|
1
|
Swerdlow SH, Campo E, Harris NL, Jaffe ES,
Pileri SA, Stein H, Thiele J and Vardiman JW: WHO Classification of
Tumours of Haematopoietic and Lymphoid Tissues. Fourth. IARC Press;
Lyon: 2008
|
|
2
|
Arber DA, Orazi A, Hasserjian R, Thiele J,
Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW:
The 2016 revision to the world health organization classification
of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
James C, Ugo V, Le Couédic JP, Staerk J,
Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R,
Bennaceur-Griscelli A, et al: A unique clonal JAK2 mutation leading
to constitutive signalling causes polycythaemia vera. Nature.
434:1144–1148. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kralovics R, Passamonti F, Buser AS, Teo
SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A
gain-of-function mutation of JAK2 in myeloproliferative disorders.
N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Levine RL, Wadleigh M, Cools J, Ebert BL,
Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et
al: Activating mutation in the tyrosine kinase JAK2 in polycythemia
vera, essential thrombocythemia, and myeloid metaplasia with
myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Baxter EJ, Scott LM, Campbell PJ, East C,
Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N,
et al: Acquired mutation of the tyrosine kinase JAK2 in human
myeloproliferative disorders. Lancet. 365:1054–1061. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Scott LM, Tong W, Levine RL, Scott MA,
Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison
CN, et al: JAK2 exon 12 mutations in polycythemia vera and
idiopathic erythrocytosis. N Engl J Med. 356:459–468. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chi J, Manoloukos M, Pierides C,
Nicolaidou V, Nicolaou K, Kleopa M, Vassiliou G and Costeas P:
Calreticulin mutations in myeloproliferative neoplasms and new
methodology for their detection and monitoring. Ann Hematol.
94:399–408. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ha JS and Kim YK: Calreticulin exon 9
mutations in myeloproliferative neoplasms. Ann Lab Med. 35:22–27.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Klampfl T, Gisslinger H, Harutyunyan AS,
Nivarthi H, Rumi E, Milosevic JD, Them NC, Berg T, Gisslinger B,
Pietra D, et al: Somatic mutations of calreticulin in
myeloproliferative neoplasms. N Engl J Med. 369:2379–2390. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rumi E, Pietra D, Ferretti V, Klampfl T,
Harutyunyan AS, Milosevic JD, Them NC, Berg T, Elena C, Casetti IC,
et al: JAK2 or CALR mutation status defines subtypes of essential
thrombocythemia with substantially different clinical course and
outcomes. Blood. 123:1544–1551. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tefferi A and Pardanani A:
Myeloproliferative neoplasms: A contemporary review. JAMA Oncol.
1:97–105. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nangalia J, Massie CE, Baxter EJ, Nice FL,
Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, et al:
Somatic CALR mutations in myeloproliferative neoplasms with
nonmutated JAK2. N Engl J Med. 369:2391–2405. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Delhommeau F, Jeziorowska D, Marzac C and
Casadevall N: Molecular aspects of myeloproliferative neoplasms.
Int J Hematol. 91:165–173. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Levine RL: Mechanisms of mutations in
myeloproliferative neoplasms. Best Pract Res Clin Haematol.
22:489–494. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Campregher PV, Santos FP, Perini GF and
Hamerschlak N: Molecular biology of Philadelphia-negative
myeloproliferative neoplasms. Rev Bras Hematol Hemoter. 34:150–155.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rueff J and Rodrigues AS: Cancer drug
resistance: A brief overview from a genetic viewpoint. Methods Mol
Biol. 1395:1–18. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mesa R, Miller CB, Thyne M, Mangan J,
Goldberger S, Fazal S, Ma X, Wilson W, Paranagama DC, Dubinski DG,
et al: Myeloproliferative neoplasms (MPNs) have a significant
impact on patients' overall health and productivity: The MPN
landmark survey. BMC Cancer. 16:1672016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Passamonti F, Rumi E, Pungolino E,
Malabarba L, Bertazzoni P, Valentini M, Orlandi E, Arcaini L,
Brusamolino E, Pascutto C, et al: Life expectancy and prognostic
factors for survival in patients with polycythemia vera and
essential thrombocythemia. Am J Med. 117:755–761. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wolanskyj AP, Schwager SM, McClure RF,
Larson DR and Tefferi A: Essential thrombocythemia beyond the first
decade: Life expectancy, long-term complication rates, and
prognostic factors. Mayo Clin Proc. 81:159–166. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Björkholm M, Hultcrantz M and Derolf ÅR:
Leukemic transformation in myeloproliferative neoplasms:
Therapy-related or unrelated? Best Pract Res Clin Haematol.
