Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2018 Volume 15 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 15 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

MicroRNAs and cancer: Key paradigms in molecular therapy (Review)

  • Authors:
    • Weige Tan
    • Bodu Liu
    • Shaohua Qu
    • Gehao Liang
    • Wei Luo
    • Chang Gong
  • View Affiliations / Copyright

    Affiliations: Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
  • Pages: 2735-2742
    |
    Published online on: December 19, 2017
       https://doi.org/10.3892/ol.2017.7638
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRNAs) are a type of small non-coding RNA molecule that performs an important role in post‑transcriptional gene regulation. Since miRNAs were first identified in 1993, a number of studies have demonstrated that they act as tumor suppressors or oncogenes in human cancer, including colorectal, lung, brain, breast and liver cancer, and leukemia. Large high‑throughput studies have previously revealed that miRNA profiling is critical for the diagnosis and prognosis of patients with cancer, while certain miRNAs possess the potential to be used as diagnostic and prognostic biomarkers or therapeutic targets in cancer. The present study reviews the studies and examines the roles of miRNAs in cancer diagnosis, prognosis and treatment, and discusses the potential therapeutic modality of exploiting miRNAs.
View Figures

Figure 1

Figure 2

View References

1 

Lee RC, Feinbaum RL and Ambros V: The c. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

2 

Carrington JC and Ambros V: Role of microRNAs in plant and animal development. Science. 301:336–338. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ and Morris QD: Using expression profiling data to identify human microRNA targets. Nat Methods. 4:1045–1049. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Mattick JS and Gagen MJ: The evolution of controlled multitasked gene networks: The role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol. 18:1611–1630. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Di Leva G, Garofalo M and Croce CM: MicroRNAs in cancer. Annu Rev Pathol. 9:287–314. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Plank M, Maltby S, Mattes J and Foster PS: Targeting translational control as a novel way to treat inflammatory disease: The emerging role of MicroRNAs. Clin Exp Allergy. 43:981–999. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Fernández-Hernando C, Ramírez CM, Goedeke L and Suárez Y: MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 33:178–185. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Wang W, Kwon EJ and Tsai LH: MicroRNAs in learning, memory, and neurological diseases. Learn Mem. 19:359–368. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Tao G and Martin JF: MicroRNAs get to the heart of development. Elife. 2:e017102013. View Article : Google Scholar : PubMed/NCBI

10 

Menghini R, Stöhr R and Federici M: MicroRNAs in vascular aging and atherosclerosis. Ageing Res Rev. 17:68–78. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Timoneda O, Núñez-Hernández F, Balcells I, Muñoz M, Castelló A, Vera G, Pérez LJ, Egea R, Mir G, Córdoba S, et al: The role of viral and host microRNAs in the Aujeszky's disease virus during the infection process. PLoS One. 9:e869652014. View Article : Google Scholar : PubMed/NCBI

12 

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:pp. 15524–15529. 2002; View Article : Google Scholar : PubMed/NCBI

13 

Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Leal JA, Feliciano A and Lleonart ME: Stem cell microRNAs in senescence and immortalization: Novel players in cancer therapy. Med Res Rev. 33:112–138. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Anand S: A brief primer on microRNAs and their roles in angiogenesis. Vasc Cell. 5:22013. View Article : Google Scholar : PubMed/NCBI

16 

Ding XM: MicroRNAs: Regulators of cancer metastasis and epithelial-mesenchymal transition (EMT). Chin J Cancer. 33:140–147. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Raza U, Zhang JD and Sahin O: MicroRNAs: Master regulators of drug resistance, stemness, and metastasis. J Mol Med (Berl). 92:321–336. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Spengler RM, Oakley CK and Davidson BL: Functional microRNAs and target sites are created by lineage-specific transposition. Hum Mol Genet. 23:1783–1793. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Carthew RW and Sontheimer EJ: Origins and Mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Selcuklu SD, Donoghue MT and Spillane C: miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 37:918–925. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Zhang ZW, An Y and Teng CB: The roles of miR-17-92 cluster in mammal development and tumorigenesis. Yi Chuan. 31:1094–1100. 2009.(In Chinese). View Article : Google Scholar : PubMed/NCBI

23 

Osada H and Takahashi T: let-7 and miR-17-92: Small-sized major players in lung cancer development. Cancer Sci. 102:9–17. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Rinaldi A, Poretti G, Kwee I, Zucca E, Catapano CV, Tibiletti MG and Bertoni F: Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma. 48:410–412. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Shuang T, Shi C, Chang S, Wang M and Bai CH: Downregulation of miR-17~92 expression increase paclitaxel sensitivity in human ovarian carcinoma SKOV3-TR30 cells via BIM instead of PTEN. Int J Mol Sci. 14:3802–3816. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Shuang T, Shi C, Chang S, Wang M and Bai CH: miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA. 105:pp. 2889–2894. 2008; PubMed/NCBI

