|
1
|
Burns EM and Yusuf N: Toll-like receptors
and skin cancer. Front Immunol. 5:1352014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Akira S, Takeda K and Kaisho T: Toll-like
receptors: Critical proteins linking innate and acquired immunity.
Nat Immunol. 2:675–680. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Seneviratne AN, Sivagurunathan B and
Monaco C: Toll-like receptors and macrophage activation in
atherosclerosis. Clin Chim Acta. 413:3–14. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Portou MJ, Baker D, Abraham D and Tsui J:
The innate immune system, toll-like receptors and dermal wound
healing: A review. Vascul Pharmacol. 71:31–36. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Medzhitov R: Toll-like receptors and
innate immunity. Nat Rev Immunol. 1:135–145. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Anderson KV, Bokla L and Nüsslein-Volhard
C: Establishment of dorsal-ventral polarity in the Drosophila
embryo: The induction of polarity by the Toll gene product. Cell.
42:791–798. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hashimoto C, Hudson KL and Anderson KV:
The toll gene of Drosophila, required for dorsal-ventral embryonic
polarity, appears to encode a transmembrane protein. Cell.
52:269–279. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lemaitre B, Nicolas E, Michaut L,
Reichhart JM and Hoffmann JA: The dorsoventral regulatory gene
cassette spätzle/Toll/cactus controls the potent antifungal
response in Drosophila adults. Cell. 86:973–983. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Medzhitov R, Preston-Hurlburt P and
Janeway CA Jr: A human homologue of the Drosophila Toll protein
signals activation of adaptive immunity. Nature. 388:394–397. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rock FL, Hardiman G, Timans JC, Kastelein
RA and Bazan JF: A family of human receptors structurally related
to Drosophila Toll. Proc Natl Acad Sci USA. 95:588–593. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Navi A, Patel H, Shaw S, Baker D and Tsui
J: Therapeutic role of toll-like receptor modification in
cardiovascular dysfunction. Vascul Pharmacol. 58:231–239. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Akira S and Takeda K: Toll-like receptor
signaling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Adams S: Toll-like receptor agonists in
cancer therapy. Immunotherapy. 1:949–964. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kawai T and Akira S: TLR signaling. Semin
Immunol. 19:24–32. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang RF, Miyahara Y and Wang HY: Toll-like
receptors and immune regulation: Implications for cancer therapy.
Oncogene. 27:181–189. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hoebe K, Janssen E and Beutler B: The
interface between innate and adaptive immunity. Nat Immunol.
5:971–974. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Paulos CM, Kaiser A, Wrzesinski C,
Hinrichs CS, Cassard L, Boni A, Muranski P, Sanchez-Perez L, Palmer
DC, Yu Z, et al: Toll-like receptors in tumor immunotherapy. Clin
Cancer Res. 13:5280–5289. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huen AO and Rook AH: Toll receptor agonist
therapy of skin cancer and cutaneous T-cell lymphoma. Curr Opin
Oncol. 26:237–244. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Salaun B, Lebecque S, Matikainen S,
Rimoldi D and Romero P: Toll-like receptor 3 expressed by melanoma
cells as a target for therapy? Clin Cancer Res. 13:4565–4574. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Karin M and Greten FR: NF-kappaB: Linking
inflammation and immunity to cancer development and progression.
Nat Rev Immunol. 5:749–759. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Balkwill F and Mantovani A: Inflammation
and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shacter E and Weitzman SA: Chronic
inflammation and cancer. Oncology (Williston Park). 16:217–232.
2002.PubMed/NCBI
|
|
24
|
Karin M: Nuclear factor-kappaB in cancer
development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Stanley MA: Imiquimod and the
imidazoquinolones: Mechanism of action and therapeutic potential.
Clin Exp Dermatol. 27:571–577. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Navi D and Huntley A: Imiquimod 5 percent
cream and the treatment of cutaneous malignancy. Dermatol Online J.
