Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2017 Volume 14 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2017 Volume 14 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review)

  • Authors:
    • Donglai Lv
    • Zongtao Hu
    • Lin Lu
    • Husheng Lu
    • Xiuli Xu
  • View Affiliations

    Affiliations: Department of Clinical Oncology, The 105 Hospital of The People's Liberation Army, Hefei, Anhui 230031, P.R. China
  • Published online on: October 3, 2017     https://doi.org/10.3892/ol.2017.7134
  • Pages: 6999-7010
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In previous years, three‑dimensional (3D) cell culture technology has become a focus of research in tumor cell biology, using a variety of methods and materials to mimic the in vivo microenvironment of cultured tumor cells ex vivo. These 3D tumor cells have demonstrated numerous different characteristics compared with traditional two‑dimensional (2D) culture. 3D cell culture provides a useful platform for further identifying the biological characteristics of tumor cells, particularly in the drug sensitivity area of the key points of translational medicine. It promises to be a bridge between traditional 2D culture and animal experiments, and is of great importance for further research in the field of tumor biology. In the present review, previous 3D cell culture applications, focusing on anti‑tumor drug susceptibility testing, are summarized.
View Figures

Figure 1

Figure 2

View References

1 

Abbott A: Cell culture: Biology's new dimension. Nature. 424:870–872. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Weigelt B, Ghajar CM and Bissell MJ: The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev. 69–70:42–51. 2014. View Article : Google Scholar

3 

Jacks T and Weinberg RA: Taking the study of cancer cell survival to a new dimension. Cell. 111:923–925. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Breslin S and O'Driscoll L: Three-dimensional cell culture: The missing link in drug discovery. Drug Discov Today. 18:240–249. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Griffith LG and Swartz MA: Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 7:211–224. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Chen L, Xiao Z, Meng Y, Zhao Y, Han J, Su G, Chen B and Dai J: The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials. 33:1437–1444. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Dhiman HK, Ray AR and Panda AK: Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials. 26:979–986. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Fong EL, Lamhamedi-Cherradi SE, Burdett E, Ramamoorthy V, Lazar AJ, Kasper FK, Farach-Carson MC, Vishwamitra D, Demicco EG, Menegaz BA, et al: Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci USA. 110:pp. 6500–6505. 2013, View Article : Google Scholar : PubMed/NCBI

9 

Wästfelt M, Fadeel B and Henter JI: A journey of hope: Lessons learned from studies on rare diseases and orphan drugs. J Intern Med. 260:1–10. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Hutmacher DW: Biomaterials offer cancer research the third dimension. Nat Mater. 9:90–93. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Shoemaker RH: The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 6:813–823. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Desrochers TM, Palma E and Kaplan DL: Tissue-engineered kidney disease models. Adv Drug Deliv Rev. 69–70:67–80. 2014. View Article : Google Scholar

13 

Cree IA, Glaysher S and Harvey AL: Efficacy of anti-cancer agents in cell lines versus human primary tumour tissue. Curr Opin Pharmacol. 10:375–379. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Uchida Y, Tanaka S, Aihara A, Adikrisna R, Yoshitake K, Matsumura S, Mitsunori Y, Murakata A, Noguchi N, Irie T, et al: Analogy between sphere forming ability and stemness of human hepatoma cells. Oncol Rep. 24:1147–1151. 2010.PubMed/NCBI

15 

Stevens JL and Baker TK: The future of drug safety testing: Expanding the view and narrowing the focus. Drug Discov Today. 14:162–167. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY and Ingber DE: Reconstituting organ-level lung functions on a chip. Science. 328:1662–1668. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Russell WMS and Burch RL: The principles of humane experimental technique. Methuen; London: 1959

18 

Talukdar S and Kundu SC: A non-mulberry silk fibroin protein based 3d in vitro tumor model for evaluation of anticancer drug activity. Adv Funct Mat. 22:4778–4788. 2012. View Article : Google Scholar

