|
1
|
He W, Zeng Q, Zheng Y, Chen M, Shen J, Qiu
J, Chen M, Zou R, Liao Y, Li Q, et al: The role of clinically
significant portal hypertension in hepatic resection for
hepatocellular carcinoma patients: A propensity score matching
analysis. BMC Cancer. 15:2632015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yang B, Zan RY, Wang SY, Li XL, Wei ML,
Guo WH, You X, Li J and Liao ZY: Radiofrequency ablation versus
percutaneous ethanol injection for hepatocellular carcinoma: A
meta-analysis of randomized controlled trials. World J Surg Oncol.
13:962015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Baek YH, Kim KT, Lee SW, Jeong JS, Park
BH, Nam KJ, Cho JH, Kim YH, Roh YH, Lee HS, et al: Efficacy of
hepatic arterial infusion chemotherapy in advanced hepatocellular
carcinoma. World J Gastroenterol. 18:3426–3434. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kim JY, Chung SM, Choi BO and Kay CS:
Hepatocellular carcinoma with portal vein tumor thrombosis:
Improved treatment outcomes with external beam radiation therapy.
Hepatol Res. 41:813–824. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Buscà R, Pouysségur J and Lenormand P:
ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy?
Front Cell Dev Biol. 4:532016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang Y, Nie H, Zhao X, Qin Y and Gong X:
Bicyclol induces cell cycle arrest and autophagy in HepG2 human
hepatocellular carcinoma cells through the PI3K/AKT and
Ras/Raf/MEK/ERK pathways. BMC Cancer. 16:7422016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Asati V, Mahapatra DK and Bharti SK:
PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as
anticancer agents: Structural and pharmacological perspectives. Eur
J Med Chem. 109:314–341. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lee SH, Song IH, Noh R, Kang HY, Kim SB,
Ko SY, Lee ES, Kim SH, Lee BS, Kim AN, et al: Clinical outcomes of
patients with advanced hepatocellular carcinoma treated with
sorafenib: A retrospective study of routine clinical practice in
multi-institutions. BMC Cancer. 15:2362015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yu P, Ye L, Wang H, Du G, Zhang J, Zhang J
and Tian J: NSK-01105 inhibits proliferation and induces apoptosis
of prostate cancer cells by blocking the Raf/MEK/ERK and
PI3K/Akt/mTOR signal pathways. Tumour Biol. 36:2143–2153. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Huynh H, Ngo VC, Koong HN, Poon D, Choo
SP, Toh HC, Thng CH, Chow P, Ong HS, Chung A, et al: AZD6244
enhances the anti-tumor activity of sorafenib in ectopic and
orthotopic models of human hepatocellular carcinoma (HCC). J
Hepatol. 52:79–87. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhou Q, Lui VW and Yeo W: Targeting the
PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol.
7:1149–1167. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiang M, Wen F, Cao J, Li P, She J and Chu
Z: Genome-wide exploration of the molecular evolution and
regulatory network of mitogen-activated protein kinase cascades
upon multiple stresses in Brachypodium distachyon. BMC Genomics.
16:2282015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ward AF, Braun BS and Shannon KM:
Targeting oncogenic Ras signaling in hematologic malignancies.
Blood. 120:3397–3406. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Knight T and Irving JA: Ras/Raf/MEK/ERK
pathway activation in childhood acute lymphoblastic leukemia and
its therapeutic targeting. Front Oncol. 4:1602014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chang YS, Liu JC, Fu HQ, Yu BT, Zou SB, Wu
QC and Wan L: Roles of targeting Ras/Raf/MEK/ERK signaling pathways
in the treatment of esophageal carcinoma. Yao Xue Xue Bao.
48:635–641. 2013.(In Chinese). PubMed/NCBI
|
|
16
|
Zebisch A and Troppmair J: Back to the
roots: The remarkable RAF oncogene story. Cell Mol Life Sci.
63:1314–1330. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Moodie SA and Wolfman A: The 3Rs of life:
Ras, Raf and growth regulation. Trends Genet. 10:44–48. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
De Luca A, Maiello MR, D'Alessio A,
Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT
signaling pathways: Role in cancer pathogenesis and implications
for therapeutic approaches. Expert Opin Ther Targets. 16:(Suppl 2).
