Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2018 Volume 15 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 15 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells

  • Authors:
    • Mingjin Zou
    • Jing Wang
    • Jidong Gao
    • Hui Han
    • Yi Fang
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China, Department of Breast Surgical Oncology, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China, Department of Infection Control, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
    Copyright: © Zou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2889-2898
    |
    Published online on: December 19, 2017
       https://doi.org/10.3892/ol.2017.7654
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The incidence of breast cancer has been increasing in China and the age of breast cancer onset is earlier compared with Western countries. Compounds commonly used in Traditional Chinese Medicine (TCM) are an important source of anticancer drugs. Ginseng is one of the most common medicines used in TCM. Ginsenosides, which are saponins found in the ginseng plant, are the major active components responsible for the chemopreventive effects of ginseng in cancer. However, the mechanisms by which ginsenosides exert their anticancer effects remain elusive. The current study combined tandem mass tag (TMT)‑based quantification with titanium dioxide‑based phosphopeptide enrichment to quantitatively analyze the changes in phosphoproteomes in breast cancer MDA‑MB‑231 cells that occur following treatment with the ginsenoside Rg3. A total of 5,140 phosphorylation sites on 2,041 phosphoproteins were quantified and it was demonstrated that the phosphorylation status of 13 sites were altered in MDA‑MB‑231 cells following treatment with Rg3. The perturbed phosphoproteins were: Cleavage and polyadenylation specificity factor subunit 7, elongation factor 2 (EEF2), HIRA‑interacting protein 3, melanoma‑associated antigen D2, myosin phosphatase Rho‑interacting protein, probable E3 ubiquitin‑protein ligase MYCBP2, PRKC apoptosis WT1 regulator protein, protein phosphatase 1 regulatory subunit 12A, E3 SUMO‑protein ligase RanBP2, Septin‑9, thymopoietin, and E3 UFM1‑protein ligase 1. Western blotting confirmed that Rg3 increased the phosphorylation of EEF2 on Thr57 but did not alter the protein expression of EEF2 in MDA‑MB‑231 and HCC1143 cells. These ginsenoside Rg3‑regulated proteins are involved in various biological processes, including protein synthesis, cell division and the inhibition of nuclear factor‑κB signaling. The results of the present study revealed that Rg3 exerts its anticancer effects via a combination of different signaling pathways.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Chen W, Zheng R, Zeng H, Zhang S and He J: Annual report on status of cancer in China, 2011. Chin J Cancer Res. 27:2–12. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Song QK, Wang XL, Zhou XN, Yang HB, Li YC, Wu JP, Ren J and Lyerly HK: Breast cancer challenges and screening in China: Lessons from current registry data and population screening studies. Oncologist. 20:773–779. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Ma R, Sun L, Chen X, Mei B, Chang G, Wang M and Zhao D: Proteomic analyses provide novel insights into plant growth and ginsenoside biosynthesis in forest cultivated panax ginseng (F. Ginseng). Front Plant Sci. 7:12016. View Article : Google Scholar : PubMed/NCBI

4 

Colzani M, Altomare A, Caliendo M, Aldini G, Righetti PG and Fasoli E: The secrets of Oriental panacea: Panax ginseng. J Proteomics. 130:150–159. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Xie G, Wang CZ, Yu C, Qiu Y, Wen XD, Zhang CF, Yuan CS and Jia W: Metabonomic profiling reveals cancer chemopreventive effects of american ginseng on colon carcinogenesis in Apc (Min/+) mice. J Proteome Res. 14:3336–3347. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Gillis CN: Panax ginseng pharmacology: A nitric oxide link? Biochem Pharmacol. 54:1–8. 1997. View Article : Google Scholar : PubMed/NCBI