19 

Dunne LW, Huang Z, Meng W, Fan X, Zhang N, Zhang Q and An Z: Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials. 35:4940–4949. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, Daley F, Vyse S, Huang P, Lord CJ, et al: Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol. 240:315–328. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Sha H, Zou Z, Xin K, Bian X, Cai X, Lu W, Chen J, Chen G, Huang L, Blair AM, et al: Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release. 200:188–200. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Kundu B, Saha P, Datta K and Kundu SC: A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells. Biomaterials. 34:9462–9474. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J, Wang W, Gao Z and Wang Q: Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials. 34:4109–4117. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Simon KA, Mosadegh B, Minn KT, Lockett MR, Mohammady MR, Boucher DM, Hall AB, Hillier SM, Udagawa T, Eustace BK and Whitesides GM: Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system. Biomaterials. 95:47–59. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Stratmann AT, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, Dandekar T, Dandekar G and Nietzer SL: Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 8:351–365. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Lee JM, Mhawech-Fauceglia P, Lee N, Parsanian LC, Lin YG, Gayther SA and Lawrenson K: A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest. 93:528–542. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Shin CS, Kwak B, Han B and Park K: Development of an in vitro 3D tumor model to study therapeutic efficiency of an anticancer drug. Mol Pharm. 10:2167–2175. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Loessner D, Rizzi SC, Stok KS, Fuehrmann T, Hollier B, Magdolen V, Hutmacher DW and Clements JA: A bioengineered 3D ovarian cancer model for the assessment of peptidase-mediated enhancement of spheroid growth and intraperitoneal spread. Biomaterials. 34:7389–7400. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Yang Z and Zhao X: A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomedicine. 6:303–310. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Fitzgerald KA, Guo J, Tierney EG, Curtin CM, Malhotra M, Darcy R, O'Brien FJ and O'Driscoll CM: The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials. 66:53–66. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Xu X, Sabanayagam CR, Harrington DA, Farach-Carson MC and Jia X: A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics. Biomaterials. 35:3319–3330. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Lv D, Yu SC, Ping YF, Wu H, Zhao X, Zhang H, Cui Y, Chen B, Zhang X, Dai J, et al: A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget. 7:56904–56914. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Ma NK, Lim JK, Leong MF, Sandanaraj E, Ang BT, Tang C and Wan AC: Collaboration of 3D context and extracellular matrix in the development of glioma stemness in a 3D model. Biomaterials. 78:62–73. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Pedron S, Becka E and Harley BA: Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials. 34:7408–7417. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Munson JM, Bellamkonda RV and Swartz MA: Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res. 73:1536–1546. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Fennema E, Rivron N, Rouwkema J, van Blitterswijk C and de Boer J: Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 31:108–115. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Friedrich J, Seidel C, Ebner R and Kunz-Schughart LA: Spheroid-based drug screen: Considerations and practical approach. Nat Protoc. 4:309–324. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Reynolds BA and Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255:1707–1710. 1992. View Article : Google Scholar : PubMed/NCBI

39 

Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, Gao L, Wang JM and Bian XW: Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett. 265:124–134. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Yuhas JM, Li AP, Martinez AO and Ladman AJ: A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 37:3639–3643. 1977.PubMed/NCBI

41 

Lawlor ER, Scheel C, Irving J and Sorensen PH: Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene. 21:307–318. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Lin RZ and Chang HY: Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 3:1172–1184. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, Ng L, Cheung LW, Lan XR, Lan HY, et al: A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 6:603–615. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Ivascu A and Kubbies M: Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen. 11:922–932. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Louis SA, Rietze RL, Deleyrolle L, Wagey RE, Thomas TE, Eaves AC and Reynolds BA: Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells. 26:988–996. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Ng KW, Leong DT and Hutmacher DW: The challenge to measure cell proliferation in two and three dimensions. Tissue Eng. 11:182–191. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Kelm JM, Timmins NE, Brown CJ, Fussenegger M and Nielsen LK: Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 83:173–180. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M and Takayama S: High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 136:473–478. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Zanetta M, Quirici N, Demarosi F, Tanzi MC, Rimondini L and Farè S: Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts. Acta Biomater. 5:1126–1136. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Souza GR, Molina JR, Raphael RM, Ozawa MG, Stark DJ, Levin CS, Bronk LF, Ananta JS, Mandelin J, Georgescu MM, et al: Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol. 5:291–296. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Su J, Zhang L, Zhang W, Choi DS, Wen J, Jiang B, Chang CC and Zhou X: Targeting the biophysical properties of the myeloma initiating cell niches: A pharmaceutical synergism analysis using multi-scale agent-based modeling. PLoS One. 9:e850592014. View Article : Google Scholar : PubMed/NCBI

52 

Durand RE and Sutherland RM: Effects of intercellular contact on repair of radiation damage. Exp Cell Res. 71:75–80. 1972. View Article : Google Scholar : PubMed/NCBI

