|
1
|
Pollard TD and Cooper JA: Actin and
actin-binding proteins. A critical evaluation of mechanisms and
functions. Annu Rev Biochem. 55:987–1035. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
dos Remedios CG, Chhabra D, Kekic M,
Dedova IV, Tsubakihara M, Berry DA and Nosworthy NJ: Actin binding
proteins: Regulation of cytoskeletal microfilaments. Physiol Rev.
83:433–473. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hartwig JH, Tyler J and Stossel TP:
Actin-binding protein promotes the bipolar and perpendicular
branching of actin filaments. J Cell Biol. 87:841–848. 1980.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hall A: Rho GTPases and the actin
cytoskeleton. Science. 279:509–514. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Amann KJ and Pollard TD: Cellular
regulation of actin network assembly. Curr Biol. 10:R728–R730.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Vasioukhin V, Bauer C, Yin M and Fuchs E:
Directed actin polymerization is the driving force for epithelial
cell-cell adhesion. Cell. 100:209–219. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Winder SJ and Ayscough KR: Actin-binding
proteins. J Cell Sci. 118:651–654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pollard TD and Cooper JA: Actin, a central
player in cell shape and movement. Science. 326:1208–1212.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Weston L, Coutts AS and La Thangue NB:
Actin nucleators in the nucleus: An emerging theme. J Cell Sci.
125:3519–3527. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fairley EA, Kendrick-Jones J and Ellis JA:
The Emery-Dreifuss muscular dystrophy phenotype arises from
aberrant targeting and binding of emerin at the inner nuclear
membrane. J Cell Sci. 112:2571–2582. 1999.PubMed/NCBI
|
|
11
|
Tse WT, Tang J, Jin O, Korsgren C, John
KM, Kung AL, Gwynn B, Peters LL and Lux SE: A new spectrin, beta
IV, has a major truncated isoform that associates with
promyelocytic leukemia protein nuclear bodies and the nuclear
matrix. J Biol Chem. 276:23974–23985. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Castano E, Philimonenko VV, Kahle M,
Fukalová J, Kalendová A, Yildirim S, Dzijak R, Dingová-Krásna H and
Hozák P: Actin complexes in the cell nucleus: New stones in an old
field. Histochem Cell Biol. 133:607–626. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kristo I, Bajusz I, Bajusz C, Borkuti P
and Vilmos P: Actin, actin-binding proteins and actin-related
proteins in the nucleus. Histochem Cell Biol. 145:373–388. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hofmann WA: Cell and molecular biology of
nuclear actin. Int Rev Cell Mol Biol. 273:219–263. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
de Lanerolle P and Serebryannyy L: Nuclear
actin and myosins: Life without filaments. Nat Cell Biol.
13:1282–1288. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gettemans J, Van Impe K, Delanote V,
Hubert T, Vandekerckhove J and De Corte V: Nuclear actin-binding
proteins as modulators of gene transcription. Traffic. 6:847–857.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rando OJ, Zhao K and Crabtree GR:
Searching for a function for nuclear actin. Trends Cell Biol.
10:92–97. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bettinger BT, Gilbert DM and Amberg DC:
Actin up in the nucleus. Nat Rev Mol Cell Biol. 5:410–415. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Blessing CA, Ugrinova GT and Goodson HV:
Actin and ARPs: Action in the nucleus. Trends Cell Biol.
14:435–442. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Miralles F and Visa N: Actin in
transcription and transcription regulation. Curr Opin Cell Biol.
18:261–266. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zheng B, Han M, Bernier M and Wen JK:
Nuclear actin and actin-binding proteins in the regulation of
transcription and gene expression. FEBS J. 276:2669–2685. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Philimonenko VV, Zhao J, Iben S, Dingová
H, Kyselá K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozák
P and Grummt I: Nuclear actin and myosin I are required for RNA
polymerase I transcription. Nat Cell Biol. 6:1165–1172. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hofmann WA, Stojiljkovic L, Fuchsova B,
Vargas GM, Mavrommatis E, Philimonenko V, Kysela K, Goodrich JA,
Lessard JL, Hope TJ, et al: Actin is part of pre-initiation
complexes and is necessary for transcription by RNA polymerase II.
Nat Cell Biol. 6:1094–1101. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hu P, Wu S and Hernandez N: A role for
beta-actin in RNA polymerase III transcription. Genes Dev.
