumor model. Mol Pharm. 11:2659–2674.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Prasad P, Cheng J, Shuhendler A, Rauth AM
and Wu XY: A novel nanoparticle formulation overcomes multiple
types of membrane efflux pumps in human breast cancer cells. Drug
Deliv Transl Res. 2:95–105. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Miao J, Du YZ, Yuan H, Zhang XG and Hu FQ:
Drug resistance reversal activity of anticancer drug loaded solid
lipid nanoparticles in multi-drug resistant cancer cells. Colloids
Surf B Biointerfaces. 110:74–80. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bourseau-Guilmain E, Béjaud J, Griveau A,
Lautram N, Hindré F, Weyland M, Benoit JP and Garcion E:
Development and characterization of immuno-nanocarriers targeting
the cancer stem cell marker ac133. Int J Pharm. 423:93–101. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sahoo SK and Labhasetwar V: Enhanced
antiproliferative activity of transferrin-conjugated
paclitaxel-loaded nanoparticles is mediated via sustained
intracellular drug retention. Mol Pharm. 2:373–383. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang MZH, Chen HG and Han J: Advances in
drug carrier to overcome mdr. Jie Fang Jun Yao Xue Xue Bao.
30:256–259. 2014.
|
|
37
|
Ye G, Ke AW and Li X: The mrk-16 modified
immune doxorubicin liposome in reversing multidrug resistance of
cancer cells. Journal of Modern Oncology. 15:754–757. 2007.
|
|
38
|
Zhang Y, Huang Y and Li S: Polymeric
micelles: Nanocarriers for cancer-targeted drug delivery. AAPS
PharmSciTech. 15:862–871. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tian Y and Mao S: Amphiphilic polymeric
micelles as the nanocarrier for peroral delivery of poorly soluble
anticancer drugs. Expert Opin Drug Deliv. 9:687–700. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Croy SR and Kwon GS: Polymeric micelles
for drug delivery. Curr Pharm Des. 12:4669–4684. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Adams ML, Lavasanifar A and Kwon GS:
Amphiphilic block copolymers for drug delivery. J Pharm Sci.
92:1343–1355. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Han SS, Li ZY, Zhu JY, Han K, Zeng ZY,
Hong W, Li WX, Jia HZ, Liu Y, Zhuo RX and Zhang XZ: Dual-pH
sensitive charge-reversal polypeptide micelles for tumor-triggered
targeting uptake and nuclear drug delivery. Small. 11:2543–2554.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Torchilin VP: Passive and active drug
targeting: Drug delivery to tumors as an example. Handb Exp
Pharmacol. 197:3–53. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kedar U, Phutane P, Shidhaye S and Kadam
V: Advances in polymeric micelles for drug delivery and tumor
targeting. Nanomedicine. 6:714–729. 2010.PubMed/NCBI
|
|
45
|
Prabhu RH, Patravale VB and Joshi MD:
Polymeric nanoparticles for targeted treatment in oncology: Current
insights. Int J Nanomedicine. 10:1001–1018. 2015.PubMed/NCBI
|
|
46
|
Mao SR, Tian Y and Wang LL: Advances in
drug nanocarriers: Polymer micelles. Shenyang Yao Ke Da Xue Xue
Bao. 27:979–986. 2010.
|
|
47
|
Zhang HJ, Zhang C and Ping QN: Research
and application of polymeric micelles as a pharmaceutically
acceptable carrier. Yao Xue Jin Zhan. 26:326–329. 2002.
|
|
48
|
Saiyin W, Wang D, Li L, Zhu L, Liu B,
Sheng L, Li Y, Zhu B, Mao L, Li G and Zhu X: Sequential release of
autophagy inhibitor and chemotherapeutic drug with polymeric
delivery system for oral squamous cell carcinoma therapy. Mol
Pharm. 11:1662–1675. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yu J, Deng H, Xie F, Chen W, Zhu B and Xu
Q: The potential of pH-responsive PEG-hyperbranched
polyacylhydrazone micelles for cancer therapy. Biomaterials.
35:3132–3144. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ganta S and Amiji M: Coadministration of
paclitaxel and curcumin in nanoemulsion formulations to overcome
multidrug resistance in tumor cells. Mol Pharm. 6:928–939. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Katsman A, Umezawa K and Bonavida B:
Chemosensitization and immunosensitization of resistant cancer
cells to apoptosis and inhibition of metastasis by the specific
NF-kappaB inhibitor DHMEQ. Curr Pharm Des. 15:792–808. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yadav S, Van Vlerken LE, Little SR and
Amiji MM: Evaluations of combination MDR-1 gene silencing and
paclitaxel administration in biodegradable polymeric nanoparticle
formulations to overcome multidrug resistance in cancer cells.
