|
1
|
Grsic K, Opacic IL, Sitic S, Milkovic
Perisa M, Suton P and Sarcevic B: The prognostic significance of
estrogen receptor β in head and neck squamous cell carcinoma. Oncol
Lett. 12:3861–3865. 2016.PubMed/NCBI
|
|
2
|
Peng Q, Wang Y, Quan H, Li Y and Tang Z:
Oral verrucous carcinoma: From multifactorial etiology to diverse
treatment regimens (Review). Int J Oncol. 49:59–73. 2016.PubMed/NCBI
|
|
3
|
Rogers SJ, Harrington KJ, Rhys-Evans P,
O-Charoenrat P and Eccles SA: Biological significance of c-erbB
family oncogenes in head and neck cancer. Cancer Metastasis Rev.
24:47–69. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Smolensky D, Rathore K, Bourn J and
Cekanova M: Inhibition of the PI3K/AKT pathway sensitizes oral
squamous cell carcinoma cells to anthracycline-based chemotherapy
in vitro. J Cell Biochem. 118:2615–2624. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pramanik KK, Singh AK, Alam M, Kashyap T,
Mishra P, Panda AK, Dey RK, Rana A, Nagini S and Mishra R:
Reversion-inducing cysteine-rich protein with Kazal motifs and its
regulation by glycogen synthase kinase 3 signaling in oral cancer.
Tumour Biol. 37:15253–15264. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N and
Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation,
differentiation, migration, senescence and apoptosis. J Recept
Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chiba T, Soeno Y, Shirako Y, Sudo H,
Yagishita H, Taya Y, Kawashiri S, Okada Y and Imai K: MALT1
Inhibition of oral carcinoma cell invasion and ERK/MAPK activation.
J Dent Res. 95:446–452. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Affolter A, Muller MF, Sommer K,
Stenzinger A, Zaoui K, Lorenz K, Wolf T, Sharma S, Wolf J, Perner
S, et al: Targeting irradiation-induced mitogen-activated protein
kinase activation in vitro and in an ex vivo model for human head
and neck cancer. Head Neck. 38 Suppl 1:E2049–E2061. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kim GT, Lee SH and Kim YM: Torilis
japonica extract-generated intracellular ROS induces apoptosis by
reducing the mitochondrial membrane potential via regulation of the
AMPK-p38 MAPK signaling pathway in HCT116 colon cancer. Int J
Oncol. 49:1088–1098. 2016.PubMed/NCBI
|
|
10
|
Song X, Wei Z and Shaikh ZA: Requirement
of ERα and basal activities of EGFR and Src kinase in Cd-induced
activation of MAPK/ERK pathway in human breast cancer MCF-7 cells.
Toxicol Appl Pharmacol. 287:26–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zheng F, Tang Q, Wu J, Zhao S, Liang Z, Li
L, Wu W and Hann S: p38α MAPK-mediated induction and interaction of
FOXO3a and p53 contribute to the inhibited-growth and
induced-apoptosis of human lung adenocarcinoma cells by berberine.
J Exp Clin Cancer Res. 33:362014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Aguzzi A, Maggioni D, Nicolini G, Tredici
G, Gaini RM and Garavello W: MAP kinase modulation in squamous cell
carcinoma of the oral cavity. Anticancer Res. 29:303–308.
2009.PubMed/NCBI
|
|
13
|
Burotto M, Chiou VL, Lee JM and Kohn EC:
The MAPK pathway across different malignancies: A new perspective.
Cancer. 120:3446–3456. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yang SH, Sharrocks AD and Whitmarsh AJ:
MAP kinase signaling cascades and transcriptional regulation. Gene.
