|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chang JY, Senan S, Paul MA, Mehran RJ,
Louie AV, Balter P, Groen HJ, McRae SE, Widder J, Feng L, et al:
Stereotactic ablative radiotherapy versus lobectomy for operable
stage I non-small-cell lung cancer: A pooled analysis of two
randomised trials. Lancet Oncol. 16:630–637. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Adamowicz K and Goszczynska-Matysiak E:
Combining systemic therapies with radiation in non small cell lung
cancer. Klin Onkol. 28:321–331. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pignon JP, Arriagada R, Ihde DC, Johnson
DH, Perry MC, Souhami RL, Brodin O, Joss RA, Kies MS, Lebeau B, et
al: A meta-analysis of thoracic radiotherapy for small-cell lung
cancer. N Engl J Med. 327:1618–1624. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Warde P and Payne D: Does thoracic
irradiation improve survival and local control in limited-stage
small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol.
10:890–895. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wan L, Pantel K and Kang Y: Tumor
metastasis: Moving new biological insights into the clinic. Nat
Med. 19:1450–1464. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ma Y, Yang Y, Wang F, Wei Q and Qin H:
Hippo-YAP signaling pathway: A new paradigm for cancer therapy. Int
J Cancer. 137:2275–2286. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Gazdar AF: Epidermal growth factor
receptor inhibition in lung cancer: The evolving role of
individualized therapy. Cancer Metastasis Rev. 29:37–48. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tang Y, Geng Y, Luo J, Shen W, Zhu W, Meng
C, Li M, Zhou X, Zhang S and Cao J: Downregulation of ubiquitin
inhibits the proliferation and radioresistance of non-small cell
lung cancer cells in vitro and in vivo. Sci Rep. 5:94762015.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sridhar SS, Seymour L and Shepherd FA:
Inhibitors of epidermal-growth-factor receptors: A review of
clinical research with a focus on non-small-cell lung cancer.
Lancet Oncol. 4:397–406. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hirsch FR, Varella-Garcia M, Cappuzzo F,
McCoy J, Bemis L, Xavier AC, Dziadziuszko R, Gumerlock P, Chansky
K, West H, et al: Combination of EGFR gene copy number and protein
expression predicts outcome for advanced non-small-cell lung cancer
patients treated with gefitinib. Ann Oncol. 18:752–760. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Takahashi Y, Sakaguchi K, Horio H,
Hiramatsu K, Moriya S, Takahashi K and Kawakita M: Urinary N1,
N12-diacetylspermine is a non-invasive marker for the diagnosis and
prognosis of non-small-cell lung cancer. Br J Cancer.
113:1493–1501. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yoon HI, Park KH, Lee EJ, Keum KC, Lee CG,
Kim CH and Kim YB: Overexpression of SOX-2 is associated with
better overall survival in squamous cell lung cancer patients
treated with adjuvant radiotherapy. Cancer Res Treat. 48:473–482.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Anscher MS, Chen L, Rabbani Z, Kang S,
Larrier N, Huang H, Samulski TV, Dewhirst MW, Brizel DM, Folz RJ
and Vujaskovic Z: Recent progress in defining mechanisms and
potential targets for prevention of normal tissue injury after
radiation therapy. Int J Radiat Oncol Biol Phys. 62:255–259. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Blahna MT and Hata A: Smad-mediated
regulation of microRNA biosynthesis. FEBS Lett. 586:1906–1912.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Passaretti F, Tia M, D'Esposito V, De
Pascale M, Del Corso M, Sepulveres R, Liguoro D, Valentino R,
Beguinot F, Formisano P and Sammartino G: Growth-promoting action
and growth factor release by different platelet derivatives.
Platelets. 25:252–256. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ashcroft GS: Bidirectional regulation of
macrophage function by TGF-beta. Microbes Infect. 1:1275–1282.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Boyd FT and Massagué J: Transforming
growth factor-beta inhibition of epithelial cell proliferation
linked to the expression of a 53-kDa membrane receptor. J Biol
Chem. 264:2272–2278. 1989.PubMed/NCBI
|
|
20
|
Hakenjos L, Bamberg M and Rodemann HP:
TGF-beta1-mediated alterations of rat lung fibroblast
differentiation resulting in the radiation-induced fibrotic
phenotype. Int J Radiat Biol. 76:503–509. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Fajardo LF, Prionas SD, Kwan HH, Kowalski
J and Allison AC: Transforming growth factor beta1 induces
angiogenesis in vivo with a threshold pattern. Lab Invest.
