|
1
|
International Human Genome Sequencing
Consortium, . Finishing the euchromatic sequence of the human
genome. Nature. 431:931–945. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yamada K, Lim J, Dale JM, Chen H, Shinn P,
Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, et al: Empirical
analysis of transcriptional activity in the Arabidopsis genome.
Science. 302:842–846. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Pennisi E: Shining a light on the genome's
‘dark matter’. Science. 330:16142010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Miska EA: How microRNAs control cell
division, differentiation and death. Curr Opin Genet Devel.
15:563–568. 2005. View Article : Google Scholar
|
|
6
|
Nagano T and Fraser P: No-nonsense
functions for long noncoding RNAs. Cell. 145:178–181. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rinn JL and Chang HY: Genome regulation by
long noncoding RNAs. Ann Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Khanduja JS, Calvo IA, Joh RI, Hill IT and
Motamedi M: Nuclear noncoding RNAs and genome stability. Mol Cell.
63:7–20. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hannon GJ, Rivas FV, Murchison EP and
Steitz JA: The expanding universe of noncoding RNAs. Cold Spring
Harb Symp Quant Biol. 71:551–564. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Djebali S, Davis CA, Merkel A, Dobin A,
Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F,
et al: Landscape of transcription in human cells. Nature.
489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Takahashi K, Yan I, Haga H and Patel T:
Long noncoding RNA in liver diseases. Hepatology. 60:744–753. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Guttman M, Donaghey J, Carey BW, Garber M,
Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al:
lincRNAs act in the circuitry controlling pluripotency and
differentiation. Nature. 477:295–300. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tao H, Yang JJ and Shi KH: Non-coding RNAs
as direct and indirect modulators of epigenetic mechanism
regulation of cardiac fibrosis. Expert Opin Ther Targets.
19:707–716. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fu XD: Non-coding RNA: A new frontier in
regulatory biology. Nat Sci Rev. 1:190–204. 2014. View Article : Google Scholar
|
|
16
|
Liao B, Chen R, Lin F, Mai A, Chen J, Li
H, Xu Z and Dong S: Long noncoding RNA HOTTIP promotes endothelial
cell proliferation and migration via activation of the
Wnt/beta-catenin pathway. J Cell Biochem. 2017.
|
|
17
|
Peng JF, Zhuang YY, Huang FT and Zhang SN:
Noncoding RNAs and pancreatic cancer. World J Gastroenterol.
22:801–814. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang M and Du X: Noncoding RNAs in
gastric cancer: Research progress and prospects. World J
Gastroenterol. 22:6610–6618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Adams BD, Parsons C, Walker L, Zhang WC
and Slack FJ: Targeting noncoding RNAs in disease. J Clin Invest.
127:761–771. 2017. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shukla GC, Singh J and Barik S: MicroRNAs:
Processing, maturation, target recognition and regulatory
functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI
|
|
21
|
Marson A, Levine SS, Cole MF, Frampton GM,
Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M,
Newman J, et al: Connecting microRNA genes to the core
transcriptional regulatory circuitry of embryonic stem cells. Cell.
134:521–533. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shivdasani RA: MicroRNAs: Regulators of
gene expression and cell differentiation. Blood. 108:3646–3653.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wu SY, Lan SH and Liu HS: Autophagy and
microRNA in hepatitis B virus-related hepatocellular carcinoma.
World J Gastroenterol. 22:176–187. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang L, Yu J, Wong CC, Ling TK, Li ZJ,
Chan KM, Ren SX, Shen J, Chan RL, Lee CC, et al: Cathelicidin
protects against Helicobacter pylori colonization and the
associated gastritis in mice. Gene Ther. 20:751–760. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ,
Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, et al: MicroRNA-122
plays a critical role in liver homeostasis and
hepatocarcinogenesis. J Clin Invest. 122:2884–2897. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang
Y, Jiang JD, Sung JJ, Cheng CH and Chen Y: A small-molecule
modulator of the tumor-suppressor miR34a inhibits the growth of
hepatocellular carcinoma. Cancer Res. 74:6236–6247. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong
Q, Qin L, Wu X, Zheng Y, Yang Y, et al: Identification of miRNomes
in human liver and hepatocellular carcinoma reveals miR-199a/b-3p
as therapeutic target for hepatocellular carcinoma. Cancer Cell.