27 

Cho WJ, Shin JM, Kim JS, Lee MR, Hong KS, Lee JH, Koo KH, Park JW and Kim KS: miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells. 28:521–527. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Boyerinas B, Park SM, Hau A, Murmann AE and Peter ME: The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 17:F19–F36. 2010. View Article : Google Scholar : PubMed/NCBI

29 

He XY, Chen JX, Ou-Yang X, Zhang Z and Peng HM: Construction of let-7a expression plasmid and its inhibitory effect on k-Ras protein in A549 lung cancer cells. Nan Fang Yi Ke Da Xue Xue Bao. 30:2427–2431. 2010.(In Chinese). PubMed/NCBI

30 

Wang YY, Ren T, Cai YY and He XY: MicroRNA let-7a inhibits the proliferation and invasion of nonsmall cell lung cancer cell line 95D by regulating K-Ras and HMGA2 gene expression. Cancer Biother Radiopharm. 28:131–137. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Xia XM, Jin WY, Shi RZ, Zhang YF and Chen J: Clinical significance and the correlation of expression between Let-7 and K-ras in non-small cell lung cancer. Oncol Lett. 1:1045–1047. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X, Bu P, Vogel H, Jablons DM, Keller AC, et al: A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 28:438–450. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Cheng CY, Hwang CI, Corney DC, Flesken-Nikitin A, Jiang L, Oner GM, Munroe RJ, Schimenti JC, Hermeking H and Nikitin AY: miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep. 6:1000–1007. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, et al: MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 4:e68162009. View Article : Google Scholar : PubMed/NCBI

35 

Cannell IG and Bushell M: Regulation of Myc by miR-34c: A mechanism to prevent genomic instability? Cell Cycle. 9:2726–2730. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Shah M and Allegrucci C: Stem cell plasticity in development and cancer: Epigenetic origin of cancer stem cells. Subcell Biochem. 61:545–565. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Lerner RG and Petritsch C: A microRNA-operated switch of asymmetric-to-symmetric cancer stem cell divisions. Nat Cell Biol. 16:212–214. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Sun X, Fan C, Hu LJ, Du N, Xu CW and Ren H: Role of let-7 in maintaining characteristics of breast cancer stem cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 28:789–792. 2012.PubMed/NCBI

39 

Chen KJ, Hou Y, Wang K, Li J, Xia Y, Yang XY, Lv G, Xing XL and Shen F: Reexpression of Let-7 g microRNA inhibits the proliferation and migration via K-Ras/HMGA2/snail axis in hepatocellular carcinoma. Biomed Res Int. 2014:7424172014.PubMed/NCBI

40 

Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y and Goodall GJ: Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci. 126:2256–2266. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A and Kurie JM: Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 23:2140–2151. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Truong HH, Xiong J, Ghotra VP, Nirmala E, Haazen L, Le Dévédec SE, Balcioğlu HE, He S, Snaar-Jagalska BE, Vreugdenhil E, et al: β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer. Sci Signal. 7:ra152014. View Article : Google Scholar : PubMed/NCBI

43 

Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN and Struhl K: Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 39:761–772. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Ouzounova M, Vuong T, Ancey PB, Ferrand M, Durand G, Le-Calvez Kelm F, Croce C, Matar C, Herceg Z and Hernandez-Vargas H: MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics. 14:1392013. View Article : Google Scholar : PubMed/NCBI

