|
1
|
IARC: GLOBOCAN 2012: Estimated Cancer
Incidence, Mortality and Prevalence Worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_population.aspxFebruary
22–2017
|
|
2
|
Brierley JD, Gospodarowicz M and Wittekind
C: Lip and Oral CavityTNM Classification of Malignant Tumours. 8th
edition. Wiley Blackwell; New York, NY: pp. 18–21. 2016
|
|
3
|
Sinevici N and O'sullivan J: Oral cancer:
Deregulated molecular events and their use as biomarkers. Oral
Oncol. 61:12–18. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 660:7–30. 2016. View Article : Google Scholar
|
|
5
|
Jemal A, Murray T, Ward E, Samuels A,
Tiwari RC, Ghafoor A, Feuer EJ and Thun MJ: Cancer statistics,
2005. CA Cancer J Clin. 55:2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Parker SL, Tong T, Bolden S and Wingo PA:
Cancer statistics, 1996. CA Cancer J Clin. 46:5–27. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li Z, Wang Y, Qiu J, Li Q, Yuan C, Zhang
W, Wang D, Ye J, Jiang H, Yang J and Cheng J: The polycomb group
protein EZH2 is a novel therapeutic target in tongue cancer.
Oncotarget. 4:2532–2549. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang C, Huang H, Huang Z, Wang A, Chen X,
Huang L, Zhou X and Liu X: Tumor budding correlates with poor
prognosis and epithelial-mesenchymal transition in tongue squamous
cell carcinoma. J Oral Pathol Med. 40:545–551. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Schwam ZG and Judson BL: Improved
prognosis for patients with oral cavity squamous cell carcinoma:
Analysis of the national cancer database 1998–2006. Oral Oncol.
52:45–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yoon AJ, Wang S, Shen J, Robine N,
Philipone E, Oster MW, Nam A and Santella RM: Prognostic value of
miR-375 and miR-214-3p in early stage oral squamous cell carcinoma.
Am J Transl Res. 6:580–592. 2014.PubMed/NCBI
|
|
11
|
National ComprehensiveCancer Network, .
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines):
Head and Neck Cancers 2017. https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdfFebruary
24–2017
|
|
12
|
Rogers SN, Brown JS, Woolgar JA, Lowe D,
Magennis P, Shaw RJ, Sutton D, Errington D and Vaughan D: Survival
following primary surgery for oral cancer. Oral Oncol. 45:201–211.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kelner N, Vartanian JG, Pinto CA,
Coutinho-Camillo CM and Kowalski LP: Does elective neck dissection
in T1/T2 carcinoma of the oral tongue and floor of the mouth
influence recurrence and survival rates? Br J Oral Maxillofac Surg.
52:590–597. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ong HS, Gokavarapu S, Wang LZ, Tian Z and
Zhang CP: Low pretreatment lymphocyte-monocyte ratio and high
platelet-lymphocyte ratio indicate poor cancer outcome in early
tongue cancer. J Oral Maxillofac Surg. 75:1762–1774. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yu X and Li Z: MicroRNA expression and its
implications for diagnosis and therapy of tongue squamous cell
carcinoma. J Cell Mol Med. 20:10–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Seki M, Sano T, Yokoo S and Oyama T:
Tumour budding evaluated in biopsy specimens is a useful predictor
of prognosis in patients with cN0 early stage oral squamous cell
carcinoma. Histopathology. 70:869–879. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ariji Y, Goto M, Fukano H, Sugita Y, Izumi
M and Ariji E: Role of intraoral color Doppler sonography in
predicting delayed cervical lymph node metastasis in patients with
early-stage tongue cancer: A pilot study. Oral Surg Oral Med Oral
Pathol Oral Radiol. 119:246–253. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Habu N, Imanishi Y, Kameyama K, et al:
Expression of Oct3/4 and Nanog in the head and neck squamous
carcinoma cells and its clinical implications for delayed neck
metastasis in stage I/II oral tongue squamous cell carcinoma. BMC
Cancer. 15:7302015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Goto M, Hanai N, Ozawa T, Hirakawa H,
Suzuki H, Hyodo I, Kodaira T, Ogawa T, Fujimoto Y, Terada A, et al:
Prognostic factors and outcomes for salvage surgery in patients
with recurrent squamous cell carcinoma of the tongue. Asia Pac J
Clin Oncol. 12:e141–e148. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Luksic I and Suton P: Predictive markers
for delayed lymph node metastases and survival in early-stage oral
squamous cell carcinoma. Head Neck. 39:694–701. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Almangush A, Coletta RD, Bello IO, Bitu C,
Keski-Säntti H, Mäkinen LK, Kauppila JH, Pukkila M, Hagström J,
Laranne J, et al: A simple novel prognostic model for early stage
oral tongue cancer. Int J Oral Maxillofac Surg. 44:143–150. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Montebugnoli L, Gissi DB, Flamminio F,
Gentile L, Dallera V, Leonardi E, Beccarini T and Foschini MP:
Clinicopathologic parameters related to recurrence and locoregional
metastasis in 180 oral squamous cell carcinomas. Int J Surg Pathol.