18:3010–3015. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Miyamoto K and Gurdon JB: Transcriptional
regulation and nuclear reprogramming: Roles of nuclear actin and
actin-binding proteins. Cell Mol Life Sci. 70:3289–3302. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ting HJ, Yeh S, Nishimura K and Chang C:
Supervillin associates with androgen receptor and modulates its
transcriptional activity. Proc Natl Acad Sci USA. 99:pp. 661–666.
2002; View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Nishimura K, Ting HJ, Harada Y, Tokizane
T, Nonomura N, Kang HY, Chang HC, Yeh S, Miyamoto H, Shin M, et al:
Modulation of androgen receptor transactivation by gelsolin: A
newly identified androgen receptor coregulator. Cancer Res.
63:4888–4894. 2003.PubMed/NCBI
|
|
28
|
Yang Z, Chang YJ, Miyamoto H, Ni J, Niu Y,
Chen Z, Chen YL, Yao JL, di Sant'Agnese PA and Chang C: Transgelin
functions as a suppressor via inhibition of ARA54-enhanced androgen
receptor transactivation and prostate cancer cell growth. Mol
Endocrinol. 21:343–358. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Baek SH, Ohgi KA, Nelson CA, Welsbie D,
Chen C, Sawyers CL, Rose DW and Rosenfeld MG: Ligand-specific
allosteric regulation of coactivator functions of androgen receptor
in prostate cancer cells. Proc Natl Acad Sci USA. 103:pp.
3100–3105. 2006; View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang F, Liu XQ, Li H, Liang KN, Miner JN,
Hong M, Kallel EA, van Oeveren A, Zhi L and Jiang T: Structure of
the ligand-binding domain (LBD) of human androgen receptor in
complex with a selective modulator LGD2226. Acta Crystallogr Sect F
Struct Biol Cryst Commun. 62:1067–1071. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Won Jeong K, Chodankar R, Purcell DJ,
Bittencourt D and Stallcup MR: Gene-specific patterns of
coregulator requirements by estrogen receptor-alpha in breast
cancer cells. Mol Endocrinol. 26:955–966. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jeong KW: Flightless I (Drosophila)
homolog facilitates chromatin accessibility of the estrogen
receptor α target genes in MCF-7 breast cancer cells. Biochem
Biophys Res Commun. 446:608–613. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Khurana S: Structure and function of
villinAspects of the Cytoskeleton. Khurana S: Elsevier; New York:
pp. 89–1159. 2006, View Article : Google Scholar
|
|
34
|
Patnaik S, George SP, Pham E, Roy S, Singh
K, Mariadason JM and Khurana S: By moonlighting in the nucleus,
villin regulates epithelial plasticity. Mol Biol Cell. 27:535–548.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shillingford NM, Calicchio ML, Teot LA,
Boyd T, Kurek KC, Goldsmith JD, Bousvaros A, Perez-Atayde AR and
Kozakewich HP: Villin immunohistochemistry is a reliable method for
diagnosing microvillus inclusion disease. Am J Surg Pathol.
39:245–250. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yang Z: The utility of villin and
mammaglobin in the differential diagnosis between intrahepatic
cholangiocarcinoma and breast cancer. Appl Immunohistochem Mol
Morphol. 23:19–25. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Khurana S, Chakraborty S, Cheng X, Su YT
and Kao HY: The actin-binding protein, actinin alpha 4 (ACTN4), is
a nuclear receptor coactivator that promotes proliferation of MCF-7
breast cancer cells. J Biol Chem. 286:1850–1859. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jasavala R, Martinez H, Thumar J, Andaya
A, Gingras AC, Eng JK, Aebersold R, Han DK and Wright ME:
Identification of putative androgen receptor interaction protein
modules: Cytoskeleton and endosomes modulate androgen receptor
signaling in prostate cancer cells. Mol Cell Proteomics. 6:252–271.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhao X, Hsu KS, Lim JH, Bruggeman LA and
Kao HY: α-Actinin 4 potentiates nuclear factor
κ-light-chain-enhancer of activated B-cell (NF-κB) activity in
podocytes independent of its cytoplasmic actin binding function. J
Biol Chem. 290:338–349. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Biswas DK, Shi Q, Baily S, Strickland I,
Ghosh S, Pardee AB and Iglehart JD: NF-kappa B activation in human
breast cancer specimens and its role in cell proliferation and
apoptosis. Proc Natl Acad Sci USA. 101:pp. 10137–10142. 2004;
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chakraborty S, Reineke EL, Lam M, Li X,
Liu Y, Gao C, Khurana S and Kao HY: Alpha-actinin 4 potentiates
myocyte enhancer factor-2 transcription activity by antagonizing
histone deacetylase 7. J Biol Chem. 281:35070–35080. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hsu KS and Kao HY: Alpha-actinin 4 and
tumorigenesis of breast cancer. Vitam Horm. 93:323–351. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hara T, Honda K, Shitashige M, Ono M,
Matsuyama H, Naito K, Hirohashi S and Yamada T: Mass spectrometry
analysis of the native protein complex containing actinin-4 in
prostate cancer cells. Mol Cell Proteomics. 6:479–491. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yamamoto S, Tsuda H, Honda K, Kita T,
Takano M, Tamai S, Inazawa J, Yamada T and Matsubara O: Actinin-4
expression in ovarian cancer: A novel prognostic indicator
independent of clinical stage and histological type. Mod Pathol.