45 

Samples J, Willis M and Klauber-Demore N: Targeting angiogenesis and the tumor microenvironment. Surg Oncol Clin N Am. 22:629–639. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Pasquier E, Andre N, Trahair T and Kavallaris M: Reply: Comment on ‘Beta-blockers increase response to chemotherapy via direct anti-tumour and anti-angiogenic mechanisms in neuroblastoma’-β-blockers are potent anti-angiogenic and chemo-sensitising agents, rather than cytotoxic drugs. Br J Cancer. 109:2024–2025. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Kuhnert F and Kuo CJ: miR-17-92 angiogenesis micromanagement. Blood. 115:4631–4633. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Chan JK, Kiet TK, Blansit K, Ramasubbaiah R, Hilton JF, Kapp DS and Matei D: MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer. Gynecol Oncol. 133:568–574. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Melo SA and Kalluri R: Angiogenesis is controlled by miR-27b associated with endothelial tip cells. Blood. 119:2439–2440. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Santhekadur PK, Das SK, Gredler R, Chen D, Srivastava J, Robertson C, Baldwin AS Jr, Fisher PB and Sarkar D: Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor κB and miR-221. J Biol Chem. 287:13952–13958. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Xue G, Yan HL, Zhang Y, Hao LQ, Zhu XT, Mei Q and Sun SH: c-Myc-mediated repression of miR-15-16 in hypoxia is induced by increased HIF-2α and promotes tumor angiogenesis and metastasis by upregulating FGF2. Oncogene. 34:1393–1406. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Liu YY, Han JY, Lin SC, Liu ZY and Jiang WT: Effect of CDH1 gene methylation on transforming growth factor (TGF-β)-induced epithelial-mesenchymal transition in alveolar epithelial cell line A549. Genet Mol Res. 13:8568–8576. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Garg M: Epithelial-mesenchymal transition - activating transcription factors - multifunctional regulators in cancer. World J Stem Cells. 5:188–195. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Park SM, Gaur AB, Lengyel E and Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Young JA, Ting KK, Li J, Moller T, Dunn L, Lu Y, Moses J, Prado-Lourenço L, Khachigian LM, Ng M, et al: Regulation of vascular leak and recovery from ischemic injury by general and VE-cadherin-restricted miRNA antagonists of miR-27. Blood. 122:2911–2919. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Tellez CS, Juri DE, Do K, Bernauer AM, Thomas CL, Damiani LA, Tessema M, Leng S and Belinsky SA: EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res. 71:3087–3097. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Zhang J, Zhang H, Liu J, Tu X, Zang Y, Zhu J, Chen J, Dong L and Zhang J: miR-30 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun. 417:1100–1105. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Chen J, Wang L, Matyunina LV, Hill CG and McDonald JF: Overexpression of miR-429 induces mesenchymal-to-epithelial transition (MET) in metastatic ovarian cancer cells. Gynecol Oncol. 121:200–205. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Stahlhut C and Slack FJ: MicroRNAs and the cancer phenotype: Profiling, signatures and clinical implications. Genome Med. 5:1112013. View Article : Google Scholar : PubMed/NCBI

60 

de Leeuw DC, van den Ancker W, Denkers F, de Menezes RX, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA and Smit L: MicroRNA profiling can classify acute leukemias of ambiguous lineage as either acute myeloid leukemia or acute lymphoid leukemia. Clin Cancer Res. 19:2187–2196. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Sun YF, Leu JD, Chen SM, Lin IF and Lee YJ: Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer. BMC Cancer. 9:132009. View Article : Google Scholar : PubMed/NCBI

62 

Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L and Cilio CM: Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem Biophys Res Commun. 404:16–22. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Wee EJ, Peters K, Nair SS, Hulf T, Stein S, Wagner S, Bailey P, Lee SY, Qu WJ, Brewster B, et al: Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer. Oncogene. 31:4182–4195. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Rothé F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, Badran B, Fayyad-Kazan H, Desmedt C, Harris AL, et al: Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 6:e209802011. View Article : Google Scholar : PubMed/NCBI

65 

Yang M, Shen H, Qiu C, Ni Y, Wang L, Dong W, Liao Y and Du J: High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer. 49:604–615. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E and Dahlberg JE: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 102:pp. 3627–3632. 2005; View Article : Google Scholar : PubMed/NCBI

67 

Zhu J, Feng Y, Ke Z, Yang Z, Zhou J, Huang X and Wang L: Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin. Am J Pathol. 180:2440–2451. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR and Goel A: Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 259:735–743. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Guttilla IK and White BA: Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 284:23204–23216. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Viré E, Curtis C, Davalos V, Git A, Robson S, Villanueva A, Vidal A, Barbieri I, Aparicio S, Esteller M, et al: The breast cancer oncogene EMSY represses transcription of antimetastatic microRNA miR-31. Mol Cell. 53:806–818. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Deng ZQ, Yin JY, Tang Q, Liu FQ, Qian J, Lin J, Shao R, Zhang M and He L: Over-expression of miR-98 in FFPE tissues might serve as a valuable source for biomarker discovery in breast cancer patients. Int J Clin Exp Pathol. 7:1166–1171. 2014.PubMed/NCBI

