|
1
|
Graves PR, Siddiqui F, Anscher MS and
Movsas B: Radiation pulmonary toxicity: From mechanisms to
management. Semin Radiat Oncol. 20:201–207. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rodrigues G, Lock M, D'Souza D, Yu E and
Van Dyk J: Prediction of radiation pneumonitis by dose-volume
histogram parameters in lung cancer-a systematic review. Radiother
Oncol. 71:127–138. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hernando ML, Marks LB, Bentel GC, Zhou SM,
Hollis D, Das SK, Fan M, Munley MT, Shafman TD, Anscher MS and Lind
PA: Radiation-induced pulmonary toxicity: A dose-volume histogram
analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol
Phys. 51:650–659. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Barriger RB, Fakiris AJ, Hanna N, Yu M,
Mantravadi P and McGarry RC: Dose-volume analysis of radiation
pneumonitis in non-small-cell lung cancer patients treated with
concurrent cisplatinum and etoposide with or without consolidation
docetaxel. Int J Radiat Oncol Biol Phys. 78:1381–1386. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ramella S, Trodella L, Mineo TC, Pompeo E,
Stimato G, Gaudino D, Valentini V, Cellini F, Ciresa M, Fiore M, et
al: Adding ipsilateral V20 and V30 to conventional dosimetric
constraints predicts radiation pneumonitis in stage IIIA-B NSCLC
treated with combined-modality therapy. Int J Radiat Oncol Biol
Phys. 76:110–115. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Robbins ME, Brunso-Bechtold JK, Peiffer
AM, Tsien CI, Bailey JE and Marks LB: Imaging radiation-induced
normal tissue injury. Radiat Res. 177:449–466. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Koenig TR, Munden RF, Erasmus JJ, Sabloff
BS, Gladish GW, Komaki R and Stevens CW: Radiation injury of the
lung after three-dimensional conformal radiation therapy. AJR Am J
Roentgenol. 178:1383–1388. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Linda A, Trovo M and Bradley JD: Radiation
injury of the lung after stereotactic body radiation therapy (SBRT)
for lung cancer: A timeline and pattern of CT changes. Eur J
Radiol. 79:147–154. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
McCurdy MR, Castillo R, Martinez J, Al
Hallack MN, Lichter J, Zouain N and Guerrero T: [18F]-FDG uptake
dose-response correlates with radiation pneumonitis in lung cancer
patients. Radiothe Oncol. 104:52–57. 2012. View Article : Google Scholar
|
|
10
|
Shioya S, Tsuji C, Kurita D, Katoh H,
Tsuda M, Haida M, Kawana A and Ohta Y: Early damage to lung tissue
after irradiation detected by the magnetic resonance T2 relaxation
time. Radiat Res. 148:359–364. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ireland RH, Din OS, Swinscoe JA, Woodhouse
N, van Beek EJ, Wild JM and Hatton MQ: Detection of
radiation-induced lung injury in non-small cell lung cancer
patients using hyperpolarized helium-3 magnetic resonance imaging.
Radiother Oncol. 97:244–248. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang XJ, Sun JG, Sun J, Ming H, Wang XX,
Wu L and Chen ZT: Prediction of radiation pneumonitis in lung
cancer patients: A systematic review. J Cancer Res Clin Oncol.
138:2103–2116. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Komaki R, Lee JS, Milas L, Lee HK,
Fossella FV, Herbst RS, Allen PK, Liao Z, Stevens CW, Lu C, et al:
Effects of amifostine on acute toxicity from concurrent
chemotherapy and radiotherapy for inoperable non-small-cell lung
cancer: Report of a randomized comparative trial. Int J Radiat
Oncol Biol Phys. 58:1369–1377. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ghosh SN, Zhang R, Fish BL, Semenenko VA,
Li XA, Moulder JE, Jacobs ER and Medhora M: Renin-Angiotensin
system suppression mitigates experimental radiation pneumonitis.
Int J Radiat Oncol Biol Phys. 75:1528–1536. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ozturk B, Egehan I, Atavci S and Kitapci
M: Pentoxifylline in prevention of radiation-induced lung toxicity
in patients with breast and lung cancer: A double-blind randomized
trial. Int J Radiat Oncol Biol Phys. 58:213–219. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
López Rodríguez M and Cerezo Padellano L:
Toxicity associated to radiotherapy treatment in lung cancer
patients. Clin Transl Oncol. 9:506–512. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tsoutsou PG and Koukourakis MI: Radiation
pneumonitis and fibrosis: Mechanisms underlying its pathogenesis
and implications for future research. Int J Radiat Oncol Biol Phys.