Cancer Chemother Pharmacol. 63:711–722. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Iyer AK, Singh A, Ganta S and Amiji MM:
Role of integrated cancer nanomedicine in overcoming drug
resistance. Adv Drug Deliv Rev. 65:1784–1802. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li J, Wang Y, Zhu Y and Oupický D: Recent
advances in delivery of drug-nucleic acid combinations for cancer
treatment. J Control Release. 172:589–600. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hu ZX and Fu XD: The progress of
nanoparticles drug delivery system in mdr of tumor and its
reversal. Zhong Guo Yi Yuan Yao Xue Za Zhi. 31:1724–1727. 2011.
|
|
56
|
Chen JN, Shen Q and Li SS: Progress in the
study of drug delivery system based on nanoparticles to overcome
multi-drug resistance. Yao Xue Xue Bao. 44:333–337. 2009.(In
Chinese). PubMed/NCBI
|
|
57
|
Qin Y, Li M, Qiu Q, Pi JT and Chen HY: The
application of nanoparticles drug delivery system in multi-drug
resistance of tumor. Xian Dai Sheng Wu Yi Xue Jin Zhan.
14:55645599. –5600. 2014.
|
|
58
|
Abouzeid AH, Patel NR and Torchilin VP:
Polyethylene glycol-phosphatidylethanolamine (PEG-PE)/vitamin e
micelles for co-delivery of paclitaxel and curcumin to overcome
multi-drug resistance in ovarian cancer. Int J Pharm. 464:178–184.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tang J, Zhang L, Gao H, Liu Y, Zhang Q,
Ran R, Zhang Z and He Q: Co-delivery of doxorubicin and P-gp
inhibitor by a reduction-sensitive liposome to overcome multidrug
resistance, enhance anti-tumor efficiency and reduce toxicity. Drug
Deliv. 1–14. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang X, Teng ZG, Huang XY and Lu GM:
Mesoporous silica nanoparticles for cancer theranostic drug
delivery. Yao Xue Xue Bao. 48:8–13. 2013.(In Chinese). PubMed/NCBI
|
|
61
|
Jiang XX, Yang H and Yang Y: Silicon
nanometer carrier with rna interference plasmid in reversing mdr in
human colon cancer. Practical Preventive Medicine. 20:1385–1389.
2013.
|
|
62
|
Hom C, Lu J, Liong M, Luo H, Li Z, Zink JI
and Tamanoi F: Mesoporous silica nanoparticles facilitate delivery
of siRNA to shutdown signaling pathways in mammalian cells. Small.
6:1185–1190. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Slowing II, Vivero-Escoto JL, Wu CW and
Lin VS: Mesoporous silica nanoparticles as controlled release drug
delivery and gene transfection carriers. Adv Drug Deliv Rev.
60:1278–1288. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhao Y, Vivero-Escoto JL, Slowing II,
Trewyn BG and Lin VS: Capped mesoporous silica nanoparticles as
stimuli-responsive controlled release systems for intracellular
drug/gene delivery. Expert Opin Drug Deliv. 7:1013–1029. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Pan L, Liu J, He Q, Wang L and Shi J:
Overcoming multidrug resistance of cancer cells by direct
intranuclear drug delivery using TAT-conjugated mesoporous silica
nanoparticles. Biomaterials. 34:2719–2730. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
He Q and Shi J: MSN anti-cancer
nanomedicines: Chemotherapy enhancement, overcoming of drug
resistance and metastasis inhibition. Adv Mater. 26:391–411. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vivero-Escoto JL, Slowing II, Trewyn BG
and Lin VS: Mesoporous silica nanoparticles for intracellular
controlled drug delivery. Small. 6:1952–1967. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tang F, Li L and Chen D: Mesoporous silica
nanoparticles: Synthesis, biocompatibility and drug delivery. Adv
Mater. 24:1504–1534. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z,
Shi J and Li Y: Controlled intracellular release of doxorubicin in
multidrug-resistant cancer cells by tuning the shell-pore sizes of
mesoporous silica nanoparticles. ACS Nano. 5:9788–9798. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Meng H, Liong M, Xia T, Li Z, Ji Z, Zink
JI and Nel AE: Engineered design of mesoporous silica nanoparticles
to deliver doxorubicin and P-glycoprotein siRNA to overcome drug
resistance in a cancer cell line. ACS Nano. 4:4539–4550. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang X, Li F, Guo S, Chen X, Wang X, Li J
and Gan Y: Biofunctionalized polymer-lipid supported mesoporous
silica nanoparticles for release of chemotherapeutics in multidrug
resistant cancer cells. Biomaterials. 35:3650–3665. 2014.
View Article : Google Scholar : PubMed/NCBI
|