Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2017 Volume 14 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2017 Volume 14 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Role of wild-type p53-induced phosphatase 1 in cancer (Review)

  • Authors:
    • Zhi‑Peng Wang
    • Ye Tian
    • Jun Lin
  • View Affiliations / Copyright

    Affiliations: Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
  • Pages: 3893-3898
    |
    Published online on: July 27, 2017
       https://doi.org/10.3892/ol.2017.6685
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Wild-type p53-induced phosphatase (Wip1) is a member of the protein phosphatase type 2C family and is an established oncogene due to its dephosphorylation of several tumor suppressors and negative control of the DNA damage response system. It has been reported to dephosphorylate p53, ataxia telangiectasia mutated, checkpoint kinase 1 and p38 mitogen activated protein kinases, forming negative feedback loops to inhibit apoptosis and cell cycle arrest. Wip1 serves a major role in tumorigenesis, progression, invasion, distant metastasis and apoptosis in various types of human cancer. Therefore, it may be a potential biomarker and therapeutic target in the diagnosis and treatment of cancer. Furthermore, previous evidence has revealed a new role for Wip1 in the regulation of chemotherapy resistance. In the present review, the current knowledge on the role of Wip1 in cancer is discussed, as well as its potential as a novel target for cancer treatment and its function in chemotherapy resistance.
View Figures

Figure 1

View References

1 

Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Harper JW and Elledge SJ: The DNA damage response: Ten years after. Mol Cell. 28:739–745. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Lord CJ and Ashworth A: The DNA damage response and cancer therapy. Nature. 481:287–294. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Le Guezennec X and Bulavin DV: WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci. 35:109–114. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Vande Woude GF, O'Connor PM and Appella E: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA. 94:6048–6053. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, Ambrosino C, Sauter G, Nebreda AR, Anderson CW, et al: Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet. 31:210–215. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Nakagawa H, Wardell CP, Furuta M, Taniguchi H and Fujimoto A: Cancer whole-genome sequencing: Present and future. Oncogene. 34:5943–5950. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Lu X, Nguyen TA, Moon SH, Darlington Y, Sommer M and Donehower LA: The type 2C phosphatase Wip1: An oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev. 27:123–135. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Lowe J, Cha H, Lee MO, Mazur SJ, Appella E and Fornace AJ Jr: Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci (Landmark Ed). 17:1480–1498. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C, Timofeev ON, Dudgeon C, Fornace AJ, Anderson CW, et al: Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell. 23:757–764. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Lu X, Nannenga B and Donehower LA: PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev. 19:1162–1174. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Fujimoto H, Onishi N, Kato N, Takekawa M, Xu XZ, Kosugi A, Kondo T, Imamura M, Oishi I, Yoda A and Minami Y: Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ. 13:1170–1180. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Hollstein M, Sidransky D, Vogelstein B and Harris CC: p53 mutations in human cancers. Science. 253:49–53. 1991. View Article : Google Scholar : PubMed/NCBI

14 

Crescenzi E, Raia Z, Pacifico F, Mellone S, Moscato F, Palumbo G and Leonardi A: Down-regulation of wild-type p53-induced phosphotase 1 (Wip1) plays a critical role in regulating several p53-dependent functions in premature senescent tumor cells. J Biol Chem. 288:16212–16224. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Lu X, Ma O, Nguyen TA, Jones SN, Oren M and Donehower LA: The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell. 12:342–354. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Zhang X, Lin L, Guo H, Yang J, Jones SN, Jochemsen A and Lu X: Phosphorylation and degradation of MdmX is inhibited by Wip1 phosphatase in the DNA damage response. Cancer Res. 69:7960–7968. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Nguyen TA, Slattery SD, Moon SH, Darlington YF, Lu X and Donehower LA: The oncogenic phosphatase Wip1 negatively regulates nucleotide excision repair. DNA Repair (Amst). 9:813–823. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Chew J, Biswas S, Shreeram S, Humaidi M, Wong ET, Dhillion MK, Teo H, Hazra A, Fang CC, López-Collazo E, et al: Wip1 phosphatase is a negative regulator of NF-kappaB signaling. Nat Cell Biol. 11:659–666. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Filipponi D, Muller J, Emelyanov A and Bulavin DV: Wip1 controls global heterochromatin silencing via ATM/BRCA1-dependent DNA methylation. Cancer Cell. 24:528–541. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K and Roninson IB: A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59:3761–3767. 1999.PubMed/NCBI

21 

te Poele RH, Okorokov AL, Jardine L, Cummings J and Joel SP: DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62:1876–1883. 2002.PubMed/NCBI

22 

Emelyanov A and Bulavin DV: Wip1 phosphatase in breast cancer. Oncogene. 34:4429–4438. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Rennstam K, Ahlstedt-Soini M, Baldetorp B, Bendahl PO, Borg A, Karhu R, Tanner M, Tirkkonen M and Isola J: Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Res. 63:8861–8868. 2003.PubMed/NCBI