S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Steelman LS, Franklin RA, Abrams SL,
Chappell W, Kempf CR, Bäsecke J, Stivala F, Donia M, Fagone P,
Nicoletti F, et al: Roles of the Ras/Raf/MEK/ERK pathway in
leukemia therapy. Leukemia. 25:1080–1094. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Trujillo JI: MEK inhibitors: A patent
review 2008–2010. Expert Opin Ther Pat. 21:1045–1069. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chung E and Kondo M: Role of
Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and
leukemia development. Immunol Res. 49:248–268. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ito Y, Sasaki Y, Horimoto M, Wada S,
Tanaka Y, Kasahara A, Ueki T, Hirano T, Yamamoto H, Fujimoto J, et
al: Activation of mitogen-activated protein kinases/extracellular
signal-regulated kinases in human hepatocellular carcinoma.
Hepatology. 27:951–958. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hoffmann K, Shibo L, Xiao Z, Longerich T,
Büchler MW and Schemmer P: Correlation of gene expression of
ATP-binding cassette protein and tyrosine kinase signaling pathway
in patients with hepatocellular carcinoma. Anticancer Res.
31:3883–3890. 2011.PubMed/NCBI
|
|
24
|
Zuo Q, Huang H, Shi M, Zhang F, Sun J, Bin
J, Liao Y and Liao W: Multivariate analysis of several molecular
markers and clinicopathological features in postoperative prognosis
of hepatocellular carcinoma. Anat Rec (Hoboken). 295:423–431. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu L, Cao Y, Chen C, Zhang X, McNabola A,
Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the
RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor
cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer
Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gollob JA, Wilhelm S, Carter C and Kelley
SL: Role of Raf kinase in cancer: Therapeutic potential of
targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol.
33:392–406. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tang Z, Qin L, Wang X, Zhou G, Liao Y,
Weng Y, Jiang X, Lin Z, Liu K and Ye S: Alterations of oncogenes,
tumor suppressor genes and growth factors in hepatocellular
carcinoma: With relation to tumor size and invasiveness. Chin Med J
(Engl). 111:313–318. 1998.PubMed/NCBI
|
|
28
|
Wiedmann MW and Mössner J: Molecular
targeted therapy of hepatocellular carcinoma-results of the first
clinical studies. Curr Cancer Drug Targets. 11:714–733. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Poon RT, Ho JW, Tong CS, Lau C, Ng IO and
Fan ST: Prognostic significance of serum vascular endothelial
growth factor and endostatin in patients with hepatocellular
carcinoma. Br J Surg. 91:1354–1360. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Dhar DK, Naora H, Yamanoi A, Ono T, Kohno
H, Otani H and Nagasue N: Requisite role of VEGF receptors in
angiogenesis of hepatocellular carcinoma: A comparison with
angiopoietin/Tie pathway. Anticancer Res. 22:379–386.
2002.PubMed/NCBI
|
|
31
|
Tavian D, De Petro G, Benetti A, Portolani
N, Giulini SM and Barlati S: u-PA and c-MET mRNA expression is
co-ordinately enhanced while hepatocyte growth factor mRNA is
down-regulated in human hepatocellular carcinoma. Int J Cancer.
87:644–649. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Whittaker S, Marais R and Zhu AX: The role
of signaling pathways in the development and treatment of
hepatocellular carcinoma. Oncogene. 29:4989–5005. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Giambartolomei S, Covone F, Levrero M and
Balsano C: Sustained activation of the Raf/MEK/Erk pathway in
response to EGF in stable cell lines expressing the Hepatitis C
Virus (HCV) core protein. Oncogene. 20:2606–2610. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang XW: Microinjection technique used to
study functional interaction between p53 and hepatitis B virus X
gene in apoptosis. Mol Biotechnol. 18:169–177. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Nakamura H, Aoki H, Hino O and Moriyama M:
HCV core protein promotes heparin binding EGF-like growth factor
expression and activates Akt. Hepatol Res. 41:455–462. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schmitz KJ, Wohlschlaeger J, Lang H,
Sotiropoulos GC, Malago M, Steveling K, Reis H, Cicinnati VR,
Schmid KW and Baba HA: Activation of the ERK and AKT signaling
pathway predicts poor prognosis in hepatocellular carcinoma and ERK
activation in cancer tissue is associated with hepatitis C virus
infection. J Hepatol. 48:83–90. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hayashi J, Aoki H, Kajino K, Moriyama M,
Arakawa Y and Hino O: Hepatitis C virus core protein activates the
MAPK/ERK cascade synergistically with tumor promoter TPA, but not
with epidermal growth factor or transforming growth factor alpha.