513:1–13. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Krishna M and Narang H: The complexity of
mitogen-activated protein kinases (MAPKs) made simple. Cell Mol
Life Sci. 65:3525–3544. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Reddy KB, Nabha SM and Atanaskova N: Role
of MAP kinase in tumor progression and invasion. Cancer Metastasis
Rev. 22:395–403. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cargnello M and Roux PP: Activation and
function of the MAPKs and their substrates, the MAPK-activated
protein kinases. Microbiol Mol Biol Rev. 75:50–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Samatar AA and Poulikakos PI: Targeting
RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug
Discov. 13:928–942. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Roberts PJ and Der CJ: Targeting the
Raf-MEK-ERK mitogen-activated protein kinase cascade for the
treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Crane EK and Wong KK: The therapeutic
promise of anti-cancer drugs against the Ras/Raf/MEK/ERK pathway.
Topics Anti-Cancer Res. 2:63–94. 2013. View Article : Google Scholar
|
|
21
|
Matallanas D, Birtwistle M, Romano D,
Zebisch A, Rauch J, von Kriegsheim A and Kolch W: Raf family
kinases: Old dogs have learned new tricks. Genes Cancer. 2:232–260.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ahearn IM, Haigis K, Bar-Sagi D and
Philips MR: Regulating the regulator: Post-translational
modification of RAS. Nat Rev Mol Cell Biol. 13:39–51. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pratilas CA and Solit DB: Targeting the
mitogen-activated protein kinase pathway: Physiological feedback
and drug response. Clin Cancer Res. 16:3329–3334. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wortzel I and Seger R: The ERK cascade:
Distinct functions within various subcellular organelles. Genes
Cancer. 2:195–209. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gough NR: Focus issue: Recruiting players
for a game of ERK. Sci Signal. 4:eg92011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ku NO, Azhar S and Omary MB: Keratin 8
phosphorylation by p38 kinase regulates cellular keratin filament
reorganization: Modulation by a keratin 1-like disease causing
mutation. J Biol Chem. 277:10775–10782. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gkouveris I, Nikitakis N, Karanikou M,
Rassidakis G and Sklavounou A: JNK1/2 expression and modulation of
STAT3 signaling in oral cancer. Oncol Lett. 12:699–706.
2016.PubMed/NCBI
|
|
28
|
Park MK, Lee HJ, Shin J, Noh M, Kim SY and
Lee CH: Novel participation of transglutaminase-2 through c-Jun
N-terminal kinase activation in sphingosylphosphorylcholine-induced
keratin reorganization of PANC-1 cells. Biochim Biophys Acta.
1811:1021–1029. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mishima K, Inoue K and Hayashi Y:
Overexpression of extracellular-signal regulated kinases on oral
squamous cell carcinoma. Oral Oncol. 38:468–474. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Simões AE, Rodrigues CM and Borralho PM:
The MEK5/ERK5 signalling pathway in cancer: A promising novel
therapeutic target. Drug Discov Today. 21:1654–1663. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kato Y, Tapping RI, Huang S, Watson MH,
Ulevitch RJ and Lee JD: Bmk1/Erk5 is required for cell
proliferation induced by epidermal growth factor. Nature.
395:713–716. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
32
|
Raviv Z, Kalie E and Seger R: MEK5 and
ERK5 are localized in the nuclei of resting as well as stimulated
cells, while MEKK2 translocates from the cytosol to the nucleus
upon stimulation. J Cell Sci. 117:1773–1784. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li T, Pan YW, Wang W, Abel G, Zou J, Xu L,
Storm DR and Xia Z: Targeted deletion of the ERK5 MAP kinase
impairs neuronal differentiation, migration, and survival during
adult neurogenesis in the olfactory bulb. PLoS One. 8:e619482013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Koyama T, Ogawara K, Kasamatsu A, Okamoto
A, Kasama H, Minakawa Y, Shimada K, Yokoe H, Shiiba M, Tanzawa H
and Uzawa K: ANGPTL3 is a novel biomarker as it activates ERK/MAPK
pathway in oral cancer. Cancer Med. 4:759–769. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shimizu T, Kasamatsu A, Yamamoto A, Koike
K, Ishige S, Takatori H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H
and Uzawa K: Annexin A10 in human oral cancer: Biomarker for
tumoral growth via G1/S transition by targeting MAPK signaling
pathways. PLoS One. 7:e455102012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wakasaki T, Masuda M, Niiro H,
Jabbarzadeh-Tabrizi S, Noda K, Taniyama T, Komune S and Akashi K: A
Critical role of c-Cbl-Interacting protein of 85 kDa in the
development and progression of head and neck squamous cell
carcinomas through the Ras-ERK pathway. Neoplasia. 12:789–796.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fu X and Feng Y: QKI-5 suppresses cyclin
D1 expression and proliferation of oral squamous cell carcinoma
cells via MAPK signalling pathway. Int J Oral Maxillofac Surg.