24 

Demidov ON, Kek C, Shreeram S, Timofeev O, Fornace AJ, Appella E and Bulavin DV: The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene. 26:2502–2506. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Yu E, Ahn YS, Jang SJ, Kim MJ, Yoon HS, Gong G and Choi J: Overexpression of the Wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers. Breast Cancer Res Treat. 101:269–278. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H and Lu X: Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 70:7176–7186. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Wang B, Li D and Kovalchuk O: p53 Ser15 phosphorylation and histone modifications contribute to IR-induced miR-34a transcription in mammary epithelial cells. Cell Cycle. 12:2073–2083. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Spike BT and Wahl GM: P53, stem cells, and reprogramming: Tumor suppression beyond guarding the genome. Genes Cancer. 2:404–419. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Kong W, Jiang X and Mercer WE: Downregulation of Wip-1 phosphatase expression in MCF-7 breast cancer cells enhances doxorubicin-induced apoptosis through p53-mediated transcriptional activation of Bax. Cancer Biol Ther. 8:555–563. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Pärssinen J, Alarmo EL, Karhu R and Kallioniemi A: PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cell lines with wild-type p53. Cancer Genet Cytogenet. 182:33–39. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Liang CH, Jiao BH, Lu SK, Guo EK and Zhang GY: The expression of proto-oncogene Wip1 in human glioblastoma multiforme and cell lines. Chin J Neuro Oncol. 9:1–6. 2011.

32 

Richter M, Dayaram T, Gilmartin AG, Ganji G, Pemmasani SK, Van Der Key H, Shohet JM, Donehower LA and Kumar R: Wip1 phosphatase as a potential therapeutic target in neuroblastoma. PLoS One. 10:e01156352015. View Article : Google Scholar : PubMed/NCBI

33 

Buss MC, Remke M, Lee J, Gandhi K, Schniederjan MJ, Kool M, Northcott PA, Pfister SM, Taylor MD and Castellino RC: The Wip1 oncogene promotes progression and invasion of aggressive medulloblastoma variants. Oncogene. 34:1126–1140. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Zhang L, Chen LH, Wan H, Yang R, Wang Z, Feng J, Yang S, Jones S, Wang S, Zhou W, et al: Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet. 46:726–730. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Barone G, Tweddle A, Shohet JM, Chesler L, Moreno L, Pearson AD and Van Maerken T: MDM2-p53 interaction in paediatric solid tumours: Preclinical rationale, biomarkers and resistance. Curr Drug Targets. 15:114–123. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T, Stütz AM, Korshunov A, Reimand J, Schumacher SE, et al: Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 488:49–56. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Buss MC, Read TA, Schniederjan MJ, Gandhi K and Castellino RC: HDM2 promotes Wip1-mediated medulloblastoma growth. Neuro Oncol. 14:440–458. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, et al: Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 27:1627–1636. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T, Nozawa S, Inazawa J and Imoto I: Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res. 9:1995–2004. 2003.PubMed/NCBI

40 

Tan DS, Lambros MB, Rayter S, Natrajan R, Vatcheva R, Gao Q, Marchiò C, Geyer FC, Savage K, Parry S, et al: PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res. 15:2269–2280. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Ali AY, Abedini MR and Tsang BK: The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation. Oncogene. 31:2175–2186. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Ali AY, Kim JY, Pelletier JF, Vanderhyden BC, Bachvarov DR and Tsang BK: Akt confers cisplatin chemoresistance in human gynecological carcinoma cells by modulating PPM1D stability. Mol Carcinog. 54:1301–1314. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Ali AY, Farrand L, Kim JY, Byun S, Suh JY, Lee HJ and Tsang BK: Molecular determinants of ovarian cancer chemoresistance: New insights into an old conundrum. Ann NY Acad Sci. 1271:58–67. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Tan DS and Kaye S: Ovarian clear cell adenocarcinoma: A continuing enigma. J Clin Pathol. 60:355–360. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, Chang YG, Shen Q, Kim SJ, Park WS, et al: MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 33:2557–2567. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH and Zhuang SM: Effects of microRNA-29 on apoptosis, tumorigenecity, and prognosis of hepatocellular carcinoma. Hepatology. 51:836–845. 2010.PubMed/NCBI

47 

Wang H, Zhu Y, Zhao M, Wu C, Zhang P, Tang L, Zhang H, Chen X, Yang Y and Liu G: miRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin β1 and matrix metalloproteinase 2 (MMP2). PLoS One. 8:e701922013. View Article : Google Scholar : PubMed/NCBI

