|
1
|
Meadus WJ, Turner TD, Dugan ME, Aalhus JL,
Duff P, Rolland D, Uttaro B and Gibson LL: Fortification of pork
loins with docosahexaenoic acid (DHA) and its effect on flavour. J
Anim Sci Biotechnol. 4:462013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Opperman M, Marais de W and Spinnler
Benade AJ: Analysis of omega-3 fatty acid content of South African
fish oil supplements. Cardiovasc J Afr. 22:324–329. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
DeSantis C, Ma J, Bryan L and Jemal A:
Breast cancer statistics, 2013. CA Cancer J Clin. 64:52–62. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Murff HJ, Shu XO, Li H, Yang G, Wu X, Cai
H, Wen W, Gao YT and Zheng W: Dietary polyunsaturated fatty acids
and breast cancer risk in Chinese women: A prospective cohort
study. Int J Cancer. 128:1434–1441. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Blanckaert V, Kerviel V, Lépinay A,
Joubert-Durigneux V, Hondermarck H and Chénais B: Docosahexaenoic
acid inhibits the invasion of MDA-MB-231 breast cancer cells
through upregulation of cytokeratin-1. Int J Oncol. 46:2649–2955.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu J and Ma DW: The role of n-3
polyunsaturated fatty acids in the prevention and treatment of
breast cancer. Nutrients. 6:5184–5223. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mouradian M, Kikawa KD, Dranka BP, Komas
SM, Kalyanaraman B and Pardini RS: Docosahexaenoic acid attenuates
breast cancer cell metabolism and the Warburg phenotype by
targeting bioenergetic function. Mol Carcinog. 54:810–820. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Xue M, Wang Q, Zhao J, Dong L, Ge Y, Hou
L, Liu Y and Zheng Z: Docosahexaenoic acid inhibited the
Wnt/β-catenin pathway and suppressed breast cancer cells in vitro
and in vivo. J Nutr Biochem. 25:104–110. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rahman MM, Veigas JM, Williams PJ and
Fernandes G: DHA is a more potent inhibitor of breast cancer
metastasis to bone and related osteolysis than EPA. Breast Cancer
Res Treat. 141:341–352. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lijing G, Xingyuan Q, Zhuping S, Jialing
G, Bing L, et al: Research progress in the tumor suppression
mechanisms of marine polyunsaturated fatty acids DHA. Sci Technol
Food Industry. 22:385–391. 2013.
|
|
11
|
Klaunig JE and Kamendulis LM: The role of
oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol.
44:239–267. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Khan MA, Tania M, Zhang DZ and Chen HC:
Antioxidant enzymes and cancer. Chin J Cancer Res. 22:87–92. 2010.
View Article : Google Scholar
|
|
13
|
Arsova-Sarafinovska Z, Eken A, Matevska N,
Erdem O, Sayal A, Savaser A, Banev S, Petrovski D, Dzikova S,
Georgiev V, et al: Increased oxidative/nitrosative stress and
decreased antioxidant enzyme activities in prostate cancer. Clin
Biochem. 42:1228–1235. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
De Craemer D, Pauwels M, Hautekeete M and
Roels F: Alterations of hepatocellular peroxisomes in patients with
cancer. Catalase cytochemistry and morphometry. Cancer.
71:3851–3858. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Elchuri S, Oberley TD, Qi W, Eisenstein
RS, Jackson Roberts L, Van Remmen H, Epstein CJ and Huang TT:
CuZnSOD deficiency leads to persistent and widespread oxidative
damage and hepatocarcinogenesis later in life. Oncogene.
24:367–380. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jeon SH, Park JH and Chang SG: Expression
of antioxidant enzymes (Catalase, superoxide dismutase, and
glutathione peroxidase) in human bladder cancer. Korean J Urol.
48:921–926. 2007. View Article : Google Scholar
|
|
17
|
Kasapović J, Pejić S, Todorović A,
Stojiljković V and Pajović SB: Antioxidant status and lipid
peroxidation in the blood of breast cancer patients of different
ages. Cell Biochem Funct. 26:723–730. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sharma A, Tripathi M, Satyam A and Kumar
L: Study of antioxidant levels in patients with multiple myeloma.
Leuk Lymphoma. 50:809–815. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chung-man Ho J, Zheng S, Comhair SA,
Farver C and Erzurum SC: Differential expression of manganese
superoxide dismutase and catalase in lung cancer. Cancer Res.