22:55–62. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dunkel J, Vaittinen S, Grénman R, Kinnunen
I and Irjala H: Prognostic markers in stage I oral cavity squamous
cell carcinoma. Laryngoscope. 123:2435–2441. 2013.PubMed/NCBI
|
|
24
|
Harada Y, Izumi H, Noguchi H, Kuma A,
Kawatsu Y, Kimura T, Kitada S, Uramoto H, Wang KY, Sasaguri Y, et
al: Erratum to: Strong expression of polypeptide
N-acetylgalactosaminyltransferase 3 independently predicts
shortened disease-free survival in patients with early stage oral
squamous cell carcinoma. Tumour Biol. 36:10003–10004. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Villegas-Ruiz V, Juárez-Méndez S,
Pérez-González OA, Arreola H, Paniagua-García L, Parra-Melquiadez
M, Peralta-Rodríguez R, López-Romero R, Monroy-García A,
Mantilla-Morales A, et al: Heterogeneity of microRNAs expression in
cervical cancer cells: Over-expression of miR-196a. Int J Clin Exp
Pathol. 7:1389–1401. 2014.PubMed/NCBI
|
|
26
|
Boldrup L, Coates PJ, Laurell G, Wilms T,
Fahraeus R and Nylander K: Downregulation of miRNA-424: A sign of
field cancerisation in clinically normal tongue adjacent to
squamous cell carcinoma. Br J Cancer. 112:1760–1765. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu X, Wang A, Heidbreder CE, Jiang L, Yu
J, Kolokythas A, Huang L, Dai Y and Zhou X: MicroRNA-24 targeting
RNA-binding protein DND1 in tongue squamous cell carcinoma. FEBS
Lett. 584:4115–4120. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rosenfeld N, Aharonov R, Meiri E,
Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S,
Levy A, et al: MicroRNAs accurately identify cancer tissue origin.
Nat Biotechnol. 26:462–469. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu CJ, Tsai MM, Tu HF, Lui MT, Cheng HW
and Lin SC: miR-196a overexpression and miR-196a2 gene polymorphism
are prognostic predictors of oral carcinomas. Ann Surg Oncol.
Suppl. 3 20 Suppl:S406–S414. 2013.
|
|
30
|
Liu CJ, Lin SC, Yang CC, Cheng HW and
Chang KW: Exploiting salivary miR-31 as a clinical biomarker of
oral squamous cell carcinoma. Head Neck. 34:219–224. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Di Leva G, Garofalo M and Croce CM:
MicroRNAs in cancer. Annu Rev Pathol. 9:287–314. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Reddy KB: MicroRNA (miRNA) in cancer.
Cancer Cell Int. 15:382015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lin S and Gregory RI: MicroRNA biogenesis
pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lu YC, Chang JT, Chan EC, Chao YK, Yeh TS,
Chen JS and Cheng AJ: miR-196, an emerging cancer biomarker for
digestive tract cancers. J Cancer. 7:650–655. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen ZY, Chen X and Wang ZX: The role of
microRNA-196a in tumorigenesis, tumor progression, and prognosis.