66:1281–1293. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rubin P, Siemann DW, Shapiro DL,
Finkelstein JN and Penney DP: Surfactant release as an early
measure of radiation pneumonitis. Int J Radiat Oncol Biol Phys.
9:1669–1673. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Almeida C, Nagarajan D, Tian J, Leal SW,
Wheeler K, Munley M, Blackstock W and Zhao W: The role of alveolar
epithelium in radiation-induced lung injury. PLoS One.
8:e536282013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Citrin DE, Shankavaram U, Horton JA,
Shield W III, Zhao S, Asano H, White A, Sowers A, Thetford A and
Chung EJ: Role of type II pneumocyte senescence in
radiation-induced lung fibrosis. J Natl Cancer Inst. 105:1474–1484.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Piguet PF: Is ‘tumor necrosis factor’ the
major effector of pulmonary fibrosis? Eur Cytokine Netw. 1:257–258.
1990.PubMed/NCBI
|
|
22
|
Sime PJ: The antifibrogenic potential of
PPARgamma ligands in pulmonary fibrosis. J Investig Med.
56:534–538. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Grgic I, Duffield JS and Humphreys BD: The
origin of interstitial myofibroblasts in chronic kidney disease.
Pediatr Nephrol. 27:183–193. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Nagarajan D, Melo T, Deng Z, Almeida C and
Zhao W: ERK/GSK3β/Snail signaling mediates radiation-induced
alveolar epithelial-to-mesenchymal transition. Free Radic Biol Med.
52:983–992. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Phillips RJ, Burdick MD, Hong K, Lutz MA,
Murray LA, Xue YY, Belperio JA, Keane MP and Strieter RM:
Circulating fibrocytes traffic to the lungs in response to CXCL12
and mediate fibrosis. J Clin Invest. 114:438–446. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yano H, Hamanaka R, Nakamura M, Sumiyoshi
H, Matsuo N and Yoshioka H: Smad, but not MAPK, pathway mediates
the expression of type I collagen in radiation induced fibrosis.
Biochem Biophys Res Commun. 418:457–463. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fine A and Goldstein RH: The effect of
transforming growth factor-beta on cell proliferation and collagen
formation by lung fibroblasts. J Biol Chem. 262:3897–3902.
1987.PubMed/NCBI
|
|
28
|
Hashimoto S, Gon Y, Takeshita I, Matsumoto
K, Maruoka S and Horie T: Transforming growth Factor-beta1 induces
phenotypic modulation of human lung fibroblasts to myofibroblast
through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir
Crit Care Med. 163:152–157. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Han G, Zhang H, Xie CH and Zhou YF:
Th2-like immune response in radiation-induced lung fibrosis. Oncol
Rep. 26:383–388. 2011.PubMed/NCBI
|
|
30
|
Yang K, Palm J, König J, Seeland U,
Rosenkranz S, Feiden W, Rübe C and Rübe CE:
Matrix-metallo-proteinases and their tissue inhibitors in
radiation-induced lung injury. Int J Radiat Biol. 83:665–676. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ding NH, Li JJ and Sun LQ: Molecular
mechanisms and treatment of radiation-induced lung fibrosis. Curr
Drug Targets. 14:1347–1356. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Medhora M, Gao F, Jacobs ER and Moulder
JE: Radiation damage to the lung: Mitigation by
angiotensin-converting enzyme (ACE) inhibitors. Respirology.
17:66–71. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Palma DA, Senan S, Tsujino K, Barriger RB,
Rengan R, Moreno M, Bradley JD, Kim TH, Ramella S, Marks LB, et al:
Predicting radiation pneumonitis after chemoradiation therapy for
lung cancer: An international individual patient data
meta-analysis. Int J Radiat Oncol Biol Phys. 85:444–450. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mehta V: Radiation pneumonitis and
pulmonary fibrosis in non-small-cell lung cancer: Pulmonary
function, prediction, and prevention. Int J Radiat Oncol Biol Phys.