27:141–153. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Rampal R, Ahn J, Abdel-Wahab O, Nahas M,
Wang K, Lipson D, Otto GA, Yelensky R, Hricik T, McKenney AS, et
al: Genomic and functional analysis of leukemic transformation of
myeloproliferative neoplasms. Proc Natl Acad Sci USA. 111:pp.
E5401–E5410. 2014; View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Björkholm M, Hultcrantz M and Derolf ÅR:
Leukemic transformation in myeloproliferative neoplasms:
Therapy-related or unrelated? Best Pract Res Clin Haematol.
27:141–153. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hernández-Boluda JC, Pereira A, Cervantes
F, Alvarez-Larrán A, Collado M, Such E, Arilla MJ, Boqué C, Xicoy
B, Maffioli M, et al: A polymorphism in the XPD gene predisposes to
leukemic transformation and new nonmyeloid malignancies in
essential thrombocythemia and polycythemia vera. Blood.
119:5221–5228. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bolufer P, Barragan E, Collado M, Cervera
J, López JA and Sanz MA: Influence of genetic polymorphisms on the
risk of developing leukemia and on disease progression. Leuk Res.
30:1471–1491. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Beer PA, Delhommeau F, LeCouédic JP,
Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN,
Vannucchi AM, et al: Two routes to leukemic transformation after a
JAK2 mutation-positive myeloproliferative neoplasm. Blood.
115:2891–2900. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hasselbalch HC, Thomassen M, Riley CH,
Kjær L, Larsen TS, Jensen MK, Bjerrum OW, Kruse TA and Skov V:
Whole blood transcriptional profiling reveals deregulation of
oxidative and antioxidative defence genes in myelofibrosis and
related neoplasms. Potential implications of downregulation of Nrf2
for genomic instability and disease progression. PLoS One.
9:e1127862014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kilpivaara O and Levine RL: JAK2 and MPL
mutations in myeloproliferative neoplasms: Discovery and science.
Leukemia. 22:1813–1817. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Batar B, Güven M, Bariş S, Celkan T and
Yildiz I: DNA repair gene XPD and XRCC1 polymorphisms and the risk
of childhood acute lymphoblastic leukemia. Leuk Res. 33:759–763.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bănescu C, Trifa AP, Demian S, Lazar E
Benedek, Dima D, Duicu C and Dobreanu M: Polymorphism of XRCC1,
XRCC3, and XPD genes and risk of chronic myeloid leukemia. Biomed
Res Int. 2014:2137902014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hoeijmakers JH: Genome maintenance
mechanisms for preventing cancer. Nature. 411:366–374. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang CQ, Krishnan V, Tay LS, Chin DW, Koh
CP, Chooi JY, Nah GS, Du L, Jacob B, Yamashita N, et al: Disruption
of Runx1 and Runx3 leads to bone marrow failure and leukemia
predisposition due to transcriptional and DNA repair defects. Cell
Rep. 8:767–782. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Silva SN, Moita R, Azevedo AP, Gouveia R,
Manita I, Pina JE, Rueff J and Gaspar J: Menopausal age and XRCC1
gene polymorphisms: Role in breast cancer risk. Cancer Detect Prev.