19:232–243. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang L, Yang F, Yuan JH, Yuan SX, Zhou
WP, Huo XS, Xu D, Bi HS, Wang F and Sun SH: Epigenetic activation
of the MiR-200 family contributes to H19-mediated metastasis
suppression in hepatocellular carcinoma. Carcinogenesis.
34:577–586. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Trebinjac S, Radulović R and Buljina A:
Prevalence of gonarthrosis and the duration of rehabilitation. Med
Arh. 43:179–182. 1989.(In Croatian). PubMed/NCBI
|
|
31
|
Wang C, Ren R, Hu H, Tan C, Han M, Wang X
and Zheng Y: MiR-182 is up-regulated and targeting Cebpa in
hepatocellular carcinoma. Chin J Cancer Res. 26:17–29.
2014.PubMed/NCBI
|
|
32
|
Park JK, Kogure T, Nuovo GJ, Jiang J, He
L, Kim JH, Phelps MA, Papenfuss TL, Croce CM, Patel T and
Schmittgen TD: miR-221 silencing blocks hepatocellular carcinoma
and promotes survival. Cancer Res. 71:7608–7616. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Murakami Y, Yasuda T, Saigo K, Urashima T,
Toyoda H, Okanoue T and Shimotohno K: Comprehensive analysis of
microRNA expression patterns in hepatocellular carcinoma and
non-tumorous tissues. Oncogene. 25:2537–2545. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Budhu A, Jia HL, Forgues M, Liu CG,
Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, et al:
Identification of metastasis-related microRNAs in hepatocellular
carcinoma. Hepatology. 47:897–907. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ladeiro Y, Couchy G, Balabaud C,
Bioulac-Sage P, Pelletier L, Rebouissou S and Zucman-Rossi J:
MicroRNA profiling in hepatocellular tumors is associated with
clinical features and oncogene/tumor suppressor gene mutations.
Hepatology. 47:1955–1963. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra
E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA,
et al: MicroRNA expression profiles classify human cancers. Nature.
435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xu Y, Huang J, Ma L, Shan J, Shen J, Yang
Z, Liu L, Luo Y, Yao C and Qian C: MicroRNA-122 confers sorafenib
resistance to hepatocellular carcinoma cells by targeting IGF-1R to
regulate RAS/RAF/ERK signaling pathways. Cancer Lett. 371:171–181.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Afonso MB, Rodrigues PM, Simao AL and
Castro RE: Circulating microRNAs as potential biomarkers in
non-alcoholic fatty liver disease and hepatocellular carcinoma. J
Clin Med. 5:E302016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ning X, Shi Z, Liu X, Zhang A, Han L,
Jiang K, Kang C and Zhang Q: DNMT1 and EZH2 mediated methylation
silences the microRNA-200b/a/429 gene and promotes tumor
progression. Cancer Lett. 359:198–205. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu
W, Tian Z and Zhang C: Histone deacetylase inhibitor SAHA
epigenetically regulates miR-17-92 cluster and MCM7 to upregulate
MICA expression in hepatoma. Br J Cancer. 112:112–121. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang PP, Wang XL, Zhao W, Qi B, Yang Q,
Wan HY, Shuang ZY, Liu M, Li X, Li S and Tang H: DNA
methylation-mediated repression of miR-941 enhances lysine
(K)-specific demethylase 6B expression in hepatoma cells. J Biol
Chem. 289:24724–24735. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li Y, Xu D, Bao C, Zhang Y, Chen D, Zhao
F, Ding J, Liang L, Wang Q, Liu L, et al: MicroRNA-135b, a HSF1
target, promotes tumor invasion and metastasis by regulating RECK
and EVI5 in hepatocellular carcinoma. Oncotarget. 6:2421–2433.
2015.PubMed/NCBI
|
|
43
|
Liu LL, Lu SX, Li M, Li LZ, Fu J, Hu W,
Yang YZ, Luo RZ, Zhang CZ and Yun JP: FoxD3-regulated microRNA-137
suppresses tumour growth and metastasis in human hepatocellular
carcinoma by targeting AKT2. Oncotarget. 5:5113–5124. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kojima T: Kanagawa prefectural institute
of public health. Chudoku Kenkyu. 22:266–269. 2009.(In Japanese).