Tumour Biol. Oct 18–2016.(Epub ahead of print). View Article : Google Scholar
|
|
36
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nohata N, Hanazawa T, Kinoshita T, Okamoto
Y and Seki N: MicroRNAs function as tumor suppressors or oncogenes:
Aberrant expression of microRNAs in head and neck squamous cell
carcinoma. Auris Nasus Larynx. 40:143–149. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lamouille S, Subramanyam D, Blelloch R and
Derynck R: Regulation of epithelial-mesenchymal and
mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell
Biol. 25:200–207. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yu T, Li C, Wang Z, Liu K, Xu C, Yang Q,
Tang Y and Wu Y: Non-coding RNAs deregulation in oral squamous cell
carcinoma: Advances and challenges. Clin Transl Oncol. 18:427–436.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tu HF, Lin SC and Chang KW: MicroRNA
aberrances in head and neck cancer: Pathogenetic and clinical
significance. Curr Opin Otolaryngol Head Neck Surg. 21:104–111.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang H, Li Y and Lai M: The microRNA
network and tumor metastasis. Oncogene. 29:937–948. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bracken CP, Gregory PA, Khew-Goodall Y and
Goodall GJ: The role of microRNAs in metastasis and
epithelial-mesenchymal transition. Cell Mol Life Sci. 66:1682–1699.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kim KY, Lee GY and Cha IH: Biomarker
detection for the diagnosis of lymph node metastasis from oral
squamous cell carcinoma. Oral Oncol. 48:311–319. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Severino P, Brüggemann H, Andreghetto FM,
Camps C, Mde F Klingbeil, de Pereira WO, Soares RM, Moyses R,
Wünsch-Filho V, Mathor MB, et al: MicroRNA expression profile in
head and neck cancer: HOX-cluster embedded microRNA-196a and
microRNA-10b dysregulation implicated in cell proliferation. BMC
Cancer. 13:5332013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Platais C, Hakami F, Darda L, Lambert DW,
Morgan R and Hunter KD: The role of HOX genes in head and neck
squamous cell carcinoma. J Oral Pathol Med. 45:239–247. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Darda L, Hakami F, Morgan R, Murdoch C,
Lambert DW and Hunter KD: The role of HOXB9 and miR-196a in head
and neck squamous cell carcinoma. PLoS One. 10:e01222852015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jiang Y, Zhang Y, Li F, Du X and Zhang J:
CDX2 inhibits pancreatic adenocarcinoma cell proliferation via
promoting tumor suppressor miR-615-5p. Tumour Biol. 37:1041–1049.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pearson CE: Co-opting endogenous microRNAs
for therapy. Nat Med. 18:1011–1012. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hoss AG, Kartha VK, Dong X, Latourelle JC,
Dumitriu A, Hadzi TC, Macdonald ME, Gusella JF, Akbarian S, Chen
JF, et al: MicroRNAs located in the Hox gene clusters are
implicated in huntington's disease pathogenesis. PLoS Genet.
10:e10041882014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Shan Q, Zheng G, Zhu A, Cao L, Lu J, Wu D,
Zhang Z, Fan S, Sun C, Hu B, et al: Epigenetic modification of
miR-10a regulates renal damage by targeting CREB1 in type 2
diabetes mellitus. Toxicol Appl Pharmacol. 306:134–143. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bourguignon LY, Wong G and Shiina M:
Up-regulation of histone methyltransferase, DOT1L, by matrix
hyaluronan promotes MicroRNA-10 expression leading to tumor cell
invasion and chemoresistance in cancer stem cells from head and
neck squamous cell carcinoma. J Biol Chem. 291:10571–10585. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lu YC, Chang JT, Liao CT, Kang CJ, Huang
SF, Chen IH, Huang CC, Huang YC, Chen WH, Tsai CY, et al:
OncomiR-196 promotes an invasive phenotype in oral cancer through
the NME4-JNK-TIMP1-MMP signaling pathway. Mol Cancer. 13:2182014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Suh YE, Raulf N, Gäken J, Lawler K, Urbano
TG, Bullenkamp J, Gobeil S, Huot J, Odell E and Tavassoli M:
MicroRNA-196a promotes an oncogenic effect in head and neck cancer
cells by suppressing annexin A1 and enhancing radioresistance. Int
J Cancer. 137:1021–1034. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Saito K, Inagaki K, Kamimoto T, Ito Y,
Sugita T, Nakajo S, Hirasawa A, Iwamaru A, Ishikura T, Hanaoka H,
et al: MicroRNA-196a is a putative diagnostic biomarker and
therapeutic target for laryngeal cancer. PLoS One. 8:e714802013.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kozaki K, Imoto I, Mogi S, Omura K and
Inazawa J: Exploration of tumor-suppressive microRNAs silenced by
DNA hypermethylation in oral cancer. Cancer Res. 68:2094–2105.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lu YC, Chen YJ, Wang HM, Tsai CY, Chen WH,
Huang YC, Fan KH, Tsai CN, Huang SF, Kang CJ, et al: Oncogenic
function and early detection potential of miRNA-10b in oral cancer
as identified by microRNA profiling. Cancer Prev Res (Phila).