44:562–567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Williams MD: Integration of biomarkers
including molecular targeted therapies in head and neck cancer.
Head Neck Pathol. 4:62–69. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y,
Zhang Y, Hua S, Fu Q, Zhao M, et al: Downregulation of FAP
suppresses cell proliferation and metastasis through PTEN/PI3K/AKT
and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death
Dis. 5:e11552014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yamada T, Tsuda M, Ohba Y, Kawaguchi H,
Totsuka Y and Shindoh M: PTHrP promotes malignancy of human oral
cancer cell downstream of the EGFR signaling. Biochem Biophys Res
Commun. 368:575–581. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wu D, Cheng J, Sun G, Wu S, Li M, Gao Z,
Zhai S, Li P, Su D and Wang X: p70S6K promotes IL-6-induced
epithelial-mesenchymal transition and metastasis of head and neck
squamous cell carcinoma. Oncotarget. 7:36539–36550. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yang RW, Zeng YY, Wei WT, Cui YM, Sun HY,
Cai YL, Nian XX, Hu YT, Quan YP, Jiang SL, et al: TLE3 represses
colorectal cancer proliferation by inhibiting MAPK and AKT
signaling pathways. J Exp Clin Cancer Res. 35:1522016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang RH, Quan YJ, Chen JH, Wang TF, Xu M,
Ye M, Yuan H, Zhang CJ, Liu XJ and Min ZJ: Osteopontin promotes
cell migration and invasion, and inhibits apoptosis and autophagy
in colorectal cancer by activating the p38 MAPK signaling pathway.
Cell Physiol Biochem. 41:1851–1864. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lv D, Wu H, Xing R, Shu F, Lei B, Lei C,
Zhou X, Wan B, Yang Y, Zhong L, et al: HnRNP-L mediates bladder
cancer progression by inhibiting apoptotic signaling and enhancing
MAPK signaling pathways. Oncotarget. 8:13586–13599. 2017.PubMed/NCBI
|
|
45
|
Chen H, Jin ZL and Xu H: MEK/ERK signaling
pathway in apoptosis of SW620 cell line and inhibition effect of
resveratrol. Asian Pac J Trop Med. 9:49–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang T, Liao Y, Sun Q, Tang H, Wang G,
Zhao F and Jin Y: Upregulation of matrix metalloproteinase-9 in
primary cultured rat astrocytes induced by 2-chloroethanol Via MAPK
signal pathways. Front Cell Neurosci. 11:2182017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Schafer JM, Peters DE, Morley T, Liu S,
Molinolo AA, Leppla SH and Bugge TH: Efficient targeting of head
and neck squamous cell carcinoma by systemic administration of a
dual uPA and MMP-activated engineered anthrax toxin. PLoS One.
6:e205322011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Munshi HG, Wu YI, Mukhopadhyay S,
Ottaviano AJ, Sassano A, Koblinski JE, Platanias LC and Stack MS:
Differential regulation of membrane type 1-matrix metalloproteinase
activity by ERK 1/2- and p38 MAPK-modulated tissue inhibitor of
metalloproteinases 2 expression controls transforming growth
factor-beta1-induced pericellular collagenolysis. J Biol Chem.
279:39042–39050. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
So KY, Kim SH, Jung KT, Lee HY and Oh SH:
MAPK/JNK1 activation protects cells against cadmium-induced
autophagic cell death via differential regulation of catalase and
heme oxygenase-1 in oral cancer cells. Toxicol Appl Pharmacol.