31:303–309. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Santos LS, Branco SC, Silva SN, Azevedo
AP, Gil OM, Manita I, Ferreira TC, Limbert E, Rueff J and Gaspar
JF: Polymorphisms in base excision repair genes and thyroid cancer
risk. Oncol Rep. 28:1859–1868. 2012.PubMed/NCBI
|
|
35
|
Yan L, Li Q, Li X, Ji H and Zhang L:
Association studies between XRCC1, XRCC2, XRCC3 polymorphisms and
differentiated thyroid carcinoma. Cell Physiol Biochem.
38:1075–1084. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Baute J and Depicker A: Base excision
repair and its role in maintaining genome stability. Crit Rev
Biochem Mol Biol. 43:239–276. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Annamaneni S, Gorre M, Kagita S, Addepalli
K, Digumarti RR, Satti V and Battini MR: Association of XRCC1 gene
polymorphisms with chronic myeloid leukemia in the population of
Andhra Pradesh, India. Hematology. 18:163–168. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tefferi A and Vardiman JW: Classification
and diagnosis of myeloproliferative neoplasms: The 2008 world
health organization criteria and point-of-care diagnostic
algorithms. Leukemia. 22:14–22. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bastos HN, Antão MR, Silva SN, Azevedo AP,
Manita I, Teixeira V, Pina JE, Gil OM, Ferreira TC, Limbert E, et
al: Association of polymorphisms in genes of the homologous
recombination DNA repair pathway and thyroid cancer risk. Thyroid.
19:1067–1075. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Conde J, Silva SN, Azevedo AP, Teixeira V,
Pina JE, Rueff J and Gaspar JF: Association of common variants in
mismatch repair genes and breast cancer susceptibility: A multigene
study. BMC Cancer. 9:3442009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gomes BC, Silva SN, Azevedo AP, Manita I,
Gil OM, Ferreira TC, Limbert E, Rueff J and Gaspar JF: The role of
common variants of non-homologous end-joining repair genes XRCC4,
LIG4 and Ku80 in thyroid cancer risk. Oncol Rep. 24:1079–1085.
2010.PubMed/NCBI
|
|
42
|
Silva SN, Azevedo AP, Teixeira V, Pina JE,
Rueff J and Gaspar JF: The role of GSTA2 polymorphisms and
haplotypes in breast cancer susceptibility: A case-control study in
the Portuguese population. Oncol Rep. 22:593–598. 2009.PubMed/NCBI
|
|
43
|
Sole X, Guinó E, Valls J, Iniesta R and
Moreno V: SNPStats: A web tool for the analysis of association
studies. Bioinformatics. 22:1928–1929. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Geyer HL, Kosiorek H, Dueck AC, Scherber
R, Slot S, Zweegman S, Te Boekhorst PA, Senyak Z, Schouten HC,
Sackmann F, et al: Associations between gender, disease features
and symptom burden in patients with myeloproliferative neoplasms:
An analysis by the MPN QOL international working group.
Haematologica. 102:85–93. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Figueroa JD, Malats N, Real FX, Silverman
D, Kogevinas M, Chanock S, Welch R, Dosemeci M, Tardón A, Serra C,
et al: Genetic variation in the base excision repair pathway and
bladder cancer risk. Hum Genet. 121:233–242. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wilson DM, Kim D, Berquist BR and
Sigurdson AJ: Variation in base excision repair capacity. Mutat
Res. 711:100–112. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Walter D, Lier A, Geiselhart A, Thalheimer
FB, Huntscha S, Sobotta MC, Moehrle B, Brocks D, Bayindir I,
Kaschutnig P, et al: Exit from dormancy provokes DNA-damage-induced
attrition in haematopoietic stem cells. Nature. 520:549–552. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hirotsu Y, Nakagomi H, Sakamoto I, Amemiya
K, Oyama T, Mochizuki H and Omata M: Multigene panel analysis
identified germline mutations of DNA repair genes in breast and
ovarian cancer. Mol Genet Genomic Med. 3:459–466. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cheadle JP and Sampson JR:
MUTYH-associated polyposis-from defect in base excision repair to
clinical genetic testing. DNA Repair (Amst). 6:274–279. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Picelli S, Zajac P, Zhou XL, Edler D,
Lenander C, Dalén J, Hjern F, Lundqvist N, Lindforss U, Påhlman L,
et al: Common variants in human CRC genes as low-risk alleles. Eur
J Cancer. 46:1041–1048. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Przybylowska K, Kabzinski J, Sygut A,
Dziki L, Dziki A and Majsterek I: An association selected
polymorphisms of XRCC1, OGG1 and MUTYH gene and the level of
efficiency oxidative DNA damage repair with a risk of colorectal
cancer. Mutat Res. 745–746. 6–15. 2013.