20:1278–1285. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kikuchi S, Honda K, Tsuda H, Hiraoka N,
Imoto I, Kosuge T, Umaki T, Onozato K, Shitashige M, Yamaguchi U,
et al: Expression and gene amplification of actinin-4 in invasive
ductal carcinoma of the pancreas. Clin Cancer Res. 14:5348–5356.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Honda K: The biological role of actinin-4
(ACTN4) in malignant phenotypes of cancer. Cell Biosci. 5:412015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Savoy RM and Ghosh PM: The dual role of
filamin A in cancer: Can't live with (too much of) it, can't live
without it. Endocr Relat Cancer. 20:R341–R356. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Deng W, Lopez-Camacho C, Tang JY,
Mendoza-Villanueva D, Maya-Mendoza A, Jackson DA and Shore P:
Cytoskeletal protein filamin A is a nucleolar protein that
suppresses ribosomal RNA gene transcription. Proc Natl Acad Sci
USA. 109:pp. 1524–1529. 2012; View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Loy CJ, Sim KS and Yong EL: Filamin-A
fragment localizes to the nucleus to regulate androgen receptor and
coactivator functions. Proc Natl Acad Sci USA. 100:pp. 4562–4567.
2003; View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lawson D, Harrison M and Shapland C:
Fibroblast transgelin and smooth muscle SM22alpha are the same
protein, the expression of which is down-regulated in many cell
lines. Cell Motil Cytoskeleton. 38:250–257. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shields JM, Rogers-Graham K and Der CJ:
Loss of transgelin in breast and colon tumors and in RIE-1 cells by
Ras deregulation of gene expression through Raf-independent
pathways. J Biol Chem. 277:9790–9799. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sitek B, Lüttges J, Marcus K, Klöppel G,
Schmiegel W, Meyer HE, Hahn SA and Stühler K: Application of
fluorescence difference gel electrophoresis saturation labelling
for the analysis of microdissected precursor lesions of pancreatic
ductal adenocarcinoma. Proteomics. 5:2665–2679. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mikuriya K, Kuramitsu Y, Ryozawa S,
Fujimoto M, Mori S, Oka M, Hamano K, Okita K, Sakaida I and
Nakamura K: Expression of glycolytic enzymes is increased in
pancreatic cancerous tissues as evidenced by proteomic profiling by
two-dimensional electrophoresis and liquid chromatography-mass
spectrometry/mass spectrometry. Int J Oncol. 30:849–855.
