|
1
|
Ahmad SS, Duke S, Jena R, Williams MV and
Burnet NG: Advances in radiotherapy. BMJ. 345:e77652012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Schaue D and McBride WH: Opportunities and
challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol.
12:527–540. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Baskar R, Lee KA, Yeo R and Yeoh KW:
Cancer and radiation therapy: Current advances and future
directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Copp RR, Peebles DD, Soref CM and Fahl WE:
Radioprotective efficacy and toxicity of a new family of aminothiol
analogs. Int J Radiat Biol. 89:485–492. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kim W, Youn H, Kwon T, Kang J, Kim E, Son
B, Yang HJ, Jung Y and Youn B: PIM1 kinase inhibitors induce
radiosensitization in non-small cell lung cancer cells. Pharmacol
Res. 70:90–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kang J, Kim E, Kim W, Seong KM, Youn H,
Kim JW, Kim J and Youn B: Rhamnetin and cirsiliol induce
radiosensitization and inhibition of epithelial-mesenchymal
transition (EMT) by miR-34a-mediated suppression of Notch-1
expression in non-small cell lung cancer cell lines. J Biol Chem.
288:27343–27357. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Trotti A, Bellm LA, Epstein JB, Frame D,
Fuchs HJ, Gwede CK, Komaroff E, Nalysnyk L and Zilberberg MD:
Mucositis incidence, severity and associated outcomes in patients
with head and neck cancer receiving radiotherapy with or without
chemotherapy: A systematic literature review. Radiother Oncol.
66:253–262. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Furby A, Behin A, Lefaucheur JP, Beauvais
K, Marcorelles P, Mussini JM, Bassez G, Créange A, Eymard B and
Pénisson-Besnier I: Late-onset cervicoscapular muscle atrophy and
weakness after radiotherapy for Hodgkin disease: A case series. J
Neurol Neurosurg Psychiatry. 81:101–104. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Radvansky LJ, Pace MB and Siddiqui A:
Prevention and management of radiation-induced dermatitis,
mucositis, and xerostomia. Am J Health Syst Pharm. 70:1025–1032.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen Y and Okunieff P: Radiation and
third-generation chemotherapy. Hematol Oncol Clin North Am.
18:55–80. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Prouillac C, Vicendo P, Garrigues JC,
Poteau R and Rima G: Evaluation of new thiadiazoles and
benzothiazoles as potential radioprotectors: Free radical
scavenging activity in vitro and theoretical studies (QSAR, DFT).
Free Radic Biol Med. 46:1139–1148. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kim W, Seong KM and Youn B:
Phenylpropanoids in radioregulation: Double edged sword. Exp Mol
Med. 43:323–333. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yang HJ, Youn H, Seong KM, Yun YJ, Kim W,
Kim YH, Lee JY, Kim CS, Jin YW and Youn B: Psoralidin, a dual
inhibitor of COX-2 and 5-LOX, regulates ionizing radiation
(IR)-induced pulmonary inflammation. Biochem Pharmacol. 82:524–534.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Brizel DM, Wasserman TH, Henke M, Strnad
V, Rudat V, Monnier A, Eschwege F, Zhang J, Russell L, Oster W and
Sauer R: Phase III randomized trial of amifostine as a
radioprotector in head and neck cancer. J Clin Oncol. 18:3339–3345.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hensley ML, Schuchter LM, Lindley C,
Meropol NJ, Cohen GI, Broder G, Gradishar WJ, Green DM, Langdon RJ
Jr, Mitchell RB, et al: American society of clinical oncology
clinical practice guidelines for the use of chemotherapy and
radiotherapy protectants. J Clin Oncol. 17:3333–3355. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Arora R, Gupta D, Chawla R, Sagar R,
Sharma A, Kumar R, Prasad J, Singh S, Samanta N and Sharma RK:
Radioprotection by plant products: Present status and future
prospects. Phytother Res. 19:1–22. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Weiss JF and Landauer MR: Protection
against ionizing radiation by antioxidant nutrients and
phytochemicals. Toxicology. 189:1–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jagetia GC: Radioprotective potential of
plants and herbs against the effects of ionizing radiation. J Clin