Hepatology. 32:958–961. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Colombino M, Sperlongano P, Izzo F,
Tatangelo F, Botti G, Lombardi A, Accardo M, Tarantino L, Sordelli
I, Agresti M, et al: BRAF and PIK3CA genes are somatically mutated
in hepatocellular carcinoma among patients from South Italy. Cell
Death Dis. 3:e2592012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kalinina O, Marchio A, Urbanskii AI,
Tarkova AB, Rebbani K, Granov DA, Dejean A, Generalov MI and Pineau
P: Somatic changes in primary liver cancer in Russia: A pilot
study. Mutat Res. 755:90–99. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Challen C, Guo K, Collier JD, Cavanagh D
and Bassendine MF: Infrequent point mutations in codons 12 and 61
of ras oncogenes in human hepatocellular carcinomas. J Hepatol.
14:342–346. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Saini KS, Loi S, de Azambuja E,
Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE and
Piccart-Gebhart MJ: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK
pathways in the treatment of breast cancer. Cancer Treat Rev.
39:935–946. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Taketomi A, Shirabe K, Muto J, Yoshiya S,
Motomura T, Mano Y, Ikegami T, Yoshizumi T, Sugio K and Maehara Y:
A rare point mutation in the Ras oncogene in hepatocellular
carcinoma. Surg Today. 43:289–292. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Marom M, Haklai R, Ben-Baruch G, Marciano
D, Egozi Y and Kloog Y: Selective inhibition of Ras-dependent cell
growth by farnesylthiosalisylic acid. J Biol Chem. 270:22263–22270.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Haklai R, Weisz MG, Elad G, Paz A,
Marciano D, Egozi Y, Ben-Baruch G and Kloog Y: Dislodgment and
accelerated degradation of Ras. Biochemistry. 37:1306–1314. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
McMahon LP, Yue W, Santen RJ and Lawrence
JC Jr: Farnesylthiosalicylic acid inhibits mammalian target of
rapamycin (mTOR) activity both in cells and in vitro by promoting
dissociation of the mTOR-raptor complex. Mol Endocrinol.
19:175–183. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Blum R, Elkon R, Yaari S, Zundelevich A,
Jacob-Hirsch J, Rechavi G, Shamir R and Kloog Y: Gene expression
signature of human cancer cell lines treated with the ras inhibitor
salirasib (S-farnesylthiosalicylic acid). Cancer Res. 67:3320–3328.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tsimberidou AM, Rudek MA, Hong D, Ng CS,
Blair J, Goldsweig H and Kurzrock R: Phase 1 first-in-human
clinical study of S-trans, trans-farnesylthiosalicylic acid
(salirasib) in patients with solid tumors. Cancer Chemother
Pharmacol. 65:235–241. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Charette N, De Saeger C, Lannoy V,
Horsmans Y, Leclercq I and Stärkel P: Salirasib inhibits the growth
of hepatocarcinoma cell lines in vitro and tumor growth in vivo
through ras and mTOR inhibition. Mol Cancer. 9:2562010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
da Silva Morais A, Saliez A, Leclercq I,
Horsmans Y and Stärkel P: Inhibition of the Ras oncoprotein reduces
proliferation of hepatocytes in vitro and in vivo in rats. Clin Sci
(Lond). 114:73–83. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Schneider-Merck T, Borbath I, Charette N,
De Saeger C, Abarca J, Leclercq I, Horsmans Y and Stärkel P: The
Ras inhibitor farnesylthiosalicyclic acid (FTS) prevents nodule
formation and development of preneoplastic foci of altered
hepatocytes in rats. Eur J Cancer. 45:2050–2060. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wecksler AT, Hwang SH, Liu JY, Wettersten
HI, Morisseau C, Wu J, Weiss RH and Hammock BD: Biological
evaluation of a novel sorafenib analogue, t-CUPM. Cancer Chemother
Pharmacol. 75:161–171. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fucile C, Marenco S, Bazzica M, Zuccoli
ML, Lantieri F, Robbiano L, Marini V, Di Gion P, Pieri G, Stura P,
et al: Measurement of sorafenib plasma concentration by
high-performance liquid chromatography in patients with advanced
hepatocellular carcinoma: Is it useful the application in clinical
practice? A pilot study. Med Oncol. 32:3352015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Guan YS and He Q: Sorafenib: Activity and
clinical application in patients with hepatocellular carcinoma.