332:81–91. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cossa G, Gatti L, Cassinelli G, Lanzi C,
Zaffaroni N and Perego P: Modulation of sensitivity to antitumor
agents by targeting the MAPK survival pathway. Curr Pharm Des.
19:883–894. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
De Luca A, Maiello MR, D'Alessio A,
Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT
signaling pathways: Role in cancer pathogenesis and implications
for therapeutic approaches. Expert Opin Ther Targets. 16 Suppl
2:S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang Y, Liu J, Cui F, Xing L, Wang J, Yan
X and Zhang X: ERK and p38 MAPK signaling pathways are involved in
ochratoxin A-induced G2 phase arrest in human gastric epithelium
cells. Toxicol Lett. 209:186–192. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ahn HJ, Kim G and Park KS: Ell3 stimulates
proliferation, drug resistance, and cancer stem cell properties of
breast cancer cells via a MEK/ERK-dependent signaling pathway.
Biochem Biophys Res Commun. 437:557–564. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Neuzillet C, Hammel P, Tijeras-Raballand
A, Couvelard A and Raymond E: Targeting the Ras-ERK pathway in
pancreatic adenocarcinoma. Cancer Metastasis Rev. 32:147–162. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ahmeda TA, Hayslip J and Leggas M:
Simvastatin interacts synergistically with tipifarnib to induce
apoptosis in leukemia cells through the disruption of RAS membrane
localization and ERK pathway inhibition. Leuk Res. 38:1350–1357.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lee JC, Chung LC, Chen YJ, Feng TH, Chen
WT and Juang HH: Upregulation of B-cell translocation gene 2 by
epigallocatechin-3-gallate via p38 and ERK signaling blocks cell
proliferation in human oral squamous cell carcinoma cells. Cancer
Lett. 360:310–318. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
D'Ambrosio SM, Han C, Pan L, Kinghorn AD
and Ding H: Aliphatic acetogenin constituents of avocado fruits
inhibit human oral cancer cell proliferation by targeting the
EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochem Biophys Res Commun.
409:465–469. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Henson BS, Neubig RR, Jang I, Ogawa T,
Zhang Z, Carey TE and D'Silva NJ: Galanin receptor 1 has
anti-proliferative effects in oral squamous cell carcinoma. J Biol
Chem. 280:22564–22571. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tang FY, Chiang EP, Chung JG, Lee HZ and
Hsu CY: S-Allylcysteine modulates the expression of E-cadherin and
inhibits the malignant progression of human oral cancer. J Nutr
Biochem. 20:1013–1020. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ko CP, Lin CW, Chen MK, Yang SF, Chiou HL
and Hsieh MJ: Pterostilbene induce autophagy on human oral cancer
cells through modulation of Akt and mitogen-activated protein
kinase pathway. Oral Oncol. 51:593–601. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kavitha K, Kowshik J, Kishore TK, Baba AB
and Nagini S: Astaxanthin inhibits NF-κB and Wnt/β-catenin
signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to
induce intrinsic apoptosis in a hamster model of oral cancer.
Biochim Biophys Acta. 1830:4433–4444. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Han HY, Kim H, Jeong SH, Lim DS and Ryu
MH: Sulfasalazine induces autophagic cell death in oral cancer
cells via Akt and ERK pathways. Asian Pac J Cancer Prev.
15:6939–6944. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Psyrri A, Lee JW, Pectasides E,
Vassilakopoulou M, Kosmidis EK, Burtness BA, Rimm DL, Wanebo HJ and
Forastiere AA: Prognostic biomarkers in phase II trial of
cetuximab-containing induction and chemoradiation in resectable
HNSCC: Eastern cooperative oncology group E2303. Clin Cancer Res.