53 

Goodwin TJ, Prewett TL, Wolf DA and Spaulding GF: Reduced shear stress: A major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem. 51:301–311. 1993. View Article : Google Scholar : PubMed/NCBI

54 

Chen X, Xu H, Wan C, McCaigue M and Li G: Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells. 24:2052–2059. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Luni C, Feldman HC, Pozzobon M, De Coppi P, Meinhart CD and Elvassore N: Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture. Biomicrofluidics. 4:pii: 034105. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Chang TT and Hughes-Fulford M: Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A. 15:559–567. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Redden RA and Doolin EJ: Microgravity assay of neuroblastoma: In vitro aggregation kinetics and organoid morphology correlate with MYCN expression. In Vitro Cell Dev Biol Anim. 47:312–317. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Kaur P, Ward B, Saha B, Young L, Groshen S, Techy G, Lu Y, Atkinson R, Taylor CR, Ingram M and Imam SA: Human breast cancer histoid: An in vitro 3-dimensional co-culture model that mimics breast cancer tissue. J Histochem Cytochem. 59:1087–1100. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Marrero B, Messina JL and Heller R: Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma. In Vitro Cell Dev Biol Anim. 45:523–534. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Zhang Z and Nagrath S: Microfluidics and cancer: Are we there yet? Biomed Microdevices. 15:595–609. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Mehta G, Hsiao AY, Ingram M, Luker GD and Takayama S: Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 164:192–204. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Gill BJ and West JL: Modeling the tumor extracellular matrix: Tissue engineering tools repurposed towards new frontiers in cancer biology. J Biomech. 47:1969–1978. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA and Rizzi SC: Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials. 31:8494–8506. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Nirmalanandhan VS, Duren A, Hendricks P, Vielhauer G and Sittampalam GS: Activity of anticancer agents in a three-dimensional cell culture model. Assay Drug Dev Technol. 8:581–590. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Freeman AE and Hoffman RM: In vivo-like growth of human tumors in vitro. Proc Natl Acad Sci USA. 83:pp. 2694–2698. 1986, View Article : Google Scholar : PubMed/NCBI

66 

Takamura Y, Kobayashi H, Taguchi T, Motomura K, Inaji H and Noguchi S: Prediction of chemotherapeutic response by collagen gel droplet embedded culture-drug sensitivity test in human breast cancers. Int J Cancer. 98:450–455. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Yang J, Richards J, Bowman P, Guzman R, Enami J, McCormick K, Hamamoto S, Pitelka D and Nandi S: Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc Natl Acad Sci USA. 76:pp. 3401–3405. 1979, View Article : Google Scholar : PubMed/NCBI

68 

Rowehl RA, Burke S, Bialkowska AB, Pettet DW III, Rowehl L, Li E, Antoniou E, Zhang Y, Bergamaschi R, Shroyer KR, et al: Establishment of highly tumorigenic human colorectal cancer cell line (CR4) with properties of putative cancer stem cells. PLoS One. 9:e990912014. View Article : Google Scholar : PubMed/NCBI

69 

Yip D and Cho CH: A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem Biophys Res Commun. 433:327–332. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Rao SS, Dejesus J, Short AR, Otero JJ, Sarkar A and Winter JO: Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl Mater Interfaces. 5:9276–9284. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R and Cohen S: Liver tissue engineering within alginate scaffolds: Effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng. 9:757–766. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Zhang X, Wang W, Yu W, Xie Y, Zhang Y and Ma X: Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Prog. 21:1289–1296. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Xu XX, Liu C, Liu Y, Yang L, Li N, Guo X, Sun GW and Ma XJ: Enrichment of cancer stem cell-like cells by culture in alginate gel beads. J Biotechnol. 177:1–12. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Kleinman HK and Martin GR: Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, Lupu R and Bissell MJ: Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology. Proc Natl Acad Sci USA. 95:pp. 14821–14826. 1998, View Article : Google Scholar : PubMed/NCBI

76 

Ampuja M, Jokimäki R, Juuti-Uusitalo K, Rodriguez-Martinez A, Alarmo EL and Kallioniemi A: BMP4 inhibits the proliferation of breast cancer cells and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells in 3D environment. BMC Cancer. 13:4292013. View Article : Google Scholar : PubMed/NCBI