PubMed/NCBI
|
|
45
|
Pantano L, Jodar M, Bak M, Ballescà JL,
Tommerup N, Oliva R and Vavouri T: The small RNA content of human
sperm reveals pseudogene-derived piRNAs complementary to
protein-coding genes. RNA. 21:1085–1095. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Girard A, Sachidanandam R, Hannon GJ and
Carmell MA: A germline-specific class of small RNAs binds mammalian
Piwi proteins. Nature. 442:199–202. 2006.PubMed/NCBI
|
|
47
|
Grivna ST, Beyret E, Wang Z and Lin H: A
novel class of small RNAs in mouse spermatogenic cells. Genes Dev.
20:1709–1714. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Czech B and Hannon GJ: One loop to rule
them all: The Ping-Pong cycle and piRNA-guided silencing. Trends
Biochem Sci. 41:324–337. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H,
Seitz H, Horwich MD, Syrzycka M, Honda BM, et al: Collapse of
germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs
in flies. Cell. 137:509–521. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
De Fazio S, Bartonicek N, Di Giacomo M,
Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright
AJ and O'Carroll D: The endonuclease activity of Mili fuels piRNA
amplification that silences LINE1 elements. Nature. 480:259–263.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Reuter M, Berninger P, Chuma S, Shah H,
Hosokawa M, Funaya C, Antony C, Sachidanandam R and Pillai RS: Miwi
catalysis is required for piRNA amplification-independent LINE1
transposon silencing. Nature. 480:264–267. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang W, Yoshikawa M, Han BW, Izumi N,
Tomari Y, Weng Z and Zamore PD: The initial uridine of primary
piRNAs does not create the tenth adenine that Is the hallmark of
secondary piRNAs. Mol Cell. 56:708–716. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Pezic D, Manakov SA, Sachidanandam R and
Aravin AA: piRNA pathway targets active LINE1 elements to establish
the repressive H3K9me3 mark in germ cells. Genes Dev. 28:1410–1428.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Itou D, Shiromoto Y, Yukiho SY, Ishii C,
Nishimura T, Ogonuki N, Ogura A, Hasuwa H, Fujihara Y,
Kuramochi-Miyagawa S and Nakano T: Induction of DNA methylation by
artificial piRNA production in male germ cells. Current Biol.
25:901–906. 2015. View Article : Google Scholar
|
|
55
|
Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang
L, Chen L, Chu ZB, Tang B, Wang K, et al: piRNA-823 contributes to
tumorigenesis by regulating de novo DNA methylation and
angiogenesis in multiple myeloma. Leukemia. 29:196–206. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ng KW, Anderson C, Marshall EA, Minatel
BC, Enfield KS, Saprunoff HL, Lam WL and Martinez VD:
Piwi-interacting RNAs in cancer: Emerging functions and clinical
utility. Mol Cancer. 15:52016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Juliano C, Wang J and Lin H: Uniting
germline and stem cells: The function of Piwi proteins and the
piRNA pathway in diverse organisms. Ann Rev Genet. 45:447–469.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Moyano M and Stefani G: piRNA involvement
in genome stability and human cancer. J Hematol Oncol. 8:382015.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Assumpção CB, Calcagno DQ, Araújo TM,
Santos SE, Santos ÂK, Riggins GJ, Burbano RR and Assumpção PP: The
role of piRNA and its potential clinical implications in cancer.
Epigenomics. 7:975–984. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kwon C, Tak H, Rho M, Chang HR, Kim YH,
Kim KT, Balch C, Lee EK and Nam S: Detection of PIWI and piRNAs in
the mitochondria of mammalian cancer cells. Biochem Biophys Res
Commun. 446:218–223. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen C, Liu J and Xu G: Overexpression of
PIWI proteins in human stage III epithelial ovarian cancer with
lymph node metastasis. Cancer Biomark. 13:315–321. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhao YM, Zhou JM, Wang LR, He HW, Wang XL,
Tao ZH, Sun HC, Wu WZ, Fan J, Tang ZY and Wang L: HIWI is
associated with prognosis in patients with hepatocellular carcinoma
after curative resection. Cancer. 118:2708–2717. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xie Y, Yang Y, Ji D, Zhang D, Yao X and
Zhang X: Hiwi downregulation, mediated by shRNA, reduces the
proliferation and migration of human hepatocellular carcinoma
cells. Mol Med Rep. 11:1455–1461. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Keam SP, Young PE, McCorkindale AL, Dang
TH, Clancy JL, Humphreys DT, Preiss T, Hutvagner G, Martin DI,
Cropley JE and Suter CM: The human Piwi protein Hiwi2 associates
with tRNA-derived piRNAs in somatic cells. Nucleic Acids Res.