7 

Chen XP, Qian LL, Jiang H and Chen JH: Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int J Clin Oncol. 16:519–523. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Kim BM, Kim DH, Park JH, Na HK and Surh YJ: Ginsenoside Rg3 induces apoptosis of human breast cancer (MDA-MB-231) cells. J Cancer Prev. 18:177–185. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Kim BM, Kim DH, Park JH, Surh YJ and Na HK: Ginsenoside Rg3 inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream targe. J Cancer Prev. 19:23–30. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK and Hamon C: Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 75:1895–1904. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, et al: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 3:1154–1169. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Nirujogi RS, Wright JD Jr, Manda SS, Zhong J, Na CH, Meyerhoff J, Benton B, Jabbour R, Willis K, Kim MS, et al: Phosphoproteomic analysis reveals compensatory effects in the piriform cortex of VX nerve agent exposed rats. Proteomics. 15:487–499. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Roitinger E, Hofer M, Kocher T, Pichler P, Novatchkova M, Yang J, Schlögelhofer P and Mechtler K: Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol Cell Proteomics. 14:556–571. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Fang Y, Zhang Q, Wang X, Yang X, Wang X, Huang Z, Jiao Y and Wang J: Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. Int J Oncol. 48:1016–1028. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Wisniewski JR, Zougman A, Nagaraj N and Mann M: Universal sample preparation method for proteome analysis. Nat Methods. 6:359–362. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Larsen MR, Thingholm TE, Jensen ON, Roepstorff P and Jørgensen TJ: Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 4:873–886. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Rappsilber J, Ishihama Y and Mann M: Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 75:663–670. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Cox J and Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 26:1367–1372. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z, Farrah T, Bandeira N, et al: ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 32:223–226. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Mi H, Muruganujan A and Thomas PD: PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 41(Database issue): D377–D386. 2013.PubMed/NCBI

21 

Mi H, Muruganujan A, Casagrande JT and Thomas PD: Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 8:1551–1566. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Shan X, Aziz F, Tian LL, Wang XQ, Yan Q and Liu JW: Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation inhibits melanoma cell proliferation by decreasing FUT4/LeY expression. Int J Oncol. 46:1667–1676. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Wang JH, Nao JF, Zhang M and He P: 20(s)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumour Biol. 35:11985–11994. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Shan X, Fu YS, Aziz F, Wang XQ, Yan Q and Liu JW: Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3 (HDAC3) and increase of p53 acetylation. PLoS One. 9:e1154012014. View Article : Google Scholar : PubMed/NCBI

25 

Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou H, Ding L and Li X: Ginsenoside 20(S)-Rg3 targets HIF-1α to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PLoS One. 9:e1038872014. View Article : Google Scholar : PubMed/NCBI

26 

Kim BJ, Nah SY, Jeon JH, So I and Kim SJ: Transient receptor potential melastatin 7 channels are involved in ginsenoside Rg3-induced apoptosis in gastric cancer cells. Basic Clin Pharmacol Toxicol. 109:233–239. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Lee SY, Kim GT, Roh SH, Song JS, Kim HJ, Hong SS, Kwon SW and Park JH: Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines. Biosci Biotechnol Biochem. 73:811–816. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Luo Y, Zhang P, Zeng HQ, Lou SF and Wang DX: Ginsenoside Rg3 induces apoptosis in human multiple myeloma cells via the activation of Bcl-2-associated X protein. Mol Med Rep. 12:3557–3562. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV and Mann M: A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc. 4:698–705. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Wang Z, Liang S, Lian X, Liu L, Zhao S, Xuan Q, Guo L, Liu H, Yang Y, Dong T, et al: Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis. Sci Rep. 5:93012015. View Article : Google Scholar : PubMed/NCBI

31 

Fernandez-Pol JA: Increased serum level of RPMPS-1/S27 protein in patients with various types of cancer is useful for the early detection, prevention and therapy. Cancer Genomics Proteomics. 9:203–256. 2012.PubMed/NCBI

32 

Stack BC Jr, Dalsaso TA, Lee C Jr, Lowe VJ, Hamilton PD, Fletcher JW and Fernandez-Pol JA: Overexpression of MPS antigens by squamous cell carcinomas of the head and neck: Immunohistochemical and serological correlation with FDG positron emission tomography. Anticancer Res. 19:5503–5510. 1999.PubMed/NCBI

33 

Ganger DR, Hamilton PD, Klos DJ, Jakate S, McChesney L and Fernandez-Pol JA: Differential expression of metallopanstimulin/S27 ribosomal protein in hepatic regeneration and neoplasia. Cancer Detect Prev. 25:231–236. 2001.PubMed/NCBI