63:5–24. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Marks LB, Fan M, Clough R, Munley M,
Bentel G, Coleman RE, Jaszczak R, Hollis D and Anscher M:
Radiation-induced pulmonary injury: Symptomatic versus subclinical
endpoints. Int J Radiat Biol. 76:469–475. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Goethals I, Dierckx R, De Meerleer G, De
Sutter J, De Winter O, De Neve W and Van de Wiele C: The role of
nuclear medicine in the prediction and detection of
radiation-associated normal pulmonary and cardiac damage. J Nucl
Med. 44:1531–1539. 2003.PubMed/NCBI
|
|
37
|
Graham MV, Purdy JA, Emami B, Harms W,
Bosch W, Lockett MA and Perez CA: Clinical dose-volume histogram
analysis for pneumonitis after 3D treatment for non-small cell lung
cancer (NSCLC). Int J Radiat Oncol Biol Phys. 45:323–329. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Libshitz HI and Shuman LS:
Radiation-induced pulmonary change: CT findings. J Comput Assist
Tomogr. 8:15–19. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Choi YW, Munden RF, Erasmus JJ, Park KJ,
Chung WK, Jeon SC and Park CK: Effects of radiation therapy on the
lung: Radiologic appearances and differential diagnosis.
Radiographics. 24:985–998. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ghafoori P, Marks LB, Vujaskovic Z and
Kelsey CR: Radiation-induced lung injury: Assessment, management,
and prevention. Oncology (Williston Park). 22:37–47, 52-53.
2008.PubMed/NCBI
|
|
41
|
Zhang W, Wang J, Tang M, Pan J, Bai P, Lin
D, Qian F, Lin F, Yang X and Zhang S: Quantitative study of lung
perfusion SPECT scanning and pulmonary function testing for early
radiation-induced lung injury in patients with locally advanced
non-small cell lung cancer. Exp Ther Med. 3:631–635.
2012.PubMed/NCBI
|
|
42
|
Hart JP, McCurdy MR, Ezhil M, Wei W, Khan
M, Luo D, Munden RF, Johnson VE and Guerrero TM: Radiation
pneumonitis: Correlation of toxicity with pulmonary metabolic
radiation response. Int J Radiat Oncol Biol Phys. 71:967–971. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tucker SL, Li M, Xu T, Gomez D, Yuan X, Yu
J, Liu Z, Yin M, Guan X, Wang LE, et al: Incorporating
single-nucleotide polymorphisms into the Lyman model to improve
prediction of radiation pneumonitis. Int J Radiat Oncol Biol Phys.
85:251–257. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Siva S, Hardcastle N, Kron T, Bressel M,
Callahan J, MacManus MP, Shaw M, Plumridge N, Hicks RJ, Steinfort
D, et al: Ventilation/perfusion positron emission tomography-based
assessment of radiation injury to lung. Int J Radiat Oncol Biol
Phys. 93:408–417. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Waissi W, Noël G and Giraud P: Follow-up
after lung stereotactic radiotherapy. Cancer Radiother. 19:566–572.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim TH, Cho KH, Pyo HR, Lee JS, Zo JI, Lee
DH, Lee JM, Kim HY, Hwangbo B, Park SY, et al: Dose-volumetric
parameters for predicting severe radiation pneumonitis after
three-dimensional conformal radiation therapy for lung cancer.
Radiology. 235:208–215. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lyman JT: Complication probability as
assessed from dose-volume histograms. Radiat Res Suppl. 8:S13–S19.
1985. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tucker SL, Liu HH, Liao Z, Wei X, Wang S,
Jin H, Komaki R, Martel MK and Mohan R: Analysis of radiation
pneumonitis risk using a generalized Lyman model. Int J Radiat
Oncol Biol Phys. 72:568–574. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Rübe CE, Palm J, Erren M, Fleckenstein J,
König J, Remberger K and Rübe C: Cytokine plasma levels: Reliable
predictors for radiation pneumonitis? PLoS One. 3:e28982008.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tisdale MJ: Cachexia in cancer patients.
Nat Rev Cancer. 2:862–871. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kong F, Jirtle RL, Huang DH, Clough RW and
Anscher MS: Plasma transforming growth factor-beta1 level before
radiotherapy correlates with long term outcome of patients with
lung carcinoma. Cancer. 86:1712–1719. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Stenmark MH, Cai XW, Shedden K, Hayman JA,
Yuan S, Ritter T, Ten Haken RK, Lawrence TS and Kong FM: Combining
physical and biologic parameters to predict radiation-induced lung
toxicity in patients with non-small-cell lung cancer treated with
definitive radiation therapy. Int J Radiat Oncol Biol Phys.