|
|
52
|
Tao H, Shinmura K, Suzuki M, Kono S, Mibu
R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, et al:
Association between genetic polymorphisms of the base excision
repair gene MUTYH and increased colorectal cancer risk in a
Japanese population. Cancer Sci. 99:355–360. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Qian B, Zhang H, Zhang L, Zhou X, Yu H and
Chen K: Association of genetic polymorphisms in DNA repair pathway
genes with non-small cell lung cancer risk. Lung Cancer.
73:138–146. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Huang M, Dinney CP, Lin X, Lin J, Grossman
HB and Wu X: High-order interactions among genetic variants in DNA
base excision repair pathway genes and smoking in bladder cancer
susceptibility. Cancer Epidemiol Biomarkers Prev. 16:84–91. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang Y, Newcomb PA, Egan KM,
Titus-Ernstoff L, Chanock S, Welch R, Brinton LA, Lissowska J,
Bardin-Mikolajczak A, Peplonska B, et al: Genetic polymorphisms in
base-excision repair pathway genes and risk of breast cancer.
Cancer Epidemiol Biomarkers Prev. 15:353–358. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Das S, Bhowmik A, Bhattacharjee A,
Choudhury B, Naiding M, Laskar AK, Ghosh SK and Choudhury Y: XPD,
APE1, and MUTYH polymorphisms increase head and neck cancer risk:
Effect of gene-gene and gene-environment interactions. Tumour Biol.
36:7569–7579. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Picelli S, Bermejo J Lorenzo, Chang-Claude
J, Hoffmeister M, Fernández-Rozadilla C, Carracedo A, Castells A,
Castellví-Bel S and of EPICOLON Memebers:
Consortium-Gastrointestinal Oncology Group of the Spanish
Gastroenterological Association and Naccarati A et al.
Meta-analysis of mismatch repair polymorphisms within the cogent
consortium for colorectal cancer susceptibility. PLoS One.
8:e720912013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lévy N, Martz A, Bresson A, Spenlehauer C,
de Murcia G and Ménissier-de Murcia J: XRCC1 is phosphorylated by
DNA-dependent protein kinase in response to DNA damage. Nucleic
Acids Res. 34:32–41. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hung RJ, Hall J, Brennan P and Boffetta P:
Genetic polymorphisms in the base excision repair pathway and
cancer risk: A HuGE review. Am J Epidemiol. 162:925–942. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ginsberg G, Angle K, Guyton K and Sonawane
B: Polymorphism in the DNA repair enzyme XRCC1: Utility of current
database and implications for human health risk assessment. Mutat
Res. 727:1–15. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jiang J, Zhang X, Yang H and Wang W:
Polymorphisms of DNA repair genes: ADPRT, XRCC1, and XPD and cancer
risk in genetic epidemiology. Methods Mol Biol. 471:305–333. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Miao X, Zhang X, Zhang L, Guo Y, Hao B,
Tan W, He F and Lin D: Adenosine diphosphate ribosyl transferase
and x-ray repair cross-complementing 1 polymorphisms in gastric
cardia cancer. Gastroenterology. 131:420–427. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhai X, Liu J, Hu Z, Wang S, Qing J, Wang
X, Jin G, Gao J, Wang X and Shen H: Polymorphisms of ADPRT
Val762Ala and XRCC1 Arg399Glu and risk of breast cancer in Chinese
women: A case control analysis. Oncol Rep. 15:247–252.