34 

Santa Cruz DJ, Hamilton PD, Klos DJ and Fernandez-Pol JA: Differential expression of metallopanstimulin/S27 ribosomal protein in melanocytic lesions of the skin. J Cutan Pathol. 24:533–542. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Ganger DR, Hamilton PD, Fletcher JW and Fernandez-Pol JA: Metallopanstimulin is overexpressed in a patient with colonic carcinoma. Anticancer Res. 17:1993–1999. 1997.PubMed/NCBI

36 

Fernandez-Pol JA, Fletcher JW, Hamilton PD and Klos DJ: Expression of metallopanstimulin and oncogenesis in human prostatic carcinoma. Anticancer Res. 17:1519–1530. 1997.PubMed/NCBI

37 

Yang ZY, Qu Y, Zhang Q, Wei M, Liu CX, Chen XH, Yan M, Zhu ZG, Liu BY, Chen GQ, et al: Knockdown of metallopanstimulin-1 inhibits NF-κB signaling at different levels: The role of apoptosis induction of gastric cancer cells. Int J Cancer. 130:2761–2770. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Wang YW, Qu Y, Li JF, Chen XH, Liu BY, Gu QL and Zhu ZG: In vitro and in vivo evidence of metallopanstimulin-1 in gastric cancer progression and tumorigenicity. Clin Cancer Res. 12:4965–4973. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Dai Y, Pierson SE, Dudney WC and Stack BC Jr: Extraribosomal function of metallopanstimulin-1: Reducing paxillin in head and neck squamous cell carcinoma and inhibiting tumor growth. Int J Cancer. 126:611–619. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Kim S, Yamamoto J, Chen Y, Aida M, Wada T, Handa H and Yamaguchi Y: Evidence that cleavage factor Im is a heterotetrameric protein complex controlling alternative polyadenylation. Genes Cells. 15:1003–1013. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M and Vagner S: An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries. EMBO J. 25:4854–4864. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, Speirs V, Thorne JL, Thygesen HH, Zougman A, et al: MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol. 231:388–399. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Trinkle-Mulcahy L and Lamond AI: Mitotic phosphatases: No longer silent partners. Curr Opin Cell Biol. 18:623–631. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Ito M, Nakano T, Erdodi F and Hartshorne DJ: Myosin phosphatase: Structure, regulation and function. Mol Cell Biochem. 259:197–209. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Matsumura F and Hartshorne DJ: Myosin phosphatase target subunit: Many roles in cell function. Biochem Biophys Res Commun. 369:149–156. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Vallenius T, Vaahtomeri K, Kovac B, Osiceanu AM, Viljanen M and Mäkelä TP: An association between NUAK2 and MRIP reveals a novel mechanism for regulation of actin stress fibers. J Cell Sci. 124:384–393. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Surks HK, Riddick N and Ohtani K: M-RIP targets myosin phosphatase to stress fibers to regulate myosin light chain phosphorylation in vascular smooth muscle cells. J Biol Chem. 280:42543–42551. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Matsumura F, Yamakita Y and Yamashiro S: Myosin phosphatase-targeting subunit 1 controls chromatid segregation. J Biol Chem. 286:10825–10833. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Xia D, Stull JT and Kamm KE: Myosin phosphatase targeting subunit 1 affects cell migration by regulating myosin phosphorylation and actin assembly. Exp Cell Res. 304:506–517. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Estey MP, Di Ciano-Oliveira C, Froese CD, Bejide MT and Trimble WS: Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J Cell Biol. 191:741–749. 2010. View Article : Google Scholar : PubMed/NCBI

51 

van Alfen N, Hannibal MC, Chance PF and van Engelen BGM: Hereditary neuralgic amyotrophyPagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Smith RJH and Stephens K: GeneReviews (R). Seattle (WA): University of Washington; 1993