Biochem Nutr. 40:74–81. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sagar SM: Can the therapeutic gain of
radiotherapy be increased by concurrent administration of Asian
botanicals? Integr Cancer Ther. 9:5–13. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kma L: Plant extracts and plant-derived
compounds: Promising players in a countermeasure strategy against
radiological exposure. Asian Pac J Cancer Prev. 15:2405–2425. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nambiar D, Rajamani P and Singh RP:
Effects of phytochemicals on ionization radiation-mediated
carcinogenesis and cancer therapy. Mutat Res. 728:139–157. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bourgier C, Levy A, Vozenin MC and Deutsch
E: Pharmacological strategies to spare normal tissues from
radiation damage: Useless or overlooked therapeutics? Cancer
Metastasis Rev. 31:699–712. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Maurya DK, Devasagayam TP and Nair CK:
Some novel approaches for radioprotection and the beneficial effect
of natural products. Indian J Exp Biol. 44:93–114. 2006.PubMed/NCBI
|
|
24
|
Kuntic VS, Stanković MB, Vujic ZB, Brborić
JS and Uskoković-Marković SM: Radioprotectors-the evergreen topic.
Chem Biodivers. 10:1791–1803. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Valerie K, Yacoub A, Hagan MP, Curiel DT,
Fisher PB, Grant S and Dent P: Radiation-induced cell signaling:
Inside-out and outside-in. Mol Cancer Ther. 6:789–801. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Multhoff G and Radons J: Radiation,
inflammation, and immune responses in cancer. Front Oncol.
2:582012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Verheij M: Clinical biomarkers and imaging
for radiotherapy-induced cell death. Cancer Metastasis Rev.
27:471–480. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fogg VC, Lanning NJ and Mackeigan JP:
Mitochondria in cancer: At the crossroads of life and death. Chin J
Cancer. 30:526–539. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Robbins ME and Zhao W: Chronic oxidative
stress and radiation-induced late normal tissue injury: A review.
Int J Radiat Biol. 80:251–259. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Paun A, Kunwar A and Haston CK: Acute
adaptive immune response correlates with late radiation-induced
pulmonary fibrosis in mice. Radiat Oncol. 10:452015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Giridhar P, Mallick S, Rath GK and Julka
PK: Radiation induced lung injury: Prediction, assessment and
management. Asian Pac J Cancer Prev. 16:2613–2617. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim HU, Ryu JY, Lee JO and Lee SY: A
systems approach to traditional oriental medicine. Nat Biotechnol.
33:264–268. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cheung F: TCM: Made in China. Nature.
480:S82–S83. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kumar H, Song SY, More SV, Kang SM, Kim
BW, Kim IS and Choi DK: Traditional Korean East Asian medicines and
herbal formulations for cognitive impairment. Molecules.
18:14670–14693. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xu Z: Modernization: One step at a time.
Nature. 480:S90–S92. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schmidt BM, Ribnicky DM, Lipsky PE and
Raskin I: Revisiting the ancient concept of botanical therapeutics.
Nat Chem Biol. 3:360–366. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Barabasi AL, Gulbahce N and Loscalzo J:
Network medicine: A network-based approach to human disease. Nat
Rev Genet. 12:56–68. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cao W, Li XQ, Wang X, Li T, Chen X, Liu SB
and Mei QB: Characterizations and anti-tumor activities of three
acidic polysaccharides from Angelica sinensis (Oliv.) Diels. Int J
Biol Macromol. 46:115–122. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang X, Zhao Y, Zhou Y, Lv Y, Mao J and
Zhao P: Component and antioxidant properties of polysaccharide
fractions isolated from Angelica sinensis (OLIV.) DIELS. Biol Pharm
Bull. 30:1884–1890. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen Y, Duan JA, Qian D, Guo J, Song B and
Yang M: Assessment and comparison of immunoregulatory activity of
four hydrosoluble fractions of Angelica sinensis in vitro on the
peritoneal macrophages in ICR mice. Int Immunopharmacol.