74:600–608. 1996.PubMed/NCBI
|
|
22
|
Phillips GD, Whitehead RA, Stone AM,
Ruebel MW, Goodkin ML and Knighton DR: Transforming growth factor
beta (TGF-B) stimulation of angiogenesis: An electron microscopic
study. J Submicrosc Cytol Pathol. 25:149–155. 1993.PubMed/NCBI
|
|
23
|
Roberts AB, McCune BK and Sporn MB:
TGF-beta: Regulation of extracellular matrix. Kidney Int.
41:557–559. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Heldin CH and Moustakas A: Role of Smads
in TGFβ signaling. Cell Tissue Res. 347:21–36. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Santos JI, Teixeira AL, Dias F, Gomes M,
Nogueira A, Assis J and Medeiros R: Restoring TGFβ1 pathway-related
microRNAs: Possible impact in metastatic prostate cancer
development. Tumor Biol. 35:6245–6253. 2014. View Article : Google Scholar
|
|
26
|
Bierie B and Moses HL: Transforming growth
factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth
Factor Rev. 21:49–59. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Connolly EC, Freimuth J and Akhurst RJ:
Complexities of TGF-β targeted cancer therapy. Int J Biol Sci.
8:964–978. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Massagué J and Gomis RR: The logic of
TGFbeta signaling. FEBS Lett. 580:2811–2820. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Koh PK, Faivre-Finn C, Blackhall FH and De
Ruysscher D: Targeted agents in non-small cell lung cancer (NSCLC):
Clinical developments and rationale for the combination with
thoracic radiotherapy. Cancer Treat Rev. 38:626–640. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rube CE, Palm J, Erren M, Fleckenstein J,
König J, Remberger K and Rübe C: Cytokine plasma levels: Reliable
predictors for radiation pneumonitis? PLoS One. 3:e28982008.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Anscher MS, Crocker IR and Jirtle RL:
Transforming growth factor-beta 1 expression in irradiated liver.
Radiat Res. 122:77–85. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang XJ, Sun JG, Sun J, Ming H, Wang XX,
Wu L and Chen ZT: Prediction of radiation pneumonitis in lung
cancer patients: A systematic review. J Cancer Res Clin Oncol.
138:2103–2116. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Anscher MS, Marks LB, Shafman TD, Clough
R, Huang H, Tisch A, Munley M, Herndon JE, Garst J, Crawford J and
Jirtle RL: Risk of long-term complications after TFG-beta1-guided
very-high-dose thoracic radiotherapy. Int J Radiat Oncol Biol Phys.
56:988–995. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Novakova-Jiresova A, Van Gameren MM,
Coppes RP, Kampinga HH and Groen HJ: Transforming growth
factor-beta plasma dynamics and post-irradiation lung injury in
lung cancer patients. Radiother Oncol. 71:183–189. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen L, Brizel DM, Rabbani ZN, Samulski
TV, Farrell CL, Larrier N, Anscher MS and Vujaskovic Z: The
protective effect of recombinant human keratinocyte growth factor
on radiation-induced pulmonary toxicity in rats. Int J Radiat Oncol
Biol Phys. 60:1520–1529. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Portess DI, Bauer G, Hill MA and O'Neill
P: Low-dose irradiation of nontransformed cells stimulates the
selective removal of precancerous cells via intercellular induction
of apoptosis. Cancer Res. 67:1246–1253. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
De Jaeger K, Seppenwoolde Y, Kampinga HH,
Boersma LJ, Belderbos JS and Lebesque JV: Significance of plasma
transforming growth factor-beta levels in radiotherapy for
non-small-cell lung cancer. Int J Radiat Oncol Biol Phys.
58:1378–1387. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Anscher MS, Kong FM, Andrews K, Clough R,
Marks LB, Bentel G and Jirtle RL: Plasma transforming growth factor
beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol
Biol Phys. 41:1029–1035. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Anscher MS, Marks LB, Shafman TD, Clough
R, Huang H, Tisch A, Munley M, Herndon JE II, Garst J, Crawford J
and Jirtle RL: Using plasma transforming growth factor beta-1
during radiotherapy to select patients for dose escalation. J Clin
Oncol. 19:3758–3765. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang J, Qiao XY, Lu FH, Zhou ZG, Song YZ,
Huo JJ and Liu X: TGF-beta1 in serum and induced sputum for
predicting radiation pneumonitis in patients with non-small cell
lung cancer after radiotherapy. Chin J Cancer. 29:325–329. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu Z, Ma Y, Zhang S, Liu F, Wan M and Luo
J: Transforming growth factor-β1 small interfering RNA inhibits
growth of human embryonic lung fibroblast HFL-I cells in vitro and
defends against radiation-induced lung injury in vivo. Mol Med Rep.