61:8578–8585. 2001.PubMed/NCBI
|
|
20
|
Khan MA, Chen HC, Wan XX, Tania M, Xu AH,
Chen FZ and Zhang DZ: Regulatory effects of resveratrol on
antioxidant enzymes: A mechanism of growth inhibition and apoptosis
induction in cancer cells. Mol Cells. 35:219–225. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Xingyuan Q, Lijing G, Weijie C, Mengyi S,
Bing L, et al: Optimized detection methods of fatty acids in the
Bohai seaweed by response surface method. Feed Res. 1:65–70.
2015.
|
|
22
|
Ge M, Chi X, Zhang A, Luo G, Sun G, Xie H
and Hei Z: Intestinal NF-E2-related factor-2 expression and
antioxidant activity changes in rats undergoing orthotopic liver
autotransplantation. Oncol Lett. 6:1307–1312. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yagi K: Simple assay for the level of
total lipid peroxides in serum or plasma. Methods Mol Biol.
108:101–106. 1998.PubMed/NCBI
|
|
24
|
Gutiérrez-Salinas J, García-Ortíz L,
Morales González JA, Hernández-Rodríguez S, Ramírez-García S,
Núñez-Ramos NR and Madrigal-Santillán E: In vitro effect of sodium
fluoride on malondialdehyde concentration and on superoxide
dismutase, catalase, and glutathione peroxidase in human
erythrocytes. ScientificWorldJournal. 2013:8647182013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Johnson K, Bruder ED and Raff H:
Adrenocortical control in the neonatal rat: ACTH- and
cAMP-independent corticosterone production during hypoxia. Physiol
Rep. 1:e000542013. View
Article : Google Scholar : PubMed/NCBI
|
|
26
|
Thumova M, Pech V, Froehlich O, Agazatian
D, Wang X, Verlander JW, Kim YH and Wall SM: Pendrin protein
abundance in the kidney is regulated by nitric oxide and cAMP. Am J
Physiol Renal Physiol. 303:F812–F820. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Geng L and Li Q: Expression and function
of heregulin-alpha and its receptors in mammary gland of mouse. Sci
China Life Sci. 53:1015–1024. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Geng L, Zhou W, Qu X, Chen W, Li Y, Liu C,
Sun J, Yu X, Wang H, Zhang Z, et al: Optimization of the
preparation of pectin from aloe using a box-behnken design.
Carbohydrate Polymers. 105:193–199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ghoneum MH, Badr El-Din NK, Abdel Fattah
SM, Pan D and Tolentino L: Hydroferrate fluid, MRN-100, provides
protection against chemical-induced gastric and esophageal cancer
in Wistar rats. Int J Biol Sci. 11:295–303. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Deepalakshmi K, Mirunalini S, Krishnaveni
M and Arulmozhi V: In vitro and in vivo antioxidant potentials of
an ethanolic extract of Ganodermalucidum in rat mammary
carcinogenesis. Chin J Nat Med. 11:621–627. 2013.PubMed/NCBI
|
|
31
|
Periyasamy K, Baskaran K, Ilakkia A,
Vanitha K, Selvaraj S and Sakthisekaran D: Antitumor efficacy of
tangeretin by targeting the oxidative stress mediated on
7,12-dimethylbenz (a) anthracene-induced proliferative breast
cancer in Sprague-Dawley rats. Cancer Chemother Pharmacol.
75:263–272. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Giorgio M, Trinei M, Migliaccio E and
Pelicci PG: Hydrogen peroxide: A metabolic by-product or a common
mediator of ageing signals? Nat Rev Mol Cell Biol. 8:722–728. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kowaltowski AJ, Castilho RF and Vercesi
AE: Mitochondrial permeability transition and oxidative stress.
FEBS Lett. 495:12–15. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Martinez-Useros J and Garcia-Foncillas J:
Obesity and colorectal cancer: Molecular features of adipose
tissue. J Transl Med. 14:212016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Piazza GA, Thompson WJ, Pamukcu R, Alila
HW, Whitehead CM, et al: Exisulind, a novel proapoptotic drug,
inhibits rat urinary bladder tumorigenesis. Cancer Res.
2001.61:3961–3968. PubMed/NCBI
|
|
36
|
Kool M, de Haas M, Scheffer GL, Scheper
RJ, van Eijk MJ, et al: Analysis of expression of cMOAT (MRP2),
MRP3, MRP4, and MRP5, homologues of the multidrug
resistance-associated protein gene (MRP1), in human cancer cell
lines. Cancer Res. 1997.57:3537–3547. PubMed/NCBI
|
|
37
|
Drees M, Zimmermann R and Eisenbrand G.:
3′,5′-Cyclic nucleotide phosphodiesterase in tumor cells as
potential target for tumor growth inhibition. Cancer Res.