5:665–674. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ganci F, Sacconi A, Manciocco V, Sperduti
I, Battaglia P, Covello R, Muti P, Strano S, Spriano G, Fontemaggi
G, et al: MicroRNA expression as predictor of local recurrence risk
in oral squamous cell carcinoma. Head Neck. 38:E189–E197. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sasahira T, Kurihara M, Bhawal UK, Ueda N,
Shimomoto T, Yamamoto K, Kirita T and Kuniyasu H: Downregulation of
miR-126 induces angiogenesis and lymphangiogenesis by activation of
VEGF-A in oral cancer. Br J Cancer. 107:700–706. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang X, Yang H, Lee JJ, Kim E, Lippman
SM, Khuri FR, Spitz MR, Lotan R, Hong WK and Wu X: MicroRNA-related
genetic variations as predictors for risk of second primary tumor
and/or recurrence in patients with early-stage head and neck
cancer. Carcinogenesis. 31:2118–2123. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gombos K, Horváth R, Szele E, Juhász K,
Gocze K, Somlai K, Pajkos G, Ember I and Olasz L: miRNA expression
profiles of oral squamous cell carcinomas. Anticancer Res.
33:1511–1517. 2013.PubMed/NCBI
|
|
61
|
Kina S, Nakasone T, Kinjo T, Maruyama T,
Kawano T and Arasaki A: Impact of metronomic neoadjuvant
chemotherapy on early tongue cancer. Cancer Chemother Pharmacol.
78:833–840. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Peisker A, Raschke GF, Guentsch A, Luepke
P, Roshanghias K and Schultze-Mosgau S: Evaluation of a
post-treatment follow-up program in patients with oral squamous
cell carcinoma. Clin Oral Investig. 21:135–141. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yanamoto S, Yamada S, Takahashi H,
Kawasaki G, Ikeda H, Shiraishi T, Fujita S, Ikeda T, Asahina I and
Umeda M: Predictors of locoregional recurrence in T1-2N0 tongue
cancer patients. Pathol Oncol Res. 19:795–803. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Johnson N, Franceschi S, Ferlay J, Ramadas
K, Schmid S, MacDonald DG, Bouquot JE and Slootweg PJ: Squamous
cell carcinoma. In: World Health Organization Classification of
TumoursPathology & Genetics Head and Neck Tumours. Barnes C,
Eveson JW, Reichart P and Sidransky D: IARC Press; Lyon: pp.
168–175. 2005
|
|
65
|
Yamamoto E, Kohama G, Sunakawa H, Iwai M
and Hiratsuka H: Mode of invasion, bleomycin sensitivity and
clinical course in squamous cell carcinoma of the oral cavity.
Cancer. 51:2175–2180. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Huang SH, Hwang D, Lockwood G, Goldstein
DP and O'Sullivan B: Predictive value of tumor thickness for
cervical lymph-node involvement in squamous cell carcinoma of the
oral cavity: A meta-analysis of reported studies. Cancer.
115:1489–1497. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zeka F, Vanderheyden K, De Smet E,
Cuvelier CA, Mestdagh P and Vandesompele J: Straightforward and
sensitive RT-qPCR based gene expression analysis of FFPE samples.