84:e217–e222. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Takahashi H, Imai Y, Fujishima T,
Shiratori M, Murakami S, Chiba H, Kon H, Kuroki Y and Abe S:
Diagnostic significance of surfactant proteins A and D in sera from
patients with radiation pneumonitis. Eur Respir J. 17:481–487.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hartsell WF, Scott CB, Dundas GS,
Mohiuddin M, Meredith RF, Rubin P and Weigensberg IJ: Can serum
markers be used to predict acute and late toxicity in patients with
lung cancer? Analysis of RTOG 91–03. Am J Clin Oncol. 30:368–376.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Parashar B, Edwards A, Mehta R, Pasmantier
M, Wernicke AG, Sabbas A, Kerestez RS, Nori D and Chao KS:
Chemotherapy significantly increases the risk of radiation
pneumonitis in radiation therapy of advanced lung cancer. Am J Clin
Oncol. 34:160–164. 2011.PubMed/NCBI
|
|
56
|
Kocak Z, Yu X, Zhou SM, D'Amico TA, Hollis
D, Kahn D, Tisch A, Shafman TD and Marks LB: The impact of
pre-radiotherapy surgery on radiation-induced lung injury. Clin
Oncol (R Coll Radiol). 17:210–216. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Vogelius IR and Bentzen SM: A
literature-based meta-analysis of clinical risk factors for
development of radiation induced pneumonitis. Acta Oncol.
51:975–983. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
US Department of Health and Human
Services, . Common Terminology Criteria for Adverse Events (CTCAE).
Version 4.0. National Institutes of Health; 2009
|
|
59
|
Cox JD, Stetz J and Pajak TF: Toxicity
criteria of the radiation therapy oncology group (RTOG) and the
european organization for research and treatment of cancer (EORTC).
Int J Radiat Oncol Biol Phys. 31:1341–1346. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Green S and Weiss GR: Southwest oncology
group standard response criteria, endpoint definitions and toxicity
criteria. Invest New Drugs. 10:239–253. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Eastern Cooperative Oncology Group, . ECOG
Common Toxicity Criteria. http://ecog.dfci.harvard.edu/general/common_tox.html
|
|
62
|
S G: World Health Organization Handbook
for reporting results of cancer treatment. WHO Offset Publication;
1979
|
|
63
|
Tucker SL, Jin H, Wei X, Wang S, Martel
MK, Komaki R, Liu HH, Mohan R, Chen Y, Cox JD and Liao Z: Impact of
toxicity grade and scoring system on the relationship between mean
lung dose and risk of radiation pneumonitis in a large cohort of
patients with non-small cell lung cancer. Int J Radiat Oncol Biol
Phys. 77:691–698. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kong FM, Ten Haken R, Eisbruch A and
Lawrence TS: Non-small cell lung cancer therapy-related pulmonary
toxicity: An update on radiation pneumonitis and fibrosis. Semin
Oncol. 32 2 Suppl 3:S42–S54. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Capizzi RL and Oster W: Chemoprotective
and radioprotective effects of amifostine: An update of clinical
trials. Int J Hematol. 72:425–435. 2000.PubMed/NCBI
|
|
66
|
Antonadou D, Coliarakis N, Synodinou M,
Athanassiou H, Kouveli A, Verigos C, Georgakopoulos G, Panoussaki
K, Karageorgis P and Throuvalas N; Clinical Radiation Oncololgy
Hellenic Group, : Randomized phase III trial of radiation treatment
+/− amifostine in patients with advanced-stage lung cancer. Int J
Radiat Oncol Biol Phys. 51:915–922. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Antonadou D, Throuvalas N, Petridis A,
Bolanos N, Sagriotis A and Synodinou M: Effect of amifostine on
toxicities associated with radiochemotherapy in patients with
locally advanced non-small-cell lung cancer. Int J Radiat Oncol
Biol Phys. 57:402–408. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Koukourakis MI, Panteliadou M, Abatzoglou
IM, Sismanidou K, Sivridis E and Giatromanolaki A: Postmastectomy
hypofractionated and accelerated radiation therapy with (and
without) subcutaneous amifostine cytoprotection. Int J Radiat Oncol
Biol Phys. 85:e7–e13. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Folz RJ, Guan J, Seldin MF, Oury TD,
Enghild JJ and Crapo JD: Mouse extracellular superoxide dismutase:
Primary structure, tissue-specific gene expression, chromosomal
localization, and lung in situ hybridization. Am J Respir Cell Mol
Biol. 17:393–403. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Delanian S, Baillet F, Huart J, Lefaix JL,
Maulard C and Housset M: Successful treatment of radiation-induced
fibrosis using liposomal Cu/Zn superoxide dismutase: Clinical
trial. Radiother Oncol. 32:12–20. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lefaix JL, Delanian S, Leplat JJ, Tricaud