1993.53:3058–3061. PubMed/NCBI
|
|
38
|
Ciardiello F, Pepe S, Bianco C,
Baldassarre G, Ruggiero A, et al: Down-regulation of RI alpha
subunit of cAMP-dependent protein kinase induces growth inhibition
of human mammary epithelial cells transformed by c-Ha-ras and
c-erbB-2 proto-oncogenes. Int. J. Cancer. 1993.53:438–443.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Singer AL, Sherwin RP, Dunn AS and
Appleman M.M.: Cyclic nucleotide phosphodiesterases in neoplastic
and nonneoplastic human mammary tissues. Cancer Res. 1976.36:60–66.
PubMed/NCBI
|
|
40
|
Cohen LA, Straka D and Chan PC: Cyclic
nucleotide phosphodiesterase activity in normal and neoplastic rat
mammary cells grown in monolayer culture. Cancer Res.
1976.36:2007–2012. PubMed/NCBI
|
|
41
|
Tinsley H.N..Gary B.D..Keeton A.B..Zhang
W..Abadi A.H..Reynolds R.C..Piazza G.A.: Sulindac sulfide
selectively inhibits growth and induces apoptosis of human breast
tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic
GMP, and activation of protein kinase G. Mol. Cancer Ther.
2009.8:3331–3340. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Deguchi A and Thompson WJ: Weinstein IB
Activation of protein kinase G is sufficient to induce apoptosis
and inhibit cell migration in colon cancer cells. Cancer Res.
2004.64:3966–3973. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Carlson CC, Smithers SL, Yeh KA, Burnham
LL and Dransfield DT: Protein kinase A regulatory subunits in colon
cancer. Neoplasia. 1999.1:373–378. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tinsley H.N..Gary B.D..Keeton A.B..Zhang
W..Abadi A.H..Reynolds R.C..Piazza G.A.: Sulindac sulfide
selectively inhibits growth and induces apoptosis of human breast
tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic
GMP, and activation of protein kinase G. Mol. Cancer Ther.
2009.8:3331–3340. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
DeRubertis FR and Craven PA: Sequential
alterations in the hepatic content and metabolism of cyclic AMP and
cyclic GMP induced by DL-ethionine: Evidence for malignant
transformation of liver with a sustained increase in cyclic AMP.
Metabolism. 1976.25:1611–1625. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lerner A and Epstein PM: Cyclic nucleotide
phosphodiesterases as targets for treatment of haematological
malignancies. Biochem. J. 2006.393:21–41. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang L, Murray F, Zahno A, Kanter JR,
Chou D, et al: Cyclic nucleotide phosphodiesterase profiling
reveals increased expression of phosphodiesterase 7B in chronic
lymphocytic leukemia. Proc. Natl. Acad. Sci. USA. 2008; 105:pp.
19532–19537. View Article : Google Scholar
|
|
48
|
Marko D, Pahlke G, Merz KH and Eisenbrand
G: Cyclic 3′,5′-nucleotide phosphodiesterases: Potential targets
for anticancer therapy. Chem. Res. Toxicol. 2000.13:944–948.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Aleksijevic A, Lang JM, Giron C, Stoclet
JC, Mayer S, et al: Alterations of peripheral blood lymphocyte
cyclic AMP and cyclic GMP in untreated patients with hodgkin's
disease. Clin. Immunol. Immunopathol. 1983.26:398–405. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Aleksijevic A, Lugnier C, Giron C, Mayer
S, Stoclet JC, et al: Cyclic AMP and cyclic GMP phosphodiesterase
activities in Hodgkin's disease lymphocytes. Int. J.
Immunopharmacol. 1987.9:525–531. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Heinonen PK and Metsa-Ketela T:
Prostanoids and cyclic nucleotides in malignant and benign ovarian
tumors. Med. Oncol. Tumor Pharmacother. 1988.5:11–15. PubMed/NCBI
|
|
52
|
Pertuit M, Barlier A, Enjalbert A and
Gérard C: Signalling pathway alterations in pituitary adenomas:
Involvement of Gsalpha, cAMP and mitogen-activated protein kinases.
J. Neuroendocrinol. 2009.21:869–877. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Michalides R..Griekspoor A..Balkenende
A..Verwoerd D..Janssen L..Jalink K..Floore A..Velds A..van't Veer
L..Neefjes J.: Tamoxifen resistance by a conformational arrest of
the estrogen receptor alpha after PKA activation in breast cancer.