10:422–430. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xie CH, Zhang MS, Zhou YF, Han G, Cao Z,
Zhou FX, Zhang G, Luo ZG, Wu JP, Liu H, et al: Chinese medicine
Angelica sinensis suppresses radiation-induced expression of
TNF-alpha and TGF-beta1 in mice. Oncol Rep. 15:1429–1436.
2006.PubMed/NCBI
|
|
42
|
Han G, Zhou YF, Zhang MS, Cao Z, Xie CH,
Zhou FX, Peng M and Zhang WJ: Angelica sinensis down-regulates
hydroxyproline and Tgfb1 and provides protection in mice with
radiation-induced pulmonary fibrosis. Radiat Res. 165:546–552.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhao L, Wang Y, Shen HL, Shen XD, Nie Y,
Wang Y, Han T, Yin M and Zhang QY: Structural characterization and
radioprotection of bone marrow hematopoiesis of two novel
polysaccharides from the root of Angelica sinensis (Oliv.) Diels.
Fitoterapia. 83:1712–1720. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lee JG, Hsieh WT, Chen SU and Chiang BH:
Hematopoietic and myeloprotective activities of an acidic Angelica
sinensis polysaccharide on human CD34+ stem cells. J
Ethnopharmacol. 139:739–745. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu C, Li J, Meng FY, Liang SX, Deng R, Li
CK, Pong NH, Lau CP, Cheng SW, Ye JY, et al: Polysaccharides from
the root of Angelica sinensis promotes hematopoiesis and
thrombopoiesis through the PI3K/AKT pathway. BMC Complement Altern
Med. 10:792010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen XP, Li W, Xiao XF, Zhang LL and Liu
CX: Phytochemical and pharmacological studies on Radix Angelica
sinensis. Chin J Nat Med. 11:577–587. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Anand P, Thomas SG, Kunnumakkara AB,
Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K,
Priyadarsini IK, Rajasekharan KN and Aggarwal BB: Biological
activities of curcumin and its analogues (Congeners) made by man
and Mother Nature. Biochem Pharmacol. 76:1590–1611. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hatcher H, Planalp R, Cho J, Torti FM and
Torti SV: Curcumin: From ancient medicine to current clinical
trials. Cell Mol Life Sci. 65:1631–1652. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Nemavarkar P, Chourasia BK and Pasupathy
K: Evaluation of radioprotective action of compounds using
Saccharomyces cerevisiae. J Environ Pathol Toxicol Oncol.
23:145–151. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pal A and Pal AK: Radioprotection of
turmeric extracts in bacterial system. Acta Biol Hung. 56:333–343.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jagetia GC: Radioprotection and
radiosensitization by curcumin. Adv Exp Med Biol. 595:301–320.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nada AS, Hawas AM, Nel D Amin, Elnashar MM
and Abd Elmageed ZY: Radioprotective effect of Curcuma longa
extract on gamma-irradiation-induced oxidative stress in rats. Can
J Physiol Pharmacol. 90:415–423. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Aravindan N, Madhusoodhanan R, Ahmad S,
Johnson D and Herman TS: Curcumin inhibits NFkappaB mediated
radioprotection and modulate apoptosis related genes in human
neuroblastoma cells. Cancer Biol Ther. 7:569–576. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Qian Y, Ma J, Guo X, Sun J, Yu Y, Cao B,
Zhang L, Ding X, Huang J and Shao JF: Curcumin enhances the
radiosensitivity of U87 cells by inducing DUSP-2 up-regulation.