52 

Pierre SC, Häusler J, Birod K, Geisslinger G and Scholich K: PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. EMBO J. 23:3031–3040. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Hebbar N, Shrestha-Bhattarai T and Rangnekar VM: Cancer-selective apoptosis by tumor suppressor par-4. Adv Exp Med Biol. 818:155–166. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Hutten S, Walde S, Spillner C, Hauber J and Kehlenbach RH: The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J Cell Sci. 122:1100–1110. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Wälde S, Thakar K, Hutten S, Spillner C, Nath A, Rothbauer U, Wiemann S and Kehlenbach RH: The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner. Traffic. 13:218–233. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Tatsumi K, Sou YS, Tada N, Nakamura E, Iemura S, Natsume T, Kang SH, Chung CH, Kasahara M, Kominami E, et al: A novel type of E3 ligase for the Ufm1 conjugation system. J Biol Chem. 285:5417–5427. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Wu J, Lei G, Mei M, Tang Y and Li H: A novel C53/LZAP-interacting protein regulates stability of C53/LZAP and DDRGK domain-containing Protein 1 (DDRGK1) and modulates NF-kappaB signaling. J Biol Chem. 285:15126–15136. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Kim CH, Nam HS, Lee EH, Han SH, Cho HJ, Chung HJ, Lee NS, Choi SJ, Kim H, Ryu JS, et al: Overexpression of a novel regulator of p120 catenin, NLBP, promotes lung adenocarcinoma proliferation. Cell Cycle. 12:2443–2453. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Wang L, Li X, Song YM, Wang B, Zhang FR, Yang R, Wang HQ and Zhang GJ: Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway. Mol Med Rep. 12:609–614. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Kim SM, Lee SY, Cho JS, Son SM, Choi SS, Yun YP, Yoo HS, Yoon DY, Oh KW, Han SB and Hong JT: Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol. 631:1–9. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Lorain S, Quivy JP, Monier-Gavelle F, Scamps C, Lécluse Y, Almouzni G and Lipinski M: Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol Cell Biol. 18:5546–5556. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Papageorgio C, Brachmann R, Zeng J, Culverhouse R, Zhang W and McLeod H: MAGED2: A novel p53-dissociator. Int J Oncol. 31:1205–1211. 2007.PubMed/NCBI

63 

Tseng HY, Chen LH, Ye Y, Tay KH, Jiang CC, Guo ST, Jin L, Hersey P and Zhang XD: The melanoma-associated antigen MAGE-D2 suppresses TRAIL receptor 2 and protects against TRAIL-induced apoptosis in human melanoma cells. Carcinogenesis. 33:1871–1881. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Redpath NT, Price NT, Severinov KV and Proud CG: Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem. 213:689–699. 1993. View Article : Google Scholar : PubMed/NCBI

65 

Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C and Rider M: Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol. 12:1419–1423. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zou M, Wang J, Gao J, Han H and Fang Y: Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells. Oncol Lett 15: 2889-2898, 2018.
APA
Zou, M., Wang, J., Gao, J., Han, H., & Fang, Y. (2018). Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells. Oncology Letters, 15, 2889-2898. https://doi.org/10.3892/ol.2017.7654
MLA
Zou, M., Wang, J., Gao, J., Han, H., Fang, Y."Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells". Oncology Letters 15.3 (2018): 2889-2898.
Chicago
Zou, M., Wang, J., Gao, J., Han, H., Fang, Y."Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells". Oncology Letters 15, no. 3 (2018): 2889-2898. https://doi.org/10.3892/ol.2017.7654
Copy and paste a formatted citation
x
Spandidos Publications style
Zou M, Wang J, Gao J, Han H and Fang Y: Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells. Oncol Lett 15: 2889-2898, 2018.
APA
Zou, M., Wang, J., Gao, J., Han, H., & Fang, Y. (2018). Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells. Oncology Letters, 15, 2889-2898. https://doi.org/10.3892/ol.2017.7654
MLA
Zou, M., Wang, J., Gao, J., Han, H., Fang, Y."Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells". Oncology Letters 15.3 (2018): 2889-2898.
Chicago
Zou, M., Wang, J., Gao, J., Han, H., Fang, Y."Phosphoproteomic analysis of the antitumor effects of ginsenoside Rg3 in human breast cancer cells". Oncology Letters 15, no. 3 (2018): 2889-2898. https://doi.org/10.3892/ol.2017.7654
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team