42:8984–8995. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hashim A, Rizzo F, Marchese G, Ravo M,
Tarallo R, Nassa G, Giurato G, Santamaria G, Cordella A, Cantarella
C and Weisz A: RNA sequencing identifies specific PIWI-interacting
small non-coding RNA expression patterns in breast cancer.
Oncotarget. 5:9901–9910. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lu Y, Li C, Zhang K, Sun H, Tao D, Liu Y,
Zhang S and Ma Y: Identification of piRNAs in Hela cells by massive
parallel sequencing. BMB Rep. 43:635–641. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cheng J, Deng H, Xiao B, Zhou H, Zhou F,
Shen Z and Guo J: piR-823, a novel non-coding small RNA,
demonstrates in vitro and in vivo tumor suppressive activity in
human gastric cancer cells. Cancer Lett. 315:12–17. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang G, Hu H, Xue X, Shen S, Gao E, Guo
G, Shen X and Zhang X: Altered expression of piRNAs and their
relation with clinicopathologic features of breast cancer. Clin
Trans Oncol. 15:563–568. 2013. View Article : Google Scholar
|
|
69
|
Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z,
Zhou H and Li QN: piRNA, the new non-coding RNA, is aberrantly
expressed in human cancer cells. Clin Chim Acta. 412:1621–1625.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Law PT, Qin H, Ching AK, Lai KP, Co NN, He
M, Lung RW, Chan AW, Chan TF and Wong N: Deep sequencing of small
RNA transcriptome reveals novel non-coding RNAs in hepatocellular
carcinoma. J Hepatol. 58:1165–1173. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chu H, Hui G, Yuan L, Shi D, Wang Y, Du M,
Zhong D, Ma L, Tong N, Qin C, et al: Identification of novel piRNAs
in bladder cancer. Cancer Lett. 356:561–567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li PF, Chen SC, Xia T, Jiang XM, Shao YF,
Xiao BX and Guo JM: Non-coding RNAs and gastric cancer. World J
Gastroenterol. 20:5411–5419. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang H, Ren Y, Xu H, Pang D, Duan C and
Liu C: The expression of stem cell protein Piwil2 and piR-932 in
breast cancer. Surg Oncol. 22:217–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem
S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A,
Zhou Y, et al: Treatment of HCV infection by targeting microRNA. N
Engl J Med. 368:1685–1694. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Young DD, Connelly CM, Grohmann C and
Deiters A: Small molecule modifiers of microRNA miR-122 function
for the treatment of hepatitis C virus infection and hepatocellular
carcinoma. J Am Chem Soc. 132:7976–7981. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Childs-Disney JL and Disney MD: Small
molecule targeting of a MicroRNA associated with hepatocellular
carcinoma. ACS Chem Biol. 11:375–380. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lamb J: The Connectivity Map: A new tool
for biomedical research. Nat Rev Cancer. 7:54–60. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Toyoshiba H, Sawada H, Naeshiro I and
Horinouchi A: Similar compounds searching system by using the gene
expression microarray database. Toxicol Lett. 186:52–57. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kota J, Chivukula RR, O'Donnell KA,
Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P,
Torbenson M, Clark KR, et al: Therapeutic microRNA delivery
suppresses tumorigenesis in a murine liver cancer model. Cell.
137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fang F, Chang RM, Yu L, Lei X, Xiao S,
Yang H and Yang LY: MicroRNA-188-5p suppresses tumor cell
proliferation and metastasis by directly targeting FGF5 in
hepatocellular carcinoma. J Hepatol. 63:874–885. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Xiao Z, Ching Chow S, Han Li C, Chun Tang
S, Tsui SK, Lin Z and Chen Y: Role of microRNA-95 in the anticancer
activity of Brucein D in hepatocellular carcinoma. Eur J Pharmacol.