2006.PubMed/NCBI
|
|
64
|
Hu Z, Ma H, Chen F, Wei Q and Shen H:
XRCC1 polymorphisms and cancer risk: A meta-analysis of 38
case-control studies. Cancer Epidemiol Biomarkers Prev.
14:1810–1818. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Srivastava A, Srivastava K, Pandey SN,
Choudhuri G and Mittal B: Single-nucleotide polymorphisms of DNA
repair genes OGG1 and XRCC1: Association with gallbladder cancer in
North Indian population. Ann Surg Oncol. 16:1695–1703. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen B, Zhou Y, Yang P and Wu XT:
Polymorphisms of XRCC1 and gastric cancer susceptibility: A
meta-analysis. Mol Biol Rep. 39:1305–1313. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zou H, Li Q, Xia W, Liu Y, Wei X and Wang
D: Association between the OGG1 Ser326Cys polymorphism and cancer
risk: Evidence from 152 Case-Control studies. J Cancer.
7:1273–1280. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wei B, Zhou Y, Xu Z, Xi B, Cheng H, Ruan
J, Zhu M, Hu Q, Wang Q, Wang Z, et al: The effect of hOGG1
Ser326Cys polymorphism on cancer risk: Evidence from a
meta-analysis. PLoS One. 6:e275452011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kumar A, Pant MC, Singh HS and Khandelwal
S: Role of OGG1 Ser326Cys polymorphism and 8-oxoguanine DNA damage
in risk assessment of squamous cell carcinoma of head and neck in
North Indian population. Mutat Res. 726:227–233. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang W, Wang M, Chen Y and Zhang Z, Wang
S, Xu M, Wang B, Zhao Q and Zhang Z: The hOGG1 Ser326Cys
polymorphism contributes to cancer susceptibility: Evidence from 83
case-control studies. Mutagenesis. 27:329–336. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Canbay E, Cakmakoglu B, Zeybek U, Sozen S,
Cacina C, Gulluoglu M, Balik E, Bulut T, Yamaner S and Bugra D:
Association of APE1 and hOGG1 polymorphisms with colorectal cancer
risk in a Turkish population. Curr Med Res Opin. 27:1295–1302.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Srivastava K, Srivastava A and Mittal B:
Polymorphisms in ERCC2, MSH2, and OGG1 DNA repair genes and
gallbladder cancer risk in a population of Northern India. Cancer.
116:3160–3169. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gu D, Wang M, Zhang Z and Chen J: Lack of
association between the hOGG1 Ser326Cys polymorphism and breast
cancer risk: Evidence from 11 case-control studies. Breast Cancer
Res Treat. 122:527–531. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fahmideh M Adel, Schwartzbaum J, Frumento
P and Feychting M: Association between DNA repair gene
polymorphisms and risk of glioma: A systematic review and
meta-analysis. Neuro Oncol. 16:807–814. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Das S, Nath S, Bhowmik A, Ghosh SK and
Choudhury Y: Association between OGG1 Ser326Cys polymorphism and
risk of upper aero-digestive tract and gastrointestinal cancers: A
meta-analysis. Springerplus. 5:2272016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wenjuan C, Jianzhong L, Chong L, Yanjun G,
Keqing L, Hanzhang W and Zhiping W: The hOGG1 Ser326Cys gene
polymorphism and susceptibility for bladder cancer: A
meta-analysis. Int Braz J Urol. 42:883–896. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Abbotts R and Madhusudan S: Human AP
endonuclease 1 (APE1): From mechanistic insights to druggable
target in cancer. Cancer Treat Rev. 36:425–435. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dyrkheeva NS, Lebedeva NA and Lavrik OI:
AP endonuclease 1 as a key enzyme in repair of
Apurinic/Apyrimidinic sites. Biochemistry (Mosc). 81:951–967. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Peng Q, Lu Y, Lao X, Chen Z, Li R, Sui J,
Qin X and Li S: Association between OGG1 Ser326Cys and APEX1
Asp148Glu polymorphisms and breast cancer risk: A meta-analysis.