Cell Physiol Biochem. 35:1381–1393. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Goel A and Aggarwal BB: Curcumin, the
golden spice from Indian saffron, is a chemosensitizer and
radiosensitizer for tumors and chemoprotector and radioprotector
for normal organs. Nutr Cancer. 62:919–930. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Srinivasan M, Prasad N Rajendra and Menon
VP: Protective effect of curcumin on gamma-radiation induced DNA
damage and lipid peroxidation in cultured human lymphocytes. Mutat
Res. 611:96–103. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Inano H and Onoda M: Radioprotective
action of curcumin extracted from Curcuma longa LINN: Inhibitory
effect on formation of urinary 8-hydroxy-2′-deoxyguanosine,
tumorigenesis, but not mortality, induced by gamma-ray irradiation.
Int J Radiat Oncol Biol Phys. 53:735–743. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lee JC, Kinniry PA, Arguiri E, Serota M,
Kanterakis S, Chatterjee S, Solomides CC, Javvadi P, Koumenis C,
Cengel KA and Christofidou-Solomidou M: Dietary curcumin increases
antioxidant defenses in lung, ameliorates radiation-induced
pulmonary fibrosis, and improves survival in mice. Radiat Res.
173:590–601. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jelveh S, Kaspler P, Bhogal N, Mahmood J,
Lindsay PE, Okunieff P, Doctrow SR, Bristow RG and Hill RP:
Investigations of antioxidant-mediated protection and mitigation of
radiation-induced DNA damage and lipid peroxidation in murine skin.
Int J Radiat Biol. 89:618–627. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chan PC, Xia Q and Fu PP: Ginkgo biloba
leave extract: Biological, medicinal, and toxicological effects. J
Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 25:211–244.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jacobs BP and Browner WS: Ginkgo biloba: A
living fossil. Am J Med. 108:341–342. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yirmibesoglu E, Karahacioglu E, Kilic D,
Lortlar N, Akbulut G and Omeroglu S: The protective effects of
Ginkgo biloba extract (EGb-761) on radiation-induced dermatitis: An
experimental study. Clin Exp Dermatol. 37:387–394. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sener G, Kabasakal L, Atasoy BM, Erzik C,
Velioğlu-Oğünç A, Cetinel S, Gedik N and Yeğen BC: Ginkgo biloba
extract protects against ionizing radiation-induced oxidative organ
damage in rats. Pharmacol Res. 53:241–252. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Attia A, Rapp SR, Case LD, D'Agostino R,
Lesser G, Naughton M, McMullen K, Rosdhal R and Shaw EG: Phase II
study of Ginkgo biloba in irradiated brain tumor patients: Effect
on cognitive function, quality of life, and mood. J Neurooncol.
109:357–363. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Suleyman H, Gumustekin K, Taysi S, Keles
S, Oztasan N, Aktas O, Altinkaynak K, Timur H, Akcay F, Akar S, et
al: Beneficial effects of Hippophae rhamnoides L. on nicotine
induced oxidative stress in rat blood compared with vitamin E. Biol
Pharm Bull. 25:1133–1136. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cheng J, Kondo K, Suzuki Y, Ikeda Y, Meng
X and Umemura K: Inhibitory effects of total flavones of Hippophae
rhamnoides L on thrombosis in mouse femoral artery and in vitro
platelet aggregation. Life Sci. 72:2263–2271. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zeb A: Important therapeutic uses of sea
buckthorn (Hippophae): A Review. J Biol Sci. 4:687–693. 2004.
View Article : Google Scholar
|
|
68
|
Goel HC, Prasad J, Singh S, Sagar RK,
Kumar IP and Sinha AK: Radioprotection by a herbal preparation of
Hippophae rhamnoides, RH-3, against whole body lethal irradiation
in mice. Phytomedicine. 9:15–25. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Agrawala PK and Adhikari JS: Modulation of
radiation-induced cytotoxicity in U 87 cells by RH-3 (a preparation
of Hippophae rhamnoides). Indian J Med Res. 130:542–549.