11:2055–2061. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Barthelemy-Brichant N, David JL, Bosquée
L, Bury T, Seidel L, Albert A, Bartsch P, Baugnet-Mahieu L and
Deneufbourg JM: Increased TGFbeta1 plasma level in patients with
lung cancer: Potential mechanisms. Eur J Clin Invest. 32:193–198.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dennis PA and Rifkin DB: Cellular
activation of latent transforming growth factor beta requires
binding to the cation-independent mannose 6-phosphate/insulin-like
growth factor type II receptor. Proc Natl Acad Sci USA. 88:580–584.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang L, Tredget EE and Ghahary A:
Activation of latent transforming growth factor-beta1 is induced by
mannose 6-phosphate/insulin-like growth factor-II receptor. Wound
Repair Regen. 8:538–546. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kong FM, Anscher MS, Sporn TA, Washington
MK, Clough R, Barcellos-Hoff MH and Jirtle RL: Loss of
heterozygosity at the mannose 6-phosphate insulin-like growth
factor 2 receptor (M6P/IGF2R) locus predisposes patients to
radiation-induced lung injury. Int J Radiat Oncol Biol Phys.
49:35–41. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Riley PA: Free radicals in biology:
Oxidative stress and the effects of ionizing radiation. Int J
Radiat Biol. 65:27–33. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Barcellos-Hoff MH and Dix TA:
Redox-mediated activation of latent transforming growth factor-beta
1. Mol Endocrinol. 10:1077–1083. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kang SK, Rabbani ZN, Folz RJ, Golson ML,
Huang H, Yu D, Samulski TS, Dewhirst MW, Anscher MS and Vujaskovic
Z: Overexpression of extracellular superoxide dismutase protects
mice from radiation-induced lung injury. Int J Radiat Oncol Biol
Phys. 57:1056–1066. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vujaskovic Z, Batinic-Haberle I, Rabbani
ZN, Feng QF, Kang SK, Spasojevic I, Samulski TV, Fridovich I,
Dewhirst MW and Anscher MS: A small molecular weight catalytic
metalloporphyrin antioxidant with superoxide dismutase (SOD)
mimetic properties protects lungs from radiation-induced injury.
Free Radic Biol Med. 33:857–863. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Anscher MS, Kong FM, Marks LB, Bentel GC
and Jirtle RL: Changes in plasma transforming growth factor beta
during radiotherapy and the risk of symptomatic radiation-induced
pneumonitis. Int J Radiat Oncol Biol Phys. 37:253–258. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Barthelemy-Brichant N, Bosquée L, Cataldo
D, Corhay JL, Gustin M, Seidel L, Thiry A, Ghaye B, Nizet M, Albert
A, et al: Increased IL-6 and TGF-beta1 concentrations in
bronchoalveolar lavage fluid associated with thoracic radiotherapy.
Int J Radiat Oncol Biol Phys. 58:758–767. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yuan X, Liao Z, Liu Z, Wang LE, Tucker SL,
Mao L, Wang XS, Martel M, Komaki R, Cox JD, et al: Single
nucleotide polymorphism at rs1982073:T869C of the TGFbeta 1 gene is
associated with the risk of radiation pneumonitis in patients with
non-small-cell lung cancer treated with definitive radiotherapy. J
Clin Oncol. 27:3370–3378. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhao L, Ji W, Zhang L, Ou G, Feng Q, Zhou
Z, Lei M, Yang W and Wang L: Changes of circulating transforming
growth factor-beta1 level during radiation therapy are correlated
with the prognosis of locally advanced non-small cell lung cancer.
J Thorac Oncol. 5:521–525. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Carl C, Flindt A, Hartmann J, Dahlke M,
Rades D, Dunst J, Lehnert H, Gieseler F and Ungefroren H: Ionizing
radiation induces a motile phenotype in human carcinoma cells in
vitro through hyperactivation of the TGF-beta signaling pathway.
Cell Mol Life Sci. 73:427–443. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kelsey CR, Jackson L, Langdon S, Owzar K,
Hubbs J, Vujaskovic Z, Das S and Marks LB: A polymorphism within
the promoter of the TGFβ1 gene is associated with radiation
sensitivity using an objective radiologic endpoint. Int J Radiat
Oncol Biol Phys. 82:e247–e255. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bouquet F, Pal A, Pilones KA, Demaria S,
Hann B, Akhurst RJ, Babb JS, Lonning SM, DeWyngaert JK, Formenti SC
and Barcellos-Hoff MH: TGFβ1 inhibition increases the
radiosensitivity of breast cancer cells in vitro and promotes tumor
control by radiation in vivo. Clin Cancer Res. 17:6754–6765. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guz M, Rivero-Müller A, Okoń E,
Stenzel-Bembenek A, Polberg K, Słomka M and Stepulak A:
MicroRNAs-role in lung cancer. Dis Markers. 2014:2181692014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chan SH and Wang LH: Regulation of cancer
metastasis by microRNAs. J Biomed Sci. 22:92015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes
JT, Roebuck LR, Barcellos-Hoff MH, Moody SE, Chodosh LA and Arteaga
CL: Conditional overexpression of active transforming growth factor
beta1 in vivo accelerates metastases of transgenic mammary tumors.