728:141–150. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Esposito T, Magliocca S, Formicola D and
Gianfrancesco F: piR_015520 belongs to Piwi-associated RNAs
regulates expression of the human melatonin receptor 1A gene. PLoS
One. 6:e227272011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li X, Wu Z, Fu X and Han W: lncRNAs:
Insights into their function and mechanics in underlying disorders.
Mutat Res Rev Mutat Res. 762:1–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bonasio R, Tu S and Reinberg D: Molecular
signals of epigenetic states. Science. 330:612–616. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Delihas N: Complexity of a small
non-protein coding sequence in chromosomal region 22q11.2: Presence
of specialized DNA secondary structures and RNA exon/intron motifs.
BMC Genomics. 16:7852015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jenkins AM, Waterhouse RM and Muskavitch
MA: Long non-coding RNA discovery across the genus anopheles
reveals conserved secondary structures within and beyond the
Gambiae complex. BMC Genomics. 16:3372015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dhamija S and Diederichs S: From junk to
master regulators of invasion: lncRNA functions in migration, EMT
and metastasis. Int J Cancer. 139:269–280. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Huang B, Song JH, Cheng Y, Abraham JM,
Ibrahim S, Sun Z, Ke X and Meltzer SJ: Long non-coding antisense
RNA KRT7-AS is activated in gastric cancers and supports cancer
cell progression by increasing KRT7 expression. Oncogene.
35:4927–4936. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zequn N, Xuemei Z, Wei L, Zongjuan M,
Yujie Z, Yanli H, Yuping Z, Xia M, Wei W, Wenjing D, et al: The
role and potential mechanisms of LncRNA-TATDN1 on metastasis and
invasion of non-small cell lung cancer. Oncotarget. 7:18219–18228.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhuang J, Lu Q, Shen B, Huang X, Shen L,
Zheng X, Huang R, Yan J and Guo H: TGFβ1 secreted by
cancer-associated fibroblasts induces epithelial-mesenchymal
transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep.
5:119242015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu YR, Tang RX, Huang WT, Ren FH, He RQ,
Yang LH, Luo DZ, Dang YW and Chen G: Long noncoding RNAs in
hepatocellular carcinoma: Novel insights into their mechanism.
World J Hepatol. 7:2781–2791. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yang X, Xie X, Xiao YF, Xie R, Hu CJ, Tang
B, Li BS and Yang SM: The emergence of long non-coding RNAs in the
tumorigenesis of hepatocellular carcinoma. Cancer Lett.
360:119–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shibata C, Otsuka M, Kishikawa T, Ohno M,
Yoshikawa T, Takata A and Koike K: Diagnostic and therapeutic
application of noncoding RNAs for hepatocellular carcinoma. World J
Hepatol. 7:1–6. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Huang JL, Zheng L, Hu YW and Wang Q:
Characteristics of long non-coding RNA and its relation to
hepatocellular carcinoma. Carcinogenesis. 35:507–514. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tang J, Zhuo H, Zhang X, Jiang R, Ji J,
Deng L, Qian X, Zhang F and Sun B: A novel biomarker Linc00974
interacting with KRT19 promotes proliferation and metastasis in
hepatocellular carcinoma. Cell Death Dis. 5:e15492014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xu WH, Zhang JB, Dang Z, Li X, Zhou T, Liu
J, Wang DS, Song WJ and Dou KF: Long non-coding RNA URHC regulates
cell proliferation and apoptosis via ZAK through the ERK/MAPK
signaling pathway in hepatocellular carcinoma. Int J Biol Sci.
10:664–676. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Shonkoff JP: Building a new
biodevelopmental framework to guide the future of early childhood
policy. Child Dev. 81:357–367. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zheng H, Yang S, Yang Y, Yuan SX, Wu FQ,
Wang LL, Yan HL, Sun SH and Zhou WP: Epigenetically silenced long
noncoding-SRHC promotes proliferation of hepatocellular carcinoma.