Sci Rep. 6:214182016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Nagao Y, Hisaoka M, Matsuyama A, Kanemitsu
S, Hamada T, Fukuyama T, Nakano R, Uchiyama A, Kawamoto M,
Yamaguchi K, et al: Association of microRNA-21 expression with its
targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod
Pathol. 25:112–121. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fanale D, Amodeo V, Bazan V, Insalaco L,
Incorvaia L, Barraco N, Castiglia M, Rizzo S, Santini D, Giordano
A, et al: Can the microRNA expression profile help to identify
novel targets for zoledronic acid in breast cancer? Oncotarget.
7:29321–29332. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
McCall MN, McMurray HR, Land H and
Almudevar A: On non-detects in qPCR data. Bioinformatics.
30:2310–2316. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Scott SE, Grunfeld EA and McGurk M: The
idiosyncratic relationship between diagnostic delay and stage of
oral squamous cell carcinoma. Oral Oncol. 41:396–403. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mitani S, Tomioka T, Hayashi R, Ugumori T,
Hato N and Fujii S: Anatomic invasive depth predicts delayed
cervical lymph node metastasis of tongue squamous cell carcinoma.
Am J Surg Pathol. 40:934–942. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Orabona GD, Bonavolontà P, Maglitto F,
Friscia M, Iaconetta G and Califano L: Neck dissection versus
‘watchful-waiting’ in early squamous cell carcinoma of the tongue
our experience on 127 cases. Surg Oncol. 25:401–404. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
D'Cruz AK, Vaish R, Kapre N, Dandekar M,
Gupta S, Hawaldar R, Agarwal JP, Pantvaidya G, Chaukar D, Deshmukh
A, et al: Elective versus therapeutic neck dissection in
node-negative oral cancer. N Engl J Med. 373:521–529. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Irani S: miRNAs signature in head and neck
squamous cell carcinoma metastasis: A literature review. J Dent
(Shiraz). 17:71–83. 2016.PubMed/NCBI
|
|
78
|
Ganly I, Goldstein D, Carlson DL, Patel
SG, O'Sullivan B, Lee N, Gullane P and Shah JP: Long-term regional
control and survival in patients with ‘low-risk,’ early stage oral
tongue cancer managed by partial glossectomy and neck dissection
without postoperative radiation: The importance of tumor thickness.
Cancer. 119:1168–1176. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hebert C, Norris K, Scheper MA, Nikitakis
N and Sauk JJ: High mobility group A2 is a target for miRNA-98 in
head and neck squamous cell carcinoma. Mol Cancer. 6:52007.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yu T, Wang XY, Gong RG, Li A, Yang S, Cao
YT, Wen YM, Wang CM and Yi XZ: The expression profile of microRNAs
in a model of 7,12-dimethyl-benz [a]anthrance-induced oral
carcinogenesis in Syrian hamster. J Exp Clin Cancer Res. 28:642009.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing
Yuen A, Wai-Man Ng R and Ignace Wei W: Identification of pyruvate
kinase type M2 as potential oncoprotein in squamous cell carcinoma
of tongue through microRNA profiling. Int J Cancer. 123:251–257.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Grizzi F, Di Ieva A, Russo C, Frezza EE,
Cobos E, Muzzio PC and Chiriva-Internati M: Cancer initiation and
progression: An unsimplifiable complexity. Theor Biol Med Model.
3:372006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Brito BL, Lourenço SV, Damascena AS,
Kowalski LP, Soares FA and Coutinho-Camillo CM: Expression of stem
cell-regulating miRNAs in oral cavity and oropharynx squamous cell
carcinoma. J Oral Pathol Med. 45:647–654. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Manikandan M, Magendhra Deva Rao AK,
Rajkumar KS, Rajaraman R and Munirajan AK: Altered levels of
miR-21, miR-125b-2*, miR-138, miR-155, miR-184 and miR-205 in oral
squamous cell carcinoma and association with clinicopathological
characteristics. J Oral Pathol Med. 44:792–800. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tu HF, Chang KW, Cheng HW and Liu CJ:
Upregulation of miR-372 and −373 associates with lymph node
metastasis and poor prognosis of oral carcinomas. Laryngoscope.