Cancer Res. 64:9002–9011. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Muraoka RS, Dumont N, Ritter CA, Dugger
TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals
PJ, et al: Blockade of TGF-beta inhibits mammary tumor cell
viability, migration, and metastases. J Clin Invest. 109:1551–1559.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jiang Y, Chen X, Tian W, Yin X, Wang J and
Yang H: The role of TGF-β1-miR-21-ROS pathway in bystander
responses induced by irradiated non-small-cell lung cancer cells.
Br J Cancer. 111:772–780. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Donatelli SS, Zhou JM, Gilvary DL,
Eksioglu EA, Chen X, Cress WD, Haura EB, Schabath MB, Coppola D,
Wei S and Djeu JY: TGF-β-inducible microRNA-183 silences
tumor-associated natural killer cells. Proc Natl Acad Sci USA.
111:4203–4208. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Flavell RA, Sanjabi S, Wrzesinski SH and
Licona-Limón P: The polarization of immune cells in the tumor
environment by TGFbeta. Nat Rev Immunol. 10:554–567. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ikushima H and Miyazono K: TGFbeta
signalling: A complex web in cancer progression. Nat Rev Cancer.
10:415–424. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gal A, Sjöblom T, Fedorova L, Imreh S,
Beug H and Moustakas A: Sustained TGF beta exposure suppresses Smad
and non-Smad signalling in mammary epithelial cells, leading to EMT
and inhibition of growth arrest and apoptosis. Oncogene.
27:1218–1230. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shintani Y, Okimura A, Sato K, Nakagiri T,
Kadota Y, Inoue M, Sawabata N, Minami M, Ikeda N, Kawahara K, et
al: Epithelial to mesenchymal transition is a determinant of
sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann
Thorac Surg. 92:1794–1804. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mehta V: Radiation pneumonitis and
pulmonary fibrosis in non-small-cell lung cancer: Pulmonary
function, prediction, and prevention. Int J Radiat Oncol Biol Phys.
63:5–24. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kong FM, Pan C, Eisbruch A and Ten Haken
RK: Physical models and simpler dosimetric descriptors of radiation
late toxicity. Semin Radiat Oncol. 17:108–120. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Milano MT, Constine LS and Okunieff P:
Normal tissue tolerance dose metrics for radiation therapy of major
organs. Semin Radiat Oncol. 17:131–140. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Anscher MS: Targeting the TGF-beta1
pathway to prevent normal tissue injury after cancer therapy.
Oncologist. 15:350–359. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Anscher MS, Thrasher B, Rabbani Z, Teicher
B and Vujaskovic Z: Antitransforming growth factor-beta antibody
1D11 ameliorates normal tissue damage caused by high-dose
radiation. Int J Radiat Oncol Biol Phys. 65:876–881. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Daniels CE, Wilkes MC, Edens M, Kottom TJ,
Murphy SJ, Limper AH and Leof EB: Imatinib mesylate inhibits the
profibrogenic activity of TGF-beta and prevents bleomycin-mediated
lung fibrosis. J Clin Invest. 114:1308–1316. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Haydont V, Mathé D, Bourgier C, Abdelali
J, Aigueperse J, Bourhis J and Vozenin-Brotons MC: Induction of
CTGF by TGF-beta1 in normal and radiation enteritis human smooth
muscle cells: Smad/Rho balance and therapeutic perspectives.
Radiother Oncol. 76:219–225. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Haydont V, Riser BL, Aigueperse J and
Vozenin-Brotons MC: Specific signals involved in the long-term
maintenance of radiation-induced fibrogenic differentiation: A role
for CCN2 and low concentration of TGF-beta1. Am J Physiol Cell
Physiol. 294:C1332–C1341. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rabbani ZN, Anscher MS, Zhang X, Chen L,
Samulski TV, Li CY and Vujaskovic Z: Soluble TGFbeta type II
receptor gene therapy ameliorates acute radiation-induced pulmonary
injury in rats. Int J Radiat Oncol Biol Phys. 57:563–572. 2003.
View Article : Google Scholar : PubMed/NCBI
|