Cancer Cell. 2004.5:597–605. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shacter E and Weitzman SA: Chronic
inflammation and cancer. Oncology (Williston Park). 16:217–26,
229–232. 2002.PubMed/NCBI
|
|
55
|
Khansari N, Shakiba Y and Mahmoudi M:
Chronic inflammation and oxidative stress as a major cause of
age-related diseases and cancer. Recent Pat Inflamm Allergy Drug
Discov. 3:73–80. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Toyoshi I, Noriyuki S and Yasutaka M:
Bilirubin as an important physiological modulator of oxidative
stress and chronic inflammation in metabolic syndrome and diabetes:
A new aspect on old molecule. Diabetology International. 7:338–341.
2016. View Article : Google Scholar
|
|
57
|
Ahmed A, Redmond HP and Wang JH: Links
between Toll-like receptor 4 and breast cancer. Oncoimmunology.
2:e229452013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ahmed A, Wang JH and Redmond HP: Silencing
of TLR4 increases tumor progression and lung metastasis in a murine
model of breast cancer. Ann Surg Oncol. 20 Suppl 3:S389–S396. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mai CW, Kang YB and Pichika MR: Should a
Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to
treat cancer? TLR-4: Its expression and effects in the ten most
common cancers. Onco Targets Ther. 6:1573–1587. 2013.PubMed/NCBI
|
|
60
|
Ghochikyan A, Pichugin A, Bagaev A,
Davtyan A, Hovakimyan A, Tukhvatulin A, Davtyan H, Shcheblyakov D,
Logunov D, Chulkina M, et al: Targeting TLR-4 with a novel
pharmaceutical grade plant derived agonist, Immunomax®,
as a therapeutic strategy for metastatic breast cancer. J Transl
Med. 12:3222014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yang H, Wang B, Wang T, Xu L, He C, Wen H,
Yan J, Su H and Zhu X: Toll-like receptor 4 prompts human breast
cancer cells invasiveness via lipopolysaccharide stimulation and is
overexpressed in patients with lymph node metastasis. PLoS One.
9:e1099802014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Delerive P, De Bosscher K, Besnard S,
VandenBerghe W, Peters JM, Gonzalez FJ, Fruchart JC, Tedgui A,
Haegeman G and Staels B: Peroxisome proliferator-activated receptor
a negatively regulates the vascular inflammatory gene response by
negative cross-talk with transcription factors NF-kappaB and AP-1.
J Biol Chem. 274:32048–32054. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Peters JM, Shah YM and Gonzalez FJ: The
role of peroxisome proliferator-activated receptors in
carcinogenesis and chemoprevention. Nat Rev Cancer. 12:181–195.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Takeda S, Ikeda E, Su S, Harada M, Okazaki
H, Yoshioka Y, Nishimura H, Ishii H, Kakizoe K, Taniguchi A, et al:
Δ (9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene
expression: Possible involvement of induced levels of PPARα in
MDA-MB-231 breast cancer cells. Toxicology. 326:18–24. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Schoonjans K, Staels B and Auwerx J: The
peroxisome proliferator activated receptors (PPARS) and their
effects on lipid metabolism and adipocyte differentiation. Biochim
Biophys Acta. 1302:93–109. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Desvergne B and Wahli W: Peroxisome
proliferator-activated receptors: Nuclear control of metabolism.
Endocr Rev. 20:649–688. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shigeto T, Yokoyama Y, Xin B and Mizunuma
H: Peroxisome proliferator-activated receptor alpha and gamma
ligands inhibit the growth of human ovarian cancer. Oncol Rep.
18:833–840. 2007.PubMed/NCBI
|
|
68
|
Drukala J, Urbanska K, Wilk A, Grabacka M,
Wybieralska E, Del Valle L, Madeja Z and Reiss K: ROS accumulation
and IGF-IR inhibition contribute to fenofibrate/PPARalpha-mediated
inhibition of glioma cell motility in vitro. Mol Cancer. 9:1592010.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Grabacka M, Plonka PM, Urbanska K and
Reiss K: Peroxisome proliferator-activated receptor alpha
activation decreases metastatic potential of melanoma cells in
vitro via down-regulation of Akt. Clin Cancer Res. 12:3028–3036.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhou J, Zhang S, Xue J, Avery J, Wu J,
Lind SE and Ding WQ: Activation of peroxisome
proliferator-activated receptor α (PPARα) suppresses
hypoxia-inducible factor-1α (HIF-1α) signaling in cancer cells. J
Biol Chem. 287:35161–35169. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yessoufou A1, Atègbo JM, Attakpa E,
Hichami A, Moutairou K, Dramane KL and Khan NA: Peroxisome
proliferator-activated receptor-alpha modulates insulin gene
transcription factors and inflammation in adipose tissues in mice.
Mol Cell Biochem. 323:101–111. 2009. View Article : Google Scholar : PubMed/NCBI
|