125:E365–E370. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chang WM, Lin YF, Su CY, Peng HY, Chang
YC, Lai TC, Wu GH, Hsu YM, Chi LH, Hsiao JR, et al: Dysregulation
of RUNX2/activin-A axis upon miR-376c downregulation promotes lymph
node metastasis in head and neck squamous cell carcinoma. Cancer
Res. 76:7140–7150. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Peng SC, Liao CT, Peng CH, Cheng AJ, Chen
SJ, Huang CG, Hsieh WP and Yen TC: MicroRNAs MiR-218, MiR-125b, and
Let-7g predict prognosis in patients with oral cavity squamous cell
carcinoma. PLoS One. 9:e1024032014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chang CC, Yang YJ, Li YJ, Chen ST, Lin BR,
Wu TS, Lin SK, Kuo MY and Tan CT: MicroRNA-17/20a functions to
inhibit cell migration and can be used a prognostic marker in oral
squamous cell carcinoma. Oral Oncol. 49:923–931. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li J, Huang H, Sun L, Yang M, Pan C, Chen
W, Wu D, Lin Z, Zeng C, Yao Y, et al: MiR-21 indicates poor
prognosis in tongue squamous cell carcinomas as an apoptosis
inhibitor. Clin Cancer Res. 15:3998–4008. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Cao J, Guo T, Dong Q, Zhang J and Li Y:
miR-26b is downregulated in human tongue squamous cell carcinoma
and regulates cell proliferation and metastasis through a
COX-2-dependent mechanism. Oncol Rep. 33:974–980. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yang CN, Deng YT, Tang JY, Cheng SJ, Chen
ST, Li YJ, Wu TS, Yang MH, Lin BR, Kuo MY, et al: MicroRNA-29b
regulates migration in oral squamous cell carcinoma and its
clinical significance. Oral Oncol. 51:170–177. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Siow MY, Ng LP, Vincent-Chong VK,
Jamaludin M, Abraham MT, Rahman Abdul ZA, Kallarakkal TG, Yang YH,
Cheong SC and Zain RB: Dysregulation of miR-31 and miR-375
expression is associated with clinical outcomes in oral carcinoma.
Oral Dis. 20:345–351. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Jia LF, Wei SB, Mitchelson K, Gao Y, Zheng
YF, Meng Z, Gan YH and Yu GY: miR-34a inhibits migration and
invasion of tongue squamous cell carcinoma via targeting MMP9 and
MMP14. PLoS One. 9:e1084352014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li G, Ren S, Su Z, Liu C, Deng T, Huang D,
Tian Y, Qiu Y and Liu Y: Increased expression of miR-93 is
associated with poor prognosis in head and neck squamous cell
carcinoma. Tumour Biol. 36:3949–3956. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu CJ, Shen WG, Peng SY, Cheng HW, Kao
SY, Lin SC and Chang KW: miR-134 induces oncogenicity and
metastasis in head and neck carcinoma through targeting WWOX gene.
Int J Cancer. 134:811–821. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xu Q, Sun Q, Zhang J, Yu J, Chen W and
Zhang Z: Downregulation of miR-153 contributes to
epithelial-mesenchymal transition and tumor metastasis in human
epithelial cancer. Carcinogenesis. 34:539–549. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Baba O, Hasegawa S, Nagai H, Uchida F,
Yamatoji M, Kanno NI, Yamagata K, Sakai S, Yanagawa T and Bukawa H:
MicroRNA-155-5p is associated with oral squamous cell carcinoma
metastasis and poor prognosis. J Oral Pathol Med. 45:248–255. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yang CC, Hung PS, Wang PW, Liu CJ, Chu TH,
Cheng HW and Lin SC: miR-181 as a putative biomarker for lymph-node
metastasis of oral squamous cell carcinoma. J Oral Pathol Med.
40:397–404. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Obayashi M, Yoshida M, Tsunematsu T, Ogawa
I, Sasahira T, Kuniyasu H, Imoto I, Abiko Y, Xu D, Fukunaga S, et
al: microRNA-203 suppresses invasion and epithelial-mesenchymal
transition induction via targeting NUAK1 in head and neck cancer.
Oncotarget. 7:8223–8239. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Chang KW, Liu CJ, Chu TH, Cheng HW, Hung
PS, Hu WY and Lin SC: Association between high miR-211 microRNA
expression and the poor prognosis of oral carcinoma. J Dent Res.