77 

Christensen M, Najy AJ, Snyder M, Movilla LS and Kim HR: A critical role of the PTEN/PDGF signaling network for the regulation of radiosensitivity in adenocarcinoma of the prostate. Int J Radiat Oncol Biol Phys. 88:151–158. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Valyi-Nagy K, Kormos B, Ali M, Shukla D and Valyi-Nagy T: Stem cell marker CD271 is expressed by vasculogenic mimicry-forming uveal melanoma cells in three-dimensional cultures. Mol Vis. 18:588–592. 2012.PubMed/NCBI

79 

Lombardo Y, Filipović A, Molyneux G, Periyasamy M, Giamas G, Hu Y, Trivedi PS, Wang J, Yagüe E, Michel L and Coombes RC: Nicastrin regulates breast cancer stem cell properties and tumor growth in vitro and in vivo. Proc Natl Acad Sci USA. 109:pp. 16558–16563. 2012, View Article : Google Scholar : PubMed/NCBI

80 

Sodunke TR, Turner KK, Caldwell SA, McBride KW, Reginato MJ and Noh HM: Micropatterns of Matrigel for three-dimensional epithelial cultures. Biomaterials. 28:4006–4016. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Carletti E, Motta A and Migliaresi C: Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol. 695:17–39. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Liu X, Holzwarth JM and Ma PX: Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci. 12:911–919. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Feng S, Duan X, Lo PK, Liu S, Liu X, Chen H and Wang Q: Expansion of breast cancer stem cells with fibrous scaffolds. Integr Biol (Camb). 5:768–777. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Chen J, Wang J, Zhang Y, Chen D, Yang C, Kai C, Wang X, Shi F and Dou J: Observation of ovarian cancer stem cell behavior and investigation of potential mechanisms of drug resistance in three-dimensional cell culture. J Biosci Bioeng. 118:214–222. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Kievit FM, Florczyk SJ, Leung MC, Wang K, Wu JD, Silber JR, Ellenbogen RG, Lee JS and Zhang M: Proliferation and enrichment of CD133(+) glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds. Biomaterials. 35:9137–9143. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Amann A, Zwierzina M, Gamerith G, Bitsche M, Huber JM, Vogel GF, Blumer M, Koeck S, Pechriggl EJ, Kelm JM, et al: Development of an innovative 3D cell culture system to study tumour-stroma interactions in non-small cell lung cancer cells. PLoS One. 9:e925112014. View Article : Google Scholar : PubMed/NCBI

87 

Hoque MT, Windus LC, Lovitt CJ and Avery VM: PCaAnalyser: A 2D-image analysis based module for effective determination of prostate cancer progression in 3D culture. PLoS One. 8:e798652013. View Article : Google Scholar : PubMed/NCBI

88 

Ciurea ME, Georgescu AM, Purcaru SO, Artene SA, Emami GH, Boldeanu MV, Tache DE and Dricu A: Cancer stem cells: Biological functions and therapeutically targeting. Int J Mol Sci. 15:8169–8185. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lv D, Hu Z, Lu L, Lu H and Xu X: Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review). Oncol Lett 14: 6999-7010, 2017.
APA
Lv, D., Hu, Z., Lu, L., Lu, H., & Xu, X. (2017). Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review). Oncology Letters, 14, 6999-7010. https://doi.org/10.3892/ol.2017.7134
MLA
Lv, D., Hu, Z., Lu, L., Lu, H., Xu, X."Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review)". Oncology Letters 14.6 (2017): 6999-7010.
Chicago
Lv, D., Hu, Z., Lu, L., Lu, H., Xu, X."Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review)". Oncology Letters 14, no. 6 (2017): 6999-7010. https://doi.org/10.3892/ol.2017.7134
Copy and paste a formatted citation
x
Spandidos Publications style
Lv D, Hu Z, Lu L, Lu H and Xu X: Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review). Oncol Lett 14: 6999-7010, 2017.
APA
Lv, D., Hu, Z., Lu, L., Lu, H., & Xu, X. (2017). Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review). Oncology Letters, 14, 6999-7010. https://doi.org/10.3892/ol.2017.7134
MLA
Lv, D., Hu, Z., Lu, L., Lu, H., Xu, X."Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review)". Oncology Letters 14.6 (2017): 6999-7010.
Chicago
Lv, D., Hu, Z., Lu, L., Lu, H., Xu, X."Three‑dimensional cell culture: A powerful tool in tumor research and drug discovery (Review)". Oncology Letters 14, no. 6 (2017): 6999-7010. https://doi.org/10.3892/ol.2017.7134
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team