2009.PubMed/NCBI
|
|
70
|
Gupta V, Bala M, Prasad J, Singh S and
Gupta M: Leaves of Hippophae rhamnoides prevent taste aversion in
gamma-irradiated rats. J Diet Suppl. 8:355–368. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shukla SK, Chaudhary P, Kumar IP, Samanta
N, Afrin F, Gupta ML, Sharma UK, Sinha AK, Sharma YK and Sharma RK:
Protection from radiation-induced mitochondrial and genomic DNA
damage by an extract of Hippophae rhamnoides. Environ Mol Mutagen.
47:647–656. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sureshbabu AV, Barik TK, Namita I and
Kumar I Prem: Radioprotective properties of Hippophae rhamnoides
(sea buckthorn) extract in vitro. Int J Health Sci (Qassim).
2:45–62. 2008.PubMed/NCBI
|
|
73
|
Goel HC, Kumar IP, Samanta N and Rana SV:
Induction of DNA-protein cross-links by Hippophae rhamnoides:
Implications in radioprotection and cytotoxicity. Mol Cell Biochem.
245:57–67. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kumar IP, Namita S and Goel HC: Modulation
of chromatin organization by RH-3, a preparation of Hippophae
rhamnoides, a possible role in radioprotection. Mol Cell Biochem.
238:1–9. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rai MK: In vitro evaluation of medicinal
plant extracts against Pestalotiopsis mangiferae. Hindustan
Antibiot Bull. 38:53–56. 1996.PubMed/NCBI
|
|
76
|
Gupta SK, Prakash J and Srivastava S:
Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a
medicinal plant. Indian J Exp Biol. 40:765–773. 2002.PubMed/NCBI
|
|
77
|
Singh S, Majumdar DK and Rehan HM:
Evaluation of anti-inflammatory potential of fixed oil of Ocimum
sanctum (Holybasil) and its possible mechanism of action. J
Ethnopharmacol. 54:19–26. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Devi PU: Radioprotective, anticarcinogenic
and antioxidant properties of the Indian holy basil, Ocimum sanctum
(Tulasi). Indian J Exp Biol. 39:185–190. 2001.PubMed/NCBI
|
|
79
|
Uma Devi P and Ganasoundari A:
Radioprotective effect of leaf extract of Indian medicinal plant
Ocimum sanctum. Indian J Exp Biol. 33:205–208. 1995.PubMed/NCBI
|
|
80
|
Monga J, Sharma M, Tailor N and Ganesh N:
Antimelanoma and radioprotective activity of alcoholic aqueous
extract of different species of Ocimum in C(57)BL mice. Pharm Biol.
49:428–436. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Subramanian M, Chintalwar GJ and
Chattopadhyay S: Antioxidant and radioprotective properties of an
Ocimum sanctum polysaccharide. Redox Rep. 10:257–264. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Uma Devi P, Ganasoundari A, Rao BS and
Srinivasan KK: In vivo radioprotection by ocimum flavonoids:
Survival of mice. Radiat Res. 151:74–78. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Uma Devi P, Ganasoundari A, Vrinda B,
Srinivasan KK and Unnikrishnan MK: Radiation protection by the
ocimum flavonoids orientin and vicenin: Mechanisms of action.
Radiat Res. 154:455–460. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Nayak V and Devi PU: Protection of mouse
bone marrow against radiation-induced chromosome damage and stem
cell death by the ocimum flavonoids orientin and vicenin. Radiat
Res. 163:165–171. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
85
|
Shin JY, Song JY, Yun YS, Yang HO, Rhee DK
and Pyo S: Immunostimulating effects of acidic polysaccharides
extract of Panax ginseng on macrophage function. Immunopharmacol
Immunotoxicol. 24:469–482. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Konoshima T, Takasaki M and Tokuda H:
Anti-carcinogenic activity of the roots of Panax notoginseng. II.