2007.PubMed/NCBI
|
|
54
|
Huang Q, Huang Q, Chen W, Wang L, Lin W,
Lin J and Lin X: Identification of transgelin as a potential novel
biomarker for gastric adenocarcinoma based on proteomics
technology. J Cancer Res Clin Oncol. 134:1219–1227. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sun X, Zhang H, Luo L, Zhong K, Ma Y, Fan
L, Fu D and Wan L: Comparative proteomic profiling identifies
potential prognostic factors for human clear cell renal cell
carcinoma. Oncol Rep. 36:3131–3138. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhou H, Zhang Y, Chen Q and Lin Y: AKT and
JNK signaling pathways increase the metastatic potential of
colorectal cancer cells by altering transgelin expression. Dig Dis
Sci. 61:1091–1097. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lin Y, Buckhaults PJ, Lee JR, Xiong H,
Farrell C, Podolsky RH, Schade RR and Dynan WS: Association of the
actin-binding protein transgelin with lymph node metastasis in
human colorectal cancer. Neoplasia. 11:864–873. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhou HM, Fang YY, Weinberger PM, Ding LL,
Cowell JK, Hudson FZ, Ren M, Lee JR, Chen QK, Su H, et al:
Transgelin increases metastatic potential of colorectal cancer
cells in vivo and alters expression of genes involved in cell
motility. BMC Cancer. 16:552016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yuan Y and Shen Z: Interaction with BRCA2
suggests a role for filamin-1 (hsFLNa) in DNA damage response. J
Biol Chem. 276:48318–48324. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yue J, Huhn S and Shen Z: Complex roles of
filamin-A mediated cytoskeleton network in cancer progression. Cell
Biosci. 3:72013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Velkova A, Carvalho MA, Johnson JO,
Tavtigian SV and Monteiro AN: Identification of Filamin A as a
BRCA1-interacting protein required for efficient DNA repair. Cell
cycle. 9:1421–1433. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Meng X, Yuan Y, Maestas A and Shen Z:
Recovery from DNA damage-induced G2 arrest requires actin-binding
protein filamin-A/actin-binding protein 280. J Biol Chem.
279:6098–6105. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yue J, Wang Q, Lu H, Brenneman M, Fan F
and Shen Z: The cytoskeleton protein filamin-A is required for an
efficient recombinational DNA double strand break repair. Cancer
Res. 69:7978–7985. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sur I, Neumann S and Noegel AA: Nesprin-1
role in DNA damage response. Nucleus. 5:173–191. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rashmi RN, Eckes B, Glöckner G, Groth M,
Neumann S, Gloy J, Sellin L, Walz G, Schneider M, Karakesisoglou I,
et al: The nuclear envelope protein Nesprin-2 has roles in cell
proliferation and differentiation during wound healing. Nucleus.
3:172–186. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kelkar P, Walter A, Papadopoulos S, Mroß
C, Munck M, Peche VS and Noegel AA: Nesprin-2 mediated nuclear
trafficking and its clinical implications. Nucleus. 6:479–489.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Matsumoto A, Hieda M, Yokoyama Y, Nishioka
Y, Yoshidome K, Tsujimoto M and Matsuura N: Global loss of a
nuclear lamina component, lamin A/C, and LINC complex components
SUN1, SUN2 and nesprin-2 in breast cancer. Cancer Med. 4:1547–1557.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Neumann S and Noegel AA: Nesprins in cell
stability and migration. Adv Exp Med Biol. 773:491–504. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cartwright S and Karakesisoglou I:
Nesprins in health and disease. Semin Cell Dev Biol. 29:169–179.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sjöblom T, Jones S, Wood LD, Parsons DW,
Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al:
The consensus coding sequences of human breast and colorectal
cancers. Science. 314:268–274. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chittenden TW, Howe EA, Culhane AC,
Sultana R, Taylor JM, Holmes C and Quackenbush J: Functional
classification analysis of somatically mutated genes in human
breast and colorectal cancers. Genomics. 91:508–511. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Stransky N, Egloff AM, Tward AD, Kostic
AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C,
McKenna A, et al: The mutational landscape of head and neck
squamous cell carcinoma. Science. 333:1157–1160. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang P, Sridharan D and Lambert MW:
Nuclear α spectrin differentially affects monoubiquitinated versus
non-ubiquitinated FANCD2 function after DNA interstrand cross-link
damage. J Cell Biochem. 117:671–683. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Almuzzaini B, Sarshad AA, Farrants AK and
Percipalle P: Nuclear myosin 1 contributes to a chromatin landscape
compatible with RNA polymerase II transcription activation. Bmc
Biol. 13:352015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Savoy RM, Chen L, Siddiqui S, Melgoza FU,
Durbin-Johnson B, Drake C, Jathal MK, Bose S, Steele TM, Mooso BA,
et al: Transcription of Nrdp1 by the androgen receptor is regulated
by nuclear filamin A in prostate cancer. Endocr Relat Cancer.
22:369–386. 2015. View Article : Google Scholar : PubMed/NCBI
|