Expert Opin Pharmacother. 12:303–313. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Arrondeau J, Mir O, Boudou-Rouquette P,
Coriat R, Ropert S, Dumas G, Rodrigues MJ, Rousseau B, Blanchet B
and Goldwasser F: Sorafenib exposure decreases over time in
patients with hepatocellular carcinoma. Invest New Drugs.
30:2046–2049. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Peng S, Zhao Y, Xu F, Jia C, Xu Y and Dai
C: An updated meta-analysis of randomized controlled trials
assessing the effect of sorafenib in advanced hepatocellular
carcinoma. PLoS One. 9:e1125302014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sathornsumetee S, Hjelmeland AB, Keir ST,
McLendon RE, Batt D, Ramsey T, Yusuff N, Rasheed BK, Kieran MW,
Laforme A, et al: AAL881, a novel small molecule inhibitor of RAF
and vascular endothelial growth factor receptor activities, blocks
the growth of malignant glioma. Cancer Res. 66:8722–8730. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lang SA, Schachtschneider P, Moser C, Mori
A, Hackl C, Gaumann A, Batt D, Schlitt HJ, Geissler EK and
Stoeltzing O: Dual targeting of Raf and VEGF receptor 2 reduces
growth and metastasis of pancreatic cancer through direct effects
on tumor cells, endothelial cells, and pericytes. Mol Cancer Ther.
7:3509–3518. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lang SA, Brecht I, Moser C, Obed A, Batt
D, Schlitt HJ, Geissler EK and Stoeltzing O: Dual inhibition of Raf
and VEGFR2 reduces growth and vascularization of hepatocellular
carcinoma in an experimental model. Langenbecks Arch Surg.
393:333–341. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cotrim CZ, Amado FL and Helguero LA:
Estrogenic effect of the MEK1 inhibitor PD98059 on endogenous
estrogen receptor alpha and beta. J Steroid Biochem Mol Biol.
124:25–30. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Han Y, Xu G, Zhang J, Yan M, Li X, Ma B,
Jun L, Wang SJ and Tan J: Leptin induces osteocalcin expression in
ATDC5 cells through activation of the MAPK-ERK1/2 signaling
pathway. Oncotarget. Aug 24–2016.(Epub ahead of print).
|
|
61
|
Davis JE, Xie X, Guo J, Huang W, Chu WM,
Huang S, Teng Y and Wu G: ARF1 promotes prostate tumorigenesis via
targeting oncogenic MAPK signaling. Oncotarget. 7:39834–39845.
2016.PubMed/NCBI
|
|
62
|
Montagut C and Settleman J: Targeting the
RAF-MEK-ERK pathway in cancer therapy. Cancer Lett. 283:125–134.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Barrett SD, Bridges AJ, Dudley DT, Saltiel
AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, LePage S, Leopold
WR, et al: The discovery of the benzhydroxamate MEK inhibitors
CI-1040 and PD 0325901. Bioorg Med Chem Lett. 18:6501–6504. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lorusso PM, Adjei AA, Varterasian M,
Gadgeel S, Reid J, Mitchell DY, Hanson L, DeLuca P, Bruzek L, Piens
J, et al: Phase I and pharmacodynamic study of the oral MEK
inhibitor CI-1040 in patients with advanced malignancies. J Clin
Oncol. 23:5281–5293. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rinehart J, Adjei AA, Lorusso PM,
Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury
P, Kaldjian EP, et al: Multicenter phase II study of the oral MEK
inhibitor, CI-1040, in patients with advanced non-small-cell lung,
breast, colon, and pancreatic cancer. J Clin Oncol. 22:4456–4462.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ciuffreda L, Del Bufalo D, Desideri M, Di
Sanza C, Stoppacciaro A, Ricciardi MR, Chiaretti S, Tavolaro S,
Benassi B, Bellacosa A, et al: Growth-inhibitory and antiangiogenic
activity of the MEK inhibitor PD0325901 in malignant melanoma with
or without BRAF mutations. Neoplasia. 11:720–731. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lorusso PM, Krishnamurthi SS, Rinehart JJ,
Nabell LM, Malburg L, Chapman PB, DePrimo SE, Bentivegna S, Wilner
KD, Tan W and Ricart AD: Phase I pharmacokinetic and
pharmacodynamic study of the oral MAPK/ERK kinase inhibitor
PD-0325901 in patients with advanced cancers. Clin Cancer Res.