Diagn Pathol. 9:1082014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhao Z, Liu C, Zeng Y, Gu L, Ying M, Wang
N, Hao B, Yao H, Su C, Wang Y and Ma Y: The association between the
APE1 Asp148Glu polymorphism and breast cancer susceptibility: A
meta-analysis based on case-control studies. Tumour Biol.
35:4727–4734. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wu B, Liu HL, Zhang S, Dong XR and Wu G:
Lack of an association between two BER gene polymorphisms and
breast cancer risk: A meta-analysis. PLoS One. 7:e508572012.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhou X, Wei L, Jiao G, Gao W, Ying M, Wang
N, Wang Y and Liu C: The association between the APE1 Asp148Glu
polymorphism and prostate cancer susceptibility: A meta-analysis
based on case-control studies. Mol Genet Genomics. 290:281–288.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li X, Zhang G, Huai YJ and Cao ZQ:
Association between APE1 T1349G polymorphism and prostate cancer
risk: Evidence from a meta-analysis. Tumour Biol. 35:10111–10119.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li H, Zou J, Mi J, Wei X, Zhao D, Zhang S
and Tian G: Association of APE1 Gene Asp148Glu variant with
digestive cancer: A meta-analysis. Med Sci Monit. 21:2456–2466.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dai ZJ, Shao YP, Kang HF, Tang W, Xu D,
Zhao Y, Liu D, Wang M, Yang PT and Wang XJ: Relationship between
apurinic endonuclease 1 Asp148Glu polymorphism and gastrointestinal
cancer risk: An updated meta-analysis. World J Gastroenterol.
21:5081–5089. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jin F, Qian C, Qing Y, Zhang Z, Wang G,
Shan J, Dai N, Li Z and Wang D: Genetic polymorphism of APE1
rs1130409 can contribute to the risk of lung cancer. Tumour Biol.
35:6665–6671. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hu D, Lin X, Zhang H, Zheng X and Niu W:
APEX nuclease (multifunctional DNA repair enzyme) 1 gene Asp148Glu
polymorphism and cancer risk: A meta-analysis involving 58 articles
and 48903 participants. PLoS One. 8:e835272013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Talhaoui I, Lebedeva NA, Zarkovic G,
Saint-Pierre C, Kutuzov MM, Sukhanova MV, Matkarimov BT, Gasparutto
D, Saparbaev MK, Lavrik OI and Ishchenko AA: Poly(ADP-ribose)
polymerases covalently modify strand break termini in DNA fragments
in vitro. Nucleic Acids Res. 44:9279–9295. 2016.PubMed/NCBI
|
|
89
|
Wei H and Yu X: Functions of PARylation in
DNA damage repair pathways. Genomics Proteomics Bioinformatics.
14:131–139. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Qin Q, Lu J, Zhu H, Xu L, Cheng H, Zhan L,
Yang X, Zhang C and Sun X: PARP-1 Val762Ala polymorphism and risk
of cancer: A meta-analysis based on 39 case-control studies. PLoS
One. 9:e980222014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hua RX, Li HP, Liang YB, Zhu JH, Zhang B,
Ye S, Dai QS, Xiong SQ, Gu Y and Sun XZ: Association between the
PARP1 Val762Ala polymorphism and cancer risk: Evidence from 43
studies. PLoS One. 9:e870572014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hu Y, Zhou M, Li K, Zhang K, Kong X, Zheng
Y, Li J and Liu L: Two DNA repair gene polymorphisms on the risk of
gastrointestinal cancers: A meta-analysis. Tumour Biol.
35:1715–1725. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lindholm Sørensen A and Hasselbalch HC:
Smoking and philadelphia-negative chronic myeloproliferative
neoplasms. Eur J Haematol. 97:63–69. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hasselbalch HC: Smoking as a contributing
factor for development of polycythemia vera and related neoplasms.
Leuk Res pii. S0145–2126. 2015.
|