Y, Martin M, Nimrod A, Baillet F and Daburon F: Successful
treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD:
An experimental study. Int J Radiat Oncol Biol Phys. 35:305–312.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Epperly MW, Bray JA, Krager S, Berry LM,
Gooding W, Engelhardt JF, Zwacka R, Travis EL and Greenberger JS:
Intratracheal injection of adenovirus containing the human MnSOD
transgene protects athymic nude mice from irradiation-induced
organizing alveolitis. Int J Radiat Oncol Biol Phys. 43:169–181.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Vozenin-Brotons MC, Sivan V, Gault N,
Renard C, Geffrotin C, Delanian S, Lefaix JL and Martin M:
Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1
repression and phenotypic reversion of myofibroblasts. Free Radic
Biol Med. 30:30–42. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gao F, Fish BL, Szabo A, Doctrow SR, Kma
L, Molthen RC, Moulder JE, Jacobs ER and Medhora M: Short-Term
Treatment with a SOD/catalase mimetic, EUK-207, mitigates
pneumonitis and fibrosis after single-dose total-body or
whole-thoracic irradiation. Radiat Res. 178:468–480. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pan J, Su Y, Hou X, He H, Liu S, Wu J and
Rao P: Protective effect of recombinant protein SOD-TAT on
radiation-induced lung injury in mice. Life Sci. 91:89–93. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lavoie JL and Sigmund CD: Minireview:
Overview of the renin-angiotensin system-an endocrine and paracrine
system. Endocrinology. 144:2179–2183. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Border WA and Noble NA: Interactions of
transforming growth factor- and angiotensin II in renal fibrosis.
Hypertension. 31:181–188. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gómez-Garre D, Ruiz-Ortega M, Ortego M,
Largo R, López-Armada MJ, Plaza JJ, González E and Egido J: Effects
and interactions of endothelin-1 and angiotensin II on matrix
protein expression and synthesis and mesangial cell growth.
Hypertension. 27:885–892. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Suzuki Y, Ruiz-Ortega M, Lorenzo O,
Ruperez M, Esteban V and Egido J: Inflammation and angiotensin II.
Int J Biochem Cell Biol. 35:881–900. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cohen EP, Bedi M, Irving AA, Jacobs E,
Tomic R, Klein J, Lawton CA and Moulder JE: Mitigation of late
renal and pulmonary injury after hematopoietic stem cell
transplantation. Int J Radiat Oncol Biol Phys. 83:292–296. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chopra M, Scott N, McMurray J, McLay J,
Bridges A, Smith WE and Belch JJ: Captopril: A free radical
scavenger. Br J Clin Pharmacol. 27:396–399. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang H, Liao Z, Zhuang Y, Xu T, Nguyen QN,
Levy LB, O'Reilly M, Gold KA and Gomez DR: Do
angiotensin-converting enzyme inhibitors reduce the risk of
symptomatic radiation pneumonitis in patients with non-small cell
lung cancer after definitive radiation therapy? Analysis of a
single-institution database. Int J Radiat Oncol Biol Phys.
87:1071–1077. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Molteni A, Wolfe LF, Ward WF, Ts'ao CH,
Molteni LB, Veno P, Fish BL, Taylor JM, Quintanilla N, Herndon B
and Moulder JE: Effect of an angiotensin II receptor blocker and
two angiotensin converting enzyme inhibitors on transforming growth
factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important
mediators of radiation-induced pneumopathy and lung fibrosis. Curr
Pharm Des. 13:1307–1316. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Huang Y, Wongamorntham S, Kasting J,
McQuillan D, Owens RT, Yu L, Noble NA and Border W: Renin increases
mesangial cell transforming growth factor-beta1 and matrix proteins
through receptor-mediated, angiotensin II-independent mechanisms.
Kidney Int. 69:105–113. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Montes E, Ruiz V, Checa M, Maldonado V,
Melendez-Zajgla J, Montaño M, Ordoñez-Razo R, Cisneros J,
García-de-Alba C, Pardo A and Selman M: Renin is an
angiotensin-independent profibrotic mediator: Role in pulmonary
fibrosis. Eur Respir J. 39:141–148. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ran XZ, Ran X, Zong ZW, Liu DQ, Xiang GM,
Su YP and Zheng HE: Protective effect of atorvastatin on
radiation-induced vascular endothelial cell injury in vitro. J
Radiat Res. 51:527–533. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ostrau C, Hülsenbeck J, Herzog M, Schad A,
Torzewski M, Lackner KJ and Fritz G: Lovastatin attenuates ionizing
radiation-induced normal tissue damage in vivo. Radiother Oncol.