10:42004.PubMed/NCBI
|
|
27
|
Lee J, Chuang TH, Redecke V, She L, Pitha
PM, Carson DA, Raz E and Cottam HB: Molecular basis for the
immunostimulatory activity of guanine nucleoside analogs:
Activation of Toll-like receptor 7. Proc Natl Acad Sci USA.
100:6646–6651. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Palamara F, Meindl S, Holcmann M, Lührs P,
Stingl G and Sibilia M: Identification and characterization of
pDC-like cells in normal mouse skin and melanomas treated with
imiquimod. J Immunol. 173:3051–3061. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Urosevic M, Dummer R, Conrad C, Beyeler M,
Laine E, Burg G and Gilliet M: Disease-independent skin recruitment
and activation of plasmacytoid predendritic cells following
imiquimod treatment. J Natl Cancer Inst. 97:1143–1153. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Stary G, Bangert C, Tauber M, Strohal R,
Kopp T and Stingl G: Tumoricidal activity of TLR7/8-activated
inflammatory dendritic cells. J Exp Med. 204:1441–1451. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Stephanou A and Latchman DS: Opposing
actions of STAT-1 and STAT-3. Growth Factors. 23:177–182. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schön MP and Schön M: TLR7 and TLR8 as
targets in cancer therapy. Oncogene. 27:190–199. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ahmed I and Berth-Jones J: Imiquimod: A
novel treatment for lentigo maligna. Br J Dermatol. 143:843–845.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chapman MS, Spencer SK and Brennick JB:
Histologic resolution of melanoma in situ (lentigo maligna) with 5%
imiquimod cream. Arch Dermatol. 139:943–944. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Powell AM, Russell-Jones R and Barlow RJ:
Topical imiquimod immunotherapy in the management of lentigo
maligna. Clin Exp Dermatol. 29:15–21. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Naylor MF, Crowson N, Kuwahara R, Teague
K, Garcia C, Mackinnis C, Haque R, Odom C, Jankey C and Cornelison
RL: Treatment of lentigo maligna with topical imiquimod. Br J
Dermatol. 149(Suppl 66): S66–S70. 2003. View Article : Google Scholar
|
|
37
|
Craythorne EE and Lawrence CM:
Observational study of topical imiquimod immunotherapy in the
treatment of difficult lentigo maligna. Clin Med Oncol. 2:551–554.
2008.PubMed/NCBI
|
|
38
|
Tzellos T, Kyrgidis A, Mocellin S, Chan
AW, Pilati P and Apalla Z: Interventions for melanoma in situ,
including lentigo maligna. Cochrane Database Syst Rev.
12:CD0103082014.PubMed/NCBI
|
|
39
|
Kallini JR, Jain SK and Khachemoune A:
Lentigo maligna: Review of salient characteristics and management.
Am J Clin Dermatol. 14:473–480. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Nagore E and Botella-Estrada R: Imiquimod
in the treatment of lentigo maligna. Actas Dermosifiliogr.
102:559–562. 2011.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Erickson C and Miller SJ: Treatment
options in melanoma in situ: Topical and radiation therapy,
excision and Mohs surgery. Int J Dermatol. 49:482–491. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Powell AM, Robson AM, Russell-Jones R and
Barlow RJ: Imiquimod and lentigo maligna: A search for prognostic
features in a clinicopathological study with long-term follow-up.
Br J Dermatol. 160:994–998. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Woodmansee CS and McCall MW: Recurrence of
lentigo maligna and development of invasive melanoma after
treatment of lentigo maligna with imiquimod. Dermatol Surg.