Biol Pharm Bull. 22:1150–1152. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jung CH, Seog HM, Choi IW, Choi HD and Cho
HY: Effects of wild ginseng (Panax ginseng C.A. Meyer) leaves on
lipid peroxidation levels and antioxidant enzyme activities in
streptozotocin diabetic rats. J Ethnopharmacol. 98:245–250. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lee YS, Chung IS, Lee IR, Kim KH, Hong WS
and Yun YS: Activation of multiple effector pathways of immune
system by the antineoplastic immunostimulator acidic polysaccharide
ginsan isolated from Panax ginseng. Anticancer Res. 17:323–331.
1997.PubMed/NCBI
|
|
89
|
Wang W, Shen H, Xie JJ, Ling J and Lu H:
Neuroprotective effect of ginseng against spinal cord injury
induced oxidative stress and inflammatory responses. Int J Clin Exp
Med. 8:3514–3521. 2015.PubMed/NCBI
|
|
90
|
Song JY, Han SK, Bae KG, Lim DS, Son SJ,
Jung IS, Yi SY and Yun YS: Radioprotective effects of ginsan, an
immunomodulator. Radiat Res. 159:768–774. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kim HJ, Kim MH, Byon YY, Park JW, Jee Y
and Joo HG: Radioprotective effects of an acidic polysaccharide of
Panax ginseng on bone marrow cells. J Vet Sci. 8:39–44. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Verma P, Jahan S, Kim TH and Goyal PK:
Management of radiation injuries by panax ginseng extract. J
Ginseng Res. 35:261–271. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Bing SJ, Kim MJ, Ahn G, Im J, Kim DS, Ha
D, Cho J, Kim A and Jee Y: Acidic polysaccharide of Panax ginseng
regulates the mitochondria/caspase-dependent apoptotic pathway in
radiation-induced damage to the jejunum in mice. Acta Histochem.
116:514–521. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Koo HJ, Jang SA, Yang KH, Kang SC,
Namkoong S, Kim TH, do TT Hang and Sohn EH: Effects of red ginseng
on the regulation of cyclooxygenase-2 of spleen cells in whole-body
gamma irradiated mice. Food Chem Toxicol. 62:839–846. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kim SH, Son CH, Nah SY, Jo SK, Jang JS and
Shin DH: Modification of radiation response in mice by Panax
ginseng and diethyldithiocarbamate. In Vivo. 15:407–411.
2001.PubMed/NCBI
|
|
96
|
Verma P, Sharma P, Parmar J, Sharma P,
Agrawal A and Goyal PK: Amelioration of radiation-induced
hematological and biochemical alterations in Swiss albino mice by
Panax ginseng extract. Integr Cancer Ther. 10:77–84. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Arun R, Prakash MV, Abraham SK and
Premkumar K: Role of Syzygium cumini seed extract in the
chemoprevention of in vivo genomic damage and oxidative stress. J
Ethnopharmacol. 134:329–333. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Muruganandan S, Srinivasan K, Chandra S,
Tandan SK, Lal J and Raviprakash V: Anti-inflammatory activity of
Syzygium cumini bark. Fitoterapia. 72:369–375. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
de Bona KS, Bellé LP, Sari MH, Thomé G,
Schetinger MR, Morsch VM, Boligon A, Athayde ML, Pigatto AS and
Moretto MB: Syzygium cumini extract decrease adenosine deaminase,
5′nucleotidase activities and oxidative damage in platelets of
diabetic patients. Cell Physiol Biochem. 26:729–738. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Jagetia GC, Baliga MS and Venkatesh P:
Influence of seed extract of Syzygium Cumini (Jamun) on mice
exposed to different doses of gamma-radiation. J Radiat Res.
46:59–65. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Srivastava S and Chandra D:
Pharmacological potentials of Syzygium cumini: A review. J Sci Food
Agric. 93:2084–2093. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jagetia GC and Baliga MS: Syzygium cumini
(Jamun) reduces the radiation-induced DNA damage in the cultured
human peripheral blood lymphocytes: A preliminary study. Toxicol
Lett. 132:19–25. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jagetia GC and Baliga MS: Evaluation of
the radioprotective effect of the leaf extract of Syzygium cumini
(Jamun) in mice exposed to a lethal dose of gamma-irradiation.