72 

Wu H and Mo YY: Targeting miR-205 in breast cancer. Expert Opin Ther Targets. 13:1439–1448. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, Deng F, Zhu M, Zhu W, Wu R, et al: Curcumin modulates miR-19/PTEN/AKT/p53 Axis to suppress bisphenol a-induced MCF-7 breast cancer cell proliferation. Phytother Res. 28:1553–1560. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF, Dong Z, Su SB, Shi H, Kim J and Huang S: SHOX2 Is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia. 16:279–290. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Zhao H, Wang Y, Yang L, Jiang R and Li W: MiR-25 promotes gastric cancer cells growth and motility by targeting RECK. Mol Cell Biochem. 385:207–213. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, Lim L, Burchard J, Jackson AL, et al: MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 28:2167–2174. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Choi OR and Lim IK: Loss of p21(Sdi1) expression in senescent cells after DNA damage accompanied with increase of miR-93 expression and reduced p53 interaction with p21 (Sdi1) gene promoter. Biochem Biophys Res Commun. 407:406–411. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, Philip PA and Li Y: Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2) and PUMA. Am J Cancer Res. 3:465–477. 2013.PubMed/NCBI

79 

Kurashina R, Kikuchi K, Iwaki J, Yoshitake H, Takeshita T and Takizawa T: Placenta-specific miRNA (miR-512-3p) targets PPP3R1 encoding the calcineurin B regulatory subunit in BeWo cells. J Obstet Gynaecol Res. 40:650–660. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Liu Z, Zhu J, Cao H, Ren H and Fang X: miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. Int J Oncol. 40:1553–1560. 2012.PubMed/NCBI

81 

Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, Liu C, Zong H, Rowitch DH, Barres BA, et al: Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene. 31:1884–1895. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Xie Q, Huang Z, Yan Y, Li F and Zhong X: miR-221 mediates epithelial-mesenchymal transition-related gene expressions via regulation of PTEN/Akt signaling in drug-resistant glioma cells. Nan Fang Yi Ke Da Xue Xue Bao. 34:218–222. 2014.(In Chinese). PubMed/NCBI

83 

Xu HS, Zong HL, Shang M, Ming X, Zhao JP, Ma C and Cao L: MiR-324-5p inhibits proliferation of glioma by target regulation of GLI1. Eur Rev Med Pharmacol Sci. 18:828–832. 2014.PubMed/NCBI

84 

Yang X, Yu J, Yin J, Xiang Q, Tang H and Lei X: MiR-195 regulates cell apoptosis of human hepatocellular carcinoma cells by targeting LATS2. Pharmazie. 67:645–651. 2012.PubMed/NCBI

85 

Tsang TY, Tang WY, Chan JY, Co NN, Au Yeung CL, Yau PL, Kong SK, Fung KP and Kwok TT: P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells. Apoptosis. 16:524–535. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Li L, Guo Z, Wang J, Mao Y and Gao Q: Serum miR-18a: A potential marker for hepatitis B virus-related hepatocellular carcinoma screening. Dig Dis Sci. 57:2910–2916. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Zhang Y, Zhang B, Zhang A, Li X, Liu J, Zhao J, Zhao Y, Gao J, Fang D and Rao Z: IL-6 upregulation contributes to the reduction of miR-26a expression in hepatocellular carcinoma cells. Braz J Med Biol Res. 46:32–38. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Sheng Y, Li J, Zou C, Wang S, Cao Y, Zhang J, Huang A and Tang H: Downregulation of miR-101-3p by hepatitis B virus promotes proliferation and migration of hepatocellular carcinoma cells by targeting Rab5a. Arch Virol. 159:2397–2410. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Yang XW, Zhang LJ, Huang XH, Chen LZ, Su Q, Zeng WT, Li W and Wang Q: miR-145 suppresses cell invasion in hepatocellular carcinoma cells: MiR-145 targets ADAM17. Hepatol Res. 44:551–559. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Law PT, Ching AK, Chan AW, Wong QW, Wong CK, To KF and Wong N: MiR-145 modulates multiple components of the insulin-like growth factor pathway in hepatocellular carcinoma. Carcinogenesis. 33:1134–41. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Epis MR, Giles KM, Barker A, Kendrick TS and Leedman PJ: miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 284:24696–24704. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, et al: MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 32:296–306. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Weiler J, Hunziker J and Hall J: Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Ther. 13:496–502. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Baigude H and Rana TM: Strategies to antagonize miRNA functions in vitro and in vivo. Nanomedicine (Lond). 9:2545–2555. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Lennox KA and Behlke MA: Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 18:1111–1120. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Gaglione M, Milano G, Chambery A, Moggio L, Romanelli A and Messere A: PNA-based artificial nucleases as antisense and anti-miRNA oligonucleotide agents. Mol Biosyst. 7:2490–2499. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Kim JH, Yeom JH, Ko JJ, Han MS, Lee K, Na SY and Bae J: Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. J Biotechnol. 155:287–292. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, et al: Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 478:404–407. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Ziegler S, Eberle ME, Wölfle SJ, Heeg K and Bekeredjian-Ding I: Bifunctional oligodeoxynucleotide/antagomiR constructs: Evaluation of a new tool for microRNA silencing. Nucleic Acid Ther. 23:427–434. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Velu CS and Grimes HL: Utilizing antagomiR (antisense microRNA) to knock down microRNA in murine bone marrow cells. Methods Mol Biol. 928:185–195. 2012.PubMed/NCBI