35:1286–1289. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lapresta A, García-Almagro D and Sejas AG:
Amelanotic lentigo maligna managed with topical imiquimod. J
Dermatol. 39:503–505. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zattra E, Salmaso R, Tonin E and Alaibac
M: Achromic superficial spreading melanoma accidentally treated
with imiquimod. Acta Derm Venereol. 92:107–108. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zattra E, Fortina AB, Bordignon M,
Piaserico S and Alaibac M: Immunosuppression and melanocyte
proliferation. Melanoma Res. 19:63–68. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Russo I, Piaserico S, Belloni-Fortina A
and Alaibac M: Cutaneous melanoma in solid organ transplant
patients. G Ital Dermatol Venereol. 149:389–394. 2014.PubMed/NCBI
|
|
48
|
Swope VB, Abdel-Malek Z, Kassem LM and
Nordlund JJ: Interleukins 1 alpha and 6 and tumor necrosis
factor-alpha are paracrine inhibitors of human melanocyte
proliferation and melanogenesis. J Invest Dermatol. 96:180–185.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tokura Y, Yamanaka K, Wakita H, Kurokawa
S, Horiguchi D, Usui A, Sayama S and Takigawa M: Halo congenital
nevus undergoing spontaneous regression. Involvement of T-cell
immunity in involution and presence of circulating anti-nevus cell
IgM antibodies. Arch Dermatol. 130:1036–1041. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Somani N, Martinka M, Crawford RI, Dutz JP
and Rivers JK: Treatment of atypical nevi with imiquimod 5% cream.
Arch Dermatol. 143:379–385. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bong AB, Bonnekoh B, Franke I, Schön M,
Ulrich J and Gollnick H: Imiquimod, a topical immune response
modifier, in the treatment of cutaneous metastases of malignant
melanoma. Dermatology. 205:135–138. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wolf IH, Smolle J, Binder B, Cerroni L,
Richtig E and Kerl H: Topical imiquimod in the treatment of
metastatic melanoma to skin. Arch Dermatol. 139:273–276. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Arbiser JL, Bips M, Seidler A, Bonner MY
and Kovach C: Combination therapy of imiquimod and gentian violet
for cutaneous melanoma metastases. J Am Acad Dermatol. 67:e81–e83.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Steinmann A, Funk JO, Schuler G and von
den Driesch P: Topical imiquimod treatment of a cutaneous melanoma
metastasis. J Am Acad Dermatol. 43:555–556. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Maverakis E, Cornelius LA, Bowen GM, Phan
T, Patel FB, Fitzmaurice S, He Y, Burrall B, Duong C, Kloxin AM, et
al: Metastatic melanoma-a review of current and future treatment
options. Acta Derm Venereol. 95:516–524. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Turza K, Dengel LT, Harris RC, Patterson
JW, White K, Grosh WW and Slingluff CL Jr: Effectiveness of
imiquimod limited to dermal melanoma metastases, with simultaneous
resistance of subcutaneous metastasis. J Cutan Pathol. 37:94–98.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Green DS, Bodman-Smith MD, Dalgleish AG
and Fischer MD: Phase I/II study of topical imiquimod and
intralesional interleukin-2 in the treatment of accessible
metastases in malignant melanoma. Br J Dermatol. 156:337–345. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Schön MP, Wienrich BG, Drewniok C, Bong
AB, Eberle J, Geilen CC, Gollnick H and Schön M: Death
receptor-independent apoptosis in malignant melanoma induced by the
small-molecule immune response modifier imiquimod. J Invest
Dermatol. 122:1266–1276. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Schön M and Schön MP: The antitumoral mode
of action of imiquimod and other imidazoquinolines. Curr Med Chem.
14:681–687. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dockrell DH and Kinghorn GR: Imiquimod and
resiquimod as novel immunomodulators. J Antimicrob Chemother.
48:751–755. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Thomsen LL, Topley P, Daly MG, Brett SJ
and Tite JP: Imiquimod and resiquimod in a mouse model: Adjuvants
for DNA vaccination by particle-mediated immunotherapeutic
delivery. Vaccine. 22:1799–1809. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sabado RL, Pavlick A, Gnjatic S, Cruz CM,
Vengco I, Hasan F, Spadaccia M, Darvishian F, Chiriboga L, Holman
RM, et al: Resiquimod as an immunologic adjuvant for NY-ESO-1
protein vaccination in patients with high-risk melanoma. Cancer
Immunol Res. 3:278–287. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chang BA, Cross JL, Najar HM and Dutz JP:
Topical resiquimod promotes priming of CTL to parenteral antigens.