Nahrung. 47:181–185. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Baliga MS: Anticancer, chemopreventive and
radioprotective potential of black plum (Eugenia jambolana lam.).
Asian Pac J Cancer Prev. 12:3–15. 2011.PubMed/NCBI
|
|
105
|
Jagetia GC, Shetty PC and Vidyasagar MS:
Treatment of mice with leaf extract of jamun (Syzygium cumini Linn.
Skeels) protects against the radiation induced damage in the
intestinal mucosa of mice exposed to different doses of
gamma-radiation. Pharmacology online. 1:169–195. 2008.
|
|
106
|
Jagetia GC, Shetty PC and Vidyasagar MS:
Inhibition of radiation-induced DNA damage by jamun, Syzygium
cumini, in the cultured splenocytes of mice exposed to different
doses of γ-radiation. Integr Cancer Ther. 11:141–153. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Penna SC, Medeiros MV, Aimbire FS,
Faria-Neto HC, Sertié JA and Lopes-Martins RA: Anti-inflammatory
effect of the hydralcoholic extract of Zingiber officinale rhizomes
on rat paw and skin edema. Phytomedicine. 10:381–385. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sharma SS and Gupta YK: Reversal of
cisplatin-induced delay in gastric emptying in rats by ginger
(Zingiber officinale). J Ethnopharmacol. 62:49–55. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Young HY, Luo YL, Cheng HY, Hsieh WC, Liao
JC and Peng WH: Analgesic and anti-inflammatory activities of
[6]-gingerol. J Ethnopharmacol. 96:207–210. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Habib SH, Makpol S, Hamid NA Abdul, Das S,
Ngah WZ and Yusof YA: Ginger extract (Zingiber officinale) has
anti-cancer and anti-inflammatory effects on ethionine-induced
hepatoma rats. Clinics (Sao Paulo). 63:807–813. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ernst E and Pittler MH: Efficacy of ginger
for nausea and vomiting: A systematic review of randomized clinical
trials. Br J Anaesth. 84:367–371. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lien HC, Sun WM, Chen YH, Kim H, Hasler W
and Owyang C: Effects of ginger on motion sickness and gastric
slow-wave dysrhythmias induced by circular vection. Am J Physiol
Gastrointest Liver Physiol. 284:G481–G489. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Du X, Pan H, Zhang C, Zhang H, Liu H, Chen
Z and Zeng X: Zingiber officinale extract modulates γ-rays-induced
immunosuppression in mice. J Med Plants Res. 4:1647–1655. 2010.
|
|
114
|
Jagetia GC, Baliga MS, Venkatesh P and
Ulloor JN: Influence of ginger rhizome (Zingiber officinale Rosc)
on survival, glutathione and lipid peroxidation in mice after
whole-body exposure to gamma radiation. Radiat Res. 160:584–592.
2003. View
Article : Google Scholar : PubMed/NCBI
|
|
115
|
Jagetia GC, Baliga M and Venkatesh P:
Ginger (Zingiber officinale Rosc.), a dietary supplement, protects
mice against radiation-induced lethality: Mechanism of action.
Cancer Biother Radiopharm. 19:422–435. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Sharma A, Haksar A, Chawla R, Kumar R,
Arora R, Singh S, Prasad J, Islam F, Arora MP and Sharma R Kumar:
Zingiber officinale Rosc. modulates gamma radiation-induced
conditioned taste aversion. Pharmacol Biochem Behav. 81:864–870.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Haksar A, Sharma A, Chawla R, Kumar R,
Arora R, Singh S, Prasad J, Gupta M, Tripathi RP, Arora MP, et al:
Zingiber officinale exhibits behavioral radioprotection against
radiation-induced CTA in a gender-specific manner. Pharmacol
Biochem Behav. 84:179–188. 2006. View Article : Google Scholar : PubMed/NCBI
|