101 

Chabot S, Orio J, Castanier R, Bellard E, Nielsen SJ, Golzio M and Teissié J: LNA-based oligonucleotide electrotransfer for miRNA inhibition. Mol Ther. 20:1590–1598. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ and van den Berg A: Generation of miRNA sponge constructs. Methods. 58:113–117. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Niu WY, Wu SQ, Xu ZZ, Lin J and Zhan R: Anti-leukemia mechanism of miR-17 and miR-20a silencing mediated by miRNA sponge. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 22:932–937. 2014.(In Chinese). PubMed/NCBI

104 

Wu SQ, Xu ZZ, Lin J and Zhan R: Construction of miRNA sponge targeting miR-20a and stable expression in Jurkat leukemia cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 20:1056–1062. 2012.PubMed/NCBI

105 

de Melo Maia B, Ling H, Monroig P, Ciccone M, Soares FA, Calin GA and Rocha RM: Design of a miRNA sponge for the miR-17 miRNA family as a therapeutic strategy against vulvar carcinoma. Mol Cell Probes. 29:420–426. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Qureshi AT, Monroe WT, Dasa V, Gimble JM and Hayes DJ: miR-148b-nanoparticle conjugates for light mediated osteogenesis of human adipose stromal/stem cells. Biomaterials. 34:7799–7810. 2013. View Article : Google Scholar : PubMed/NCBI

107 

Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM and Slack FJ: Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA. 109:pp. E1695–E1704. 2012; View Article : Google Scholar : PubMed/NCBI

108 

Chen Y, Zhu X, Zhang X, Liu B and Huang L: Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 18:1650–1656. 2010. View Article : Google Scholar : PubMed/NCBI

109 

de Campos VE, Teixeira CA, da Veiga VF, Ricci E Jr and Holandino C: L-tyrosine-loaded nanoparticles increase the antitumoral activity of direct electric current in a metastatic melanoma cell model. Int J Nanomedicine. 5:961–971. 2010.PubMed/NCBI

110 

Gu J, Chen X, Xin H, Fang X and Sha X: Serum-resistant complex nanoparticles functionalized with imidazole-rich polypeptide for gene delivery to pulmonary metastatic melanoma. Int J Pharm. 461:559–569. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tan W, Liu B, Qu S, Liang G, Luo W and Gong C: MicroRNAs and cancer: Key paradigms in molecular therapy (Review). Oncol Lett 15: 2735-2742, 2018.
APA
Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., & Gong, C. (2018). MicroRNAs and cancer: Key paradigms in molecular therapy (Review). Oncology Letters, 15, 2735-2742. https://doi.org/10.3892/ol.2017.7638
MLA
Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., Gong, C."MicroRNAs and cancer: Key paradigms in molecular therapy (Review)". Oncology Letters 15.3 (2018): 2735-2742.
Chicago
Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., Gong, C."MicroRNAs and cancer: Key paradigms in molecular therapy (Review)". Oncology Letters 15, no. 3 (2018): 2735-2742. https://doi.org/10.3892/ol.2017.7638
Copy and paste a formatted citation
x
Spandidos Publications style
Tan W, Liu B, Qu S, Liang G, Luo W and Gong C: MicroRNAs and cancer: Key paradigms in molecular therapy (Review). Oncol Lett 15: 2735-2742, 2018.
APA
Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., & Gong, C. (2018). MicroRNAs and cancer: Key paradigms in molecular therapy (Review). Oncology Letters, 15, 2735-2742. https://doi.org/10.3892/ol.2017.7638
MLA
Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., Gong, C."MicroRNAs and cancer: Key paradigms in molecular therapy (Review)". Oncology Letters 15.3 (2018): 2735-2742.
Chicago
Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., Gong, C."MicroRNAs and cancer: Key paradigms in molecular therapy (Review)". Oncology Letters 15, no. 3 (2018): 2735-2742. https://doi.org/10.3892/ol.2017.7638
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team