87:1063–1068. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu X, Yu J, Jiang L, Wang A, Shi F, Ye H
and Zhou X: MicroRNA-222 regulates cell invasion by targeting
matrix metalloproteinase 1 (MMP1) and manganese superoxide
dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines.
Cancer Genomics Proteomics. 6:131–139. 2009.PubMed/NCBI
|
|
102
|
Sun Q, Zhang J, Cao W, Wang X, Xu Q, Yan
M, Wu X and Chen W: Dysregulated miR-363 affects head and neck
cancer invasion and metastasis by targeting podoplanin. Int J
Biochem Cell Biol. 45:513–520. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Huang WC, Chan SH, Jang TH, Chang JW, Ko
YC, Yen TC, Chiang SL, Chiang WF, Shieh TY, Liao CT, et al:
miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral
squamous cell carcinoma invasion and metastasis. Cancer Res.
74:751–764. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liao L, Wang J, Ouyang S, Zhang P, Wang J
and Zhang M: Expression and clinical significance of microRNA-1246
in human oral squamous cell carcinoma. Med Sci Monit. 21:776–781.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Manikandan M, Magendhra Deva Rao AK,
Arunkumar G, Manickavasagam M, Rajkumar KS, Rajaraman R and
Munirajan AK: Oral squamous cell carcinoma: microRNA expression
profiling and integrative analyses for elucidation of
tumourigenesis mechanism. Mol Cancer. 15:282016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bhatlekar S, Fields JZ and Boman BM: HOX
genes and their role in the development of human cancers. J Mol Med
(Berl). 92:811–823. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Marcinkiewicz KM and Gudas LJ: Altered
epigenetic regulation of homeobox genes in human oral squamous cell
carcinoma cells. Exp Cell Res. 320:128–143. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chen C, Zhang Y, Zhang L, Weakley SM and
Yao Q: MicroRNA-196: Critical roles and clinical applications in
development and cancer. J Cell Mol Med. 15:14–23. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu Y, Zhang Y, Wu H, Li Y, Zhang Y, Liu
M, Li X and Tang H: miR-10a suppresses colorectal cancer metastasis
by modulating the epithelial-to-mesenchymal transition and anoikis.
Cell Death Dis. 8:e27392017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Chen W, Tang Z, Sun Y, Zhang Y, Wang X,
Shen Z, Liu F and Qin X: miRNA expression profile in primary
gastric cancers and paired lymph node metastases indicates that
miR-10a plays a role in metastasis from primary gastric cancer to
lymph nodes. Exp Ther Med. 3:351–356. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Harris T, Jimenez L, Kawachi N, Fan JB,
Chen J, Belbin T, Ramnauth A, Loudig O, Keller CE, Smith R, et al:
Low-level expression of miR-375 correlates with poor outcome and
metastasis while altering the invasive properties of head and neck
squamous cell carcinomas. Am J Pathol. 180:917–928. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Veit JA, Scheckenbach K, Schuler PJ, Laban
S, Wiggenhauser PS, Thierauf J, Klussmann JP and Hoffmann TK:
MicroRNA expression in differentially metastasizing tumors of the
head and neck: Adenoid cystic versus squamous cell carcinoma.
Anticancer Res. 35:1271–1277. 2015.PubMed/NCBI
|
|
113
|
Min A, Zhu C, Peng S, Rajthala S, Costea
DE and Sapkota D: MicroRNAs as important players and biomarkers in
oral carcinogenesis. Biomed Res Int. 2015:1869042015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zahran F, Ghalwash D, Shaker O, Al-Johani
K and Scully C: Salivary microRNAs in oral cancer. Oral Dis.
21:739–747. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Johnson JJ, Miller DL, Jiang R, et al:
Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB activation
suppresses inflammation-associated tumor Suppressor MicroRNAs in
oral squamous cell carcinoma. J Biol Chem. 291:6936–6945. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mascolo M, Siano M, Ilardi G, Russo D,
Merolla F, De Rosa G and Staibano S: Epigenetic disregulation in
oral cancer. Int J Mol Sci. 13:2331–2353. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hayashi M, Wu G, Roh JL, et al:
Correlation of gene methylation in surgical margin imprints with
locoregional recurrence in head and neck squamous cell carcinoma.