Vaccine. 27:5791–5799. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Craft N, Birnbaum R, Quanquin N, Erfe MC,
Quant C, Haskell J and Bruhn KW: Topical resiquimod protects
against visceral infection with Leishmania infantum chagasi in
mice. Clin Vaccine Immunol. 21:1314–1322. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mark KE, Spruance S, Kinghorn GR, Sacks
SL, Slade HB, Meng TC, Selke S, Magaret A and Wald A: Three phase
III randomized controlled trials of topical resiquimod 0.01-percent
gel to reduce anogenital herpes recurrences. Antimicrob Agents
Chemother. 58:5016–5023. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Meyer T, Surber C, French LE and
Stockfleth E: Resiquimod, a topical drug for viral skin lesions and
skin cancer. Expert Opin Investig Drugs. 22:149–59. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Rook AH, Gelfand JM, Wysocka M, Troxel AB,
Benoit B, Surber C, Elenitsas R, Buchanan MA, Leahy DS, Watanabe R,
et al: Topical resiquimod can induce disease regression and enhance
T-cell effector functions in cutaneous T-cell lymphoma. Blood.
126:1452–1461. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tomai MA, Miller RL, Lipson KE, Kieper WC,
Zarraga IE and Vasilakos JP: Resiquimod and other immune response
modifiers as vaccine adjuvants. Expert Rev Vaccines. 6:835–847.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gunzer M, Riemann H, Basoglu Y, Hillmer A,
Weishaupt C, Balkow S, Benninghoff B, Ernst B, Steinert M, Scholzen
T, et al: Systemic administration of a TLR7 ligand leads to
transient immune incompetence due to peripheral-blood leukocyte
depletion. Blood. 106:2424–2432. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Molenkamp BG, van Leeuwen PA, Meijer S,
Sluijter BJ, Wijnands PG, Baars A, van den Eertwegh AJ, Scheper RJ
and de Gruijl TD: Intradermal CpG-B activates both plasmacytoid and
myeloid dendritic cells in the sentinel lymph node of melanoma
patients. Clin Cancer Res. 13:2961–2969. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pashenkov M, Goëss G, Wagner C, Hörmann M,
Jandl T, Moser A, Britten CM, Smolle J, Koller S, Mauch C, et al:
Phase II trial of a toll-like receptor 9-activating oligonucleotide
in patients with metastatic melanoma. J Clin Oncol. 24:5716–5724.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hofmann MA, Kors C, Audring H, Walden P,
Sterry W and Trefzer U: Phase 1 evaluation of intralesionally
injected TLR9-agonist PF-3512676 in patients with basal cell
carcinoma or metastatic melanoma. J Immunother. 31:520–527. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Molenkamp BG, Sluijter BJ, van Leeuwen PA,
Santegoets SJ, Meijer S, Wijnands PG, Haanen JB, van den Eertwegh
AJ, Scheper RJ and de Gruijl TD: Local administration of PF-3512676
CpG-B instigates tumor-specific CD8+ T-cell reactivity in melanoma
patients. Clin Cancer Res. 14:4532–4542. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang C, Zhuang Y, Zhang Y, Luo Z, Gao N,
Li P, Pan H, Cai L and Ma Y: Toll-like receptor 3 agonist complexed
with cationic liposome augments vaccine-elicited antitumor immunity
by enhancing TLR3-IRF3 signaling and type I interferons in
dendritic cells. Vaccine. 30:4790–4799. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pollack IF, Jakacki RI, Butterfield LH,
Hamilton RL, Panigrahy A, Normolle DP, Connelly AK, Dibridge S,
Mason G, Whiteside TL and Okada H: Immune responses and outcome
after vaccination with glioma-associated antigen peptides and
poly-ICLC in a pilot study or pediatric recurrent low-grade
gliomas. Neuro Oncol. 18:1157–1168. 2016. View Article : Google Scholar : PubMed/NCBI
|