48 

Ding DP, Chen ZL, Zhao XH, Wang JW, Sun J, Wang Z, Tan FW, Tan XG, Li BZ, Zhou F, et al: miR-29c induces cell cycle arrest in esophageal squamous cell carcinoma by modulating cyclin E expression. Carcinogenesis. 32:1025–1032. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Wang B, Li D, Sidler C, Rodriguez-Juarez R, Singh N, Heyns M, Ilnytskyy Y, Bronson RT and Kovalchuk O: A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget. 6:9937–9950. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Oda T, Tsuda H, Scarpa A, Sakamoto M and Hirohashi S: p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res. 52:6358–6364. 1992.PubMed/NCBI

51 

Li GB, Zhang XL, Yuan L, Jiao QQ, Liu DJ and Liu J: Protein phosphatase magnesium-dependent 1 δ (PPM1D) mRNA expression is a prognosis marker for hepatocellular carcinoma. PLoS One. 8:e607752013. View Article : Google Scholar : PubMed/NCBI

52 

Koo SH, Kwon KC, Ihm CH, Jeon YM, Park JW and Sul CK: Detection of genetic alterations in bladder tumors by comparative genomic hybridization and cytogenetic analysis. Cancer Genet Cytogenet. 110:87–93. 1999. View Article : Google Scholar : PubMed/NCBI

53 

Wang W, Zhu H, Zhang H, Zhang L, Ding Q and Jiang H: Targeting PPM1D by lentivirus-mediated RNA interference inhibits the tumorigenicity of bladder cancer cells. Braz J Med Bio Res. 47:1044–1049. 2014. View Article : Google Scholar

54 

Lin J, Zhang Q, Lu Y, Xue W, Xu Y and Hu X: Downregulation of HIPK2 increases resistance of bladder cancer cell to cisplatin by regulating wip1. PLoS One. 9:e984182014. View Article : Google Scholar : PubMed/NCBI

55 

Goloudina AR, Mazur SJ, Appella E, Garrido C and Demidov ON: Wip1 sensitizes p53-negative tumors to apoptosis by regulating the Bax/Bcl-xl ratio. Cell Cycle. 11:1883–1887. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Goloudina AR, Tanoue K, Hammann A, Fourmaux E, Le Guezennec X, Bulavin DV, Mazur SJ, Appella E, Garrido C and Demidov ON: Wip1 promotes RUNX2-dependent apoptosis in p53-negative tumors and protects normal tissues during treatment with anticancer agents. Proc Natl Acad Sci USA. 109:E68–E75. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Sun GG, Wang YD, Liu Q and Hu WN: Expression of Wip1 in kidney carcinoma and its correlation with tumor metastasis and clinical significance. Pathol Oncol Res. 21:219–224. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Liu S, Qi L, Han W, Wan X, Jiang S, Li Y, Xie Y, Liu L, Zeng F, Liu Z and Zu X: Overexpression of Wip1 is associated with biologic behavior in human clear cell renal cell carcinoma. PLoS One. 9:e1102182014. View Article : Google Scholar : PubMed/NCBI

59 

Sun GG, Zhang J, Ma XB, Wang YD, Cheng YJ and Hu WN: Overexpression of wild-type p53-induced phosphatase1 confers poor prognosis of patients with nasopharyngeal carcinoma. Pathol Oncol Res. 21:283–291. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang ZP, Tian Y and Lin J: Role of wild-type p53-induced phosphatase 1 in cancer (Review). Oncol Lett 14: 3893-3898, 2017.
APA
Wang, Z., Tian, Y., & Lin, J. (2017). Role of wild-type p53-induced phosphatase 1 in cancer (Review). Oncology Letters, 14, 3893-3898. https://doi.org/10.3892/ol.2017.6685
MLA
Wang, Z., Tian, Y., Lin, J."Role of wild-type p53-induced phosphatase 1 in cancer (Review)". Oncology Letters 14.4 (2017): 3893-3898.
Chicago
Wang, Z., Tian, Y., Lin, J."Role of wild-type p53-induced phosphatase 1 in cancer (Review)". Oncology Letters 14, no. 4 (2017): 3893-3898. https://doi.org/10.3892/ol.2017.6685
Copy and paste a formatted citation
x
Spandidos Publications style
Wang ZP, Tian Y and Lin J: Role of wild-type p53-induced phosphatase 1 in cancer (Review). Oncol Lett 14: 3893-3898, 2017.
APA
Wang, Z., Tian, Y., & Lin, J. (2017). Role of wild-type p53-induced phosphatase 1 in cancer (Review). Oncology Letters, 14, 3893-3898. https://doi.org/10.3892/ol.2017.6685
MLA
Wang, Z., Tian, Y., Lin, J."Role of wild-type p53-induced phosphatase 1 in cancer (Review)". Oncology Letters 14.4 (2017): 3893-3898.
Chicago
Wang, Z., Tian, Y., Lin, J."Role of wild-type p53-induced phosphatase 1 in cancer (Review)". Oncology Letters 14, no. 4 (2017): 3893-3898. https://doi.org/10.3892/ol.2017.6685
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team