16:1924–1937. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Haura EB, Ricart AD, Larson TG, Stella PJ,
Bazhenova L, Miller VA, Cohen RB, Eisenberg PD, Selaru P, Wilner KD
and Gadgeel SM: A phase II study of PD-0325901, an oral MEK
inhibitor, in previously treated patients with advanced non-small
cell lung cancer. Clin Cancer Res. 16:2450–2457. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Davies BR, Logie A, McKay JS, Martin P,
Steele S, Jenkins R, Cockerill M, Cartlidge S and Smith PD: AZD6244
(ARRY-142886), a potent inhibitor of mitogen-activated protein
kinase/extracellular signal-regulated kinase kinase 1/2 kinases:
Mechanism of action in vivo, pharmacokinetic/pharmacodynamic
relationship, and potential for combination in preclinical models.
Mol Cancer Ther. 6:2209–2219. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Do K, Speranza G, Bishop R, Khin S,
Rubinstein L, Kinders RJ, Datiles M, Eugeni M, Lam MH, Doyle LA, et
al: Biomarker-driven phase 2 study of MK-2206 and selumetinib
(AZD6244, ARRY-142886) in patients with colorectal cancer. Invest
New Drugs. 33:720–728. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Grasso S, Pereira GJ, Palmeira-Dos-Santos
C, Calgarotto AK, Martínez-Lacaci I, Ferragut JA, Smaili SS and
Bincoletto C: Autophagy regulates Selumetinib (AZD6244)
induced-apoptosis in colorectal cancer cells. Eur J Med Chem.
122:611–618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang QJ, Huo Y, Han YL, Wan LL, Li J,
Huang JL, Lu J, Chen PG, Gan R and Guo C. Cheng: Selumetinib
attenuate skeletal muscle wasting in murine cachexia model through
ERK inhibition and AKT activation. Mol Cancer Ther. Sep
6–2016.(Epub ahead of print).
|
|
73
|
O'Neil BH, Goff LW, Kauh JS, Strosberg JR,
Bekaii-Saab TS, Lee RM, Kazi A, Moore DT, Learoyd M, Lush RM, et
al: Phase II study of the mitogen-activated protein kinase 1/2
inhibitor selumetinib in patients with advanced hepatocellular
carcinoma. J Clin Oncol. 29:2350–2356. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Holkova B, Zingone A, Kmieciak M, Bose P,
Badros AZ, Voorhees PM, Baz R, Korde N, Lin HY, Chen JQ, et al:
Phase II trial of AZD6244 (Selumetinib, ARRY-142886), an oral
MEK1/2 inhibitor, in relapsed/refractory multiple myeloma. Clin
Cancer Res. 22:1067–1075. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Coleman RL, Sill MW, Thaker PH, Bender DP,
Street D, McGuire WP, Johnston CM and Rotmensch J: A phase II
evaluation of selumetinib (AZD6244, ARRY-142886), a selective
MEK-1/2 inhibitor in the treatment of recurrent or persistent
endometrial cancer: An NRG Oncology/Gynecologic Oncology Group
study. Gynecol Oncol. 138:30–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Barrett SD, Bridges AJ, Dudley DT, Saltiel
AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, LePage S, Leopold
WR, et al: The discovery of the benzhydroxamate MEK inhibitors
CI-1040 and PD 0325901. Bioorg Med Chem Lett. 18:6501–6504. 2008.
View Article : Google Scholar : PubMed/NCBI
|