Cancer. 121:1957–1965. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Asli NS and Kessel M: Spatiotemporally
restricted regulation of generic motor neuron programs by
miR-196-mediated repression of Hoxb8. Dev Biol. 344:857–868. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Dasen JS: Long noncoding RNAs in
development: solidifying the Lncs to Hox gene regulation. Cell Rep.
5:1–2. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ma L: Role of miR-10b in breast cancer
metastasis. Breast Cancer Res. 12:2102010. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wu Y, Zhang L, Zhang L, Wang Y, Li H, Ren
X, Wei F, Yu W, Liu T, Wang X, et al: Long non-coding RNA HOTAIR
promotes tumor cell invasion and metastasis by recruiting EZH2 and
repressing E-cadherin in oral squamous cell carcinoma. Int J Oncol.
46:2586–2594. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Adami GR, Tang JL and Markiewicz MR:
Improving accuracy of RNA-based diagnosis and prognosis of oral
cancer by using noninvasive methods. Oral Oncol. 69:62–67. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
He Q, Chen Z, Cabay RJ, et al: microRNA-21
and microRNA-375 from oral cytology as biomarkers for oral tongue
cancer detection. Oral Oncol. 57:15–20. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Koch FP, Kämmerer PW, Kämmerer P, Al-Nawas
B and Brieger J: Influence of class M1 glutathione S-transferase
(GST Mu) polymorphism on GST M1 gene expression level and tumor
size in oral squamous cell carcinoma. Oral Oncol. 46:128–133. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Serrao NR, Reid SM and Wilson CC:
Establishing detection thresholds for environmental DNA using
receiver operator characteristic (ROC) curves. Conservation Genet
Resour. 1–8. 2017.
|
|
126
|
Mordhorst LB, Sorbe B and Ahlin C: A study
of serum biomarkers associated with relapse of cervical cancer.
Anticancer Res. 32:4913–4922. 2012.PubMed/NCBI
|
|
127
|
Hosmer DW Jr, Lemeshow S and Sturdivant
RX: Applied Logistic Regression. 3rd edition. John Wiley &
Sons; Hoboken, NJ: pp. 173–182. 2013
|
|
128
|
Braoudaki M, Lambrou GI, Giannikou K, et
al: miR-15a and miR-24-1 as putative prognostic microRNA signatures
for pediatric pilocytic astrocytomas and ependymomas. Tumour Biol.
37:9887–9897. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Braoudaki M, Lambrou GI, Papadodima SA,
Stefanaki K, Prodromou N and Kanavakis E: MicroRNA expression
profiles in pediatric dysembryoplastic neuroepithelial tumors. Med
Oncol. 33:52016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hunt EA, Broyles D, Head T and Deo SK:
MicroRNA detection: Current technology and research strategies.
Annu Rev Anal Chem (Palo Alto Calif). 8:217–237. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Doleshal M, Magotra AA, Choudhury B,
Cannon BD, Labourier E and Szafranska AE: Evaluation and validation
of total RNA extraction methods for microRNA expression analyses in
formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 10:203–211.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Dai L, Wang Y, Chen L, Zheng J, Li J and
Wu X: MiR-221, a potential prognostic biomarker for recurrence in
papillary thyroid cancer. World J Surg Oncol. 15:112017. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Li J, Smyth P, Flavin R, Cahill S, Denning
K, Aherne S, Guenther SM, O'Leary JJ and Sheils O: Comparison of
miRNA expression patterns using total RNA extracted from matched
samples of formalin-fixed paraffin-embedded (FFPE) cells and snap
frozen cells. BMC Biotechnol. 7:362007. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Manikandan M, Magendhra Deva Rao AK, et
al: Down regulation of miR-34a and miR-143 may indirectly inhibit
p53 in oral squamous cell carcinoma: A pilot study. Asian Pac J
Cancer Prev. 16:7619–7625. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Moratin J, Hartmann S, Brands R, et al:
Evaluation of miRNA-expression and clinical tumour parameters in
oral squamous cell carcinoma (OSCC). J Craniomaxillofac Surg.
44:876–881. 2016. View Article : Google Scholar : PubMed/NCBI
|