92:492–499. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Fritz G, Henninger C and Huelsenbeck J:
Potential use of HMG-CoA reductase inhibitors (statins) as
radioprotective agents. Br Med Bull. 97:17–26. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Mathew B, Huang Y, Jacobson JR, Berdyshev
E, Gerhold LM, Wang T, Moreno-Vinasco L, Lang G, Zhao Y, Chen CT,
et al: Simvastatin attenuates radiation-induced murine lung injury
and dysregulated lung gene expression. Am J Respir Cell Mol Biol.
44:415–422. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wedlake LJ, Silia F, Benton B, Lalji A,
Thomas K, Dearnaley DP, Blake P, Tait D, Khoo VS and Andreyev HJ:
Evaluating the efficacy of statins and ACE-inhibitors in reducing
gastrointestinal toxicity in patients receiving radiotherapy for
pelvic malignancies. Eur J Cancer. 48:2117–2124. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lin SL, Chen RH, Chen YM, Chiang WC, Lai
CF, Wu KD and Tsai TJ: Pentoxifylline attenuates tubulointerstitial
fibrosis by blocking Smad3/4-activated transcription and
profibrogenic effects of connective tissue growth factor. J Am Soc
Nephrol. 16:2702–2713. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Misirlioglu CH, Demirkasimoglu T,
Kucukplakci B, Sanri E and Altundag K: Pentoxifylline and
alpha-tocopherol in prevention of radiation-induced lung toxicity
in patients with lung cancer. Med Oncol. 24:308–311. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li Y, Song SL, Peng RY, Wang DW, Jin MH,
Gao YB and Ma JJ: Effects of SB203580 and WP631 on Smad signal
transduction pathway in lung fibroblasts after irradiation. Ai
Zheng. 27:698–702. 2008.(In Chinese). PubMed/NCBI
|
|
94
|
Anscher MS, Thrasher B, Zgonjanin L,
Rabbani ZN, Corbley MJ, Fu K, Sun L, Lee WC, Ling LE and Vujaskovic
Z: Small molecular inhibitor of transforming growth factor-beta
protects against development of radiation-induced lung injury. Int
J Radiat Oncol Biol Phys. 71:829–837. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Flechsig P, Dadrich M, Bickelhaupt S,
Jenne J, Hauser K, Timke C, Peschke P, Hahn EW, Gröne HJ, Yingling
J, et al: LY2109761 attenuates radiation-induced pulmonary murine
fibrosis via reversal of TGF-β and BMP-associated proinflammatory
and proangiogenic signals. Clin Cancer Res. 18:3616–3627. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Abdollahi A, Li M, Ping G, Plathow C,
Domhan S, Kiessling F, Lee LB, McMahon G, Gröne HJ, Lipson KE and
Huber PE: Inhibition of platelet-derived growth factor signaling
attenuates pulmonary fibrosis. J Exp Med. 201:925–935. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li M, Abdollahi A, Gröne HJ, Lipson KE,
Belka C and Huber PE: Late treatment with imatinib mesylate
ameliorates radiation-induced lung fibrosis in a mouse model.
Radiat Oncol. 4:662009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Thomas DM, Fox J and Haston CK: Imatinib
therapy reduces radiation-induced pulmonary mast cell influx and
delays lung disease in the mouse. Int J Radiat Biol. 86:436–444.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yazici G, Yildiz F, Iskit A, Erdemli E,
Surucu S, Firat P, Hayran M, Ozyigit G and Cengiz M: The effect of
vitamin D prophylaxis on radiation induced pulmonary damage. J
Radiat Res. 52:616–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shu HK, Yoon Y, Hong S, Xu K, Gao H, Hao
C, Torres-Gonzalez E, Nayra C, Rojas M and Shim H: Inhibition of
the CXCL12/CXCR4-axis as preventive therapy for radiation-induced
pulmonary fibrosis. PLoS One. 8:e797682013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
O'Sullivan B and Levin W: Late
radiation-related fibrosis: Pathogenesis, manifestations, and
current management. Semin Radiat Oncol. 13:274–289. 2003.
View Article : Google Scholar : PubMed/NCBI
|