20:3023–3032. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yoshimoto T, Takino T, Li Z, Domoto T and
Sato H: Vinculin negatively regulates transcription of MT1-MMP
through MEK/ERK pathway. Biochem Biophys Res Commun. 455:251–255.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen HJ, Lin CM, Lee CY, Shih NC, Amagaya
S, Lin YC and Yang JS: Phenethyl isothiocyanate suppresses
EGF-stimulated SAS human oral squamous carcinoma cell invasion by
targeting EGF receptor signaling. Int J Oncol. 43:629–637. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yen CY, Liang SS, Han LY, Chou HL, Chou
CK, Lin SR and Chiu CC: Cardiotoxin III inhibits proliferation and
migration of oral cancer cells through MAPK and MMP signaling.
Scientific World Journal. 2013:6509462013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lin FY, Hsieh YH, Yang SF, Chen CT, Tang
CH, Chou MY, Chuang YT, Lin CW and Chen MK: Resveratrol suppresses
TPA-induced matrix metalloproteinase-9 expression through the
inhibition of MAPK pathways in oral cancer cells. J Oral Pathol
Med. 44:699–706. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jänne PA, Shaw AT, Pereira JR, Jeannin G,
Vansteenkiste J, Barrios C, Franke FA, Grinsted L, Zazulina V,
Smith P, et al: Selumetinib plus docetaxel for KRAS-mutant advanced
non-small-cell lung cancer: A randomised, multicentre,
placebo-controlled, phase 2 study. Lancet Oncol. 14:38–47. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Grisham RN, Iyer G, Garg K, DeLair D,
Hyman DM, Zhou Q, Iasonos A, Berger MF, Dao F, Spriggs DR, et al:
BRAF mutation is associated with early stage disease and improved
outcome in patients with low-grade serous ovarian cancer. Cancer.
119:548–554. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Das N, Majumder J and DasGupta UB: Ras
gene mutations in oral cancer in eastern India. Oral Oncol.
36:76–80. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Martini M, De Santis MC, Braccini L,
Gulluni F and Hirsch E: PI3K/AKT signaling pathway and cancer: An
updated review. Ann Med. 46:372–383. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Collisson EA, De A, Suzuki H, Gambhir SS
and Kolodney MS: Treatment of metastatic melanoma with an orally
available inhibitor of the Ras-Raf-MAPK cascade. Cancer Res.
63:5669–5673. 2003.PubMed/NCBI
|
|
73
|
Wan PT, Garnett MJ, Roe SM, Lee S,
Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ,
Barford D, et al: Mechanism of activation of the RAF-ERK
signalingpathway by oncogenic mutations of B-RAF. Cell.
116:855–867. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Antipina MN, Kiryukhin MV, Skirtach AG and
Sukhorukov GB: Micropackaging via layer-by-layer assembly:
Microcapsulesand microchamber arrays. Int Mater Rev. 59:224–244.
2014. View Article : Google Scholar
|
|
75
|
Steelman LS, Chappell WH, Abrams SL, Kempf
RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F,
Mazzarino MC, et al: Roles of the Raf/MEK/ERK and
PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity
to therapy-implications for cancer and aging. Aging (Albany NY).
3:192–222. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Steelman LS, Abrams SL, Whelan J, Bertrand
FE, Ludwig DE, Bäsecke J, Libra M, Stivala F, Milella M, Tafuri A,
et al: Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and
JAK/STAT pathways to leukemia. Leukemia. 22:686–707. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Carlino MS, Gowrishankar K, Saunders CA,
Pupo GM, Snoyman S, Zhang XD, Saw R, Becker TM, Kefford RF, Long GV
and Rizos H: Antiproliferative effects of continued
mitogen-activated protein kinase pathway inhibition following
acquired resistance to BRAF and/or MEK inhibition in melanoma. Mol
Cancer Ther. 12:1332–1342. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Das Thakur M, Salangsang F, Landman AS,
Sellers WR, Pryer NK, Levesque MP, Dummer R, McMahon M and Stuart
DD: Modelling vemurafenib resistance in melanoma reveals a strategy
to forestall drug resistance. Nature. 494:251–255. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Imparato G, Urciuolo F and Netti PA: In
vitro three-dimensional models in cancer research: A review. Int
Mater Rev. 60:297–311. 2015. View Article : Google Scholar
|