J Cancer Res Clin Oncol. 141:1195–1203. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yu W, Qiao Y, Tang X, Ma L, Wang Y, Zhang
X, Weng W, Pan Q, Yu Y, Sun F and Wang J: Tumor suppressor long
non-coding RNA MT1DP is negatively regulated by YAP and Runx2 to
inhibit FoxA1 in liver cancer cells. Cell Signal. 26:2961–2968.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li C, Chen J, Zhang K, Feng B, Wang R and
Chen L: Progress and prospects of long noncoding RNAs (lncRNAs) in
hepatocellular carcinoma. Cell Physiol Biochem. 36:423–434. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Du Y, Kong G, You X, Zhang S, Zhang T, Gao
Y, Ye L and Zhang X: Elevation of highly up-regulated in liver
cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell
proliferation via down-regulating p18. J Biol Chem.
287:26302–26311. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Tripathi V, Ellis JD, Shen Z, Song DY, Pan
Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The
nuclear-retained noncoding RNA MALAT1 regulates alternative
splicing by modulating SR splicing factor phosphorylation. Mol
Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lin R, Roychowdhury-Saha M, Black C, Watt
AT, Marcusson EG, Freier SM and Edgington TS: Control of RNA
processing by a large non-coding RNA over-expressed in carcinomas.
FEBS Lett. 585:671–676. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ghosh MK, Patra F, Ghosh S, Hossain CM and
Mukherjee B: Antisense oligonucleotides directed against
insulin-like growth factor-II messenger ribonucleic acids delay the
progress of rat hepatocarcinogenesis. J Carcinog. 13:22014.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Tedeschi L, Lande C, Cecchettini A and
Citti L: Hammerhead ribozymes in therapeutic target discovery and
validation. Drug Discov Today. 14:776–783. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Pavco PA, Bouhana KS, Gallegos AM, Agrawal
A, Blanchard KS, Grimm SL, Jensen KL, Andrews LE, Wincott FE, Pitot
PA, et al: Antitumor and antimetastatic activity of ribozymes
targeting the messenger RNA of vascular endothelial growth factor
receptors. Clin Cancer Res. 6:2094–2103. 2000.PubMed/NCBI
|
|
107
|
Darfeuille F, Reigadas S, Hansen JB, Orum
H, Di Primo C and Toulmé JJ: Aptamers targeted to an RNA hairpin
show improved specificity compared to that of complementary
oligonucleotides. Biochemistry. 45:12076–12082. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kolb G, Reigadas S, Castanotto D, Faure A,
Ventura M, Rossi JJ and Toulmé JJ: Endogenous expression of an
anti-TAR aptamer reduces HIV-1 replication. RNA Biol. 3:150–156.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Watrin M, Von Pelchrzim F, Dausse E,
Schroeder R and Toulme JJ: In vitro selection of RNA aptamers
derived from a genomic human library against the TAR RNA element of
HIV-1. Biochemistry. 48:6278–6284. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Pushechnikov A, Lee MM, Childs-Disney JL,
Sobczak K, French JM, Thornton CA and Disney MD: Rational design of
ligands targeting triplet repeating transcripts that cause RNA
dominant disease: Application to myotonic muscular dystrophy type 1
and spinocerebellar ataxia type 3. J Am Chem Soc. 131:9767–9779.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wheeler TM, Sobczak K, Lueck JD, Osborne
RJ, Lin X, Dirksen RT and Thornton CA: Reversal of RNA dominance by
displacement of protein sequestered on triplet repeat RNA. Science.
325:336–339. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Parsons J, Castaldi MP, Dutta S, Dibrov
SM, Wyles DL and Hermann T: Conformational inhibition of the
hepatitis C virus internal ribosome entry site RNA. Nat Chem Biol.
5:823–825. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Pedram Fatemi R, Salah-Uddin S, Modarresi
F, Khoury N, Wahlestedt C and Faghihi MA: Screening for
small-molecule modulators of long noncoding RNA-protein
interactions using alphascreen. J Biomol Screen. 20:1132–1141.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Abou-Alfa GK, Schwartz L, Ricci S, Amadori
D, Santoro A, Figer A, De Greve J, Douillard JY, Lathia C, Schwartz
B, et al: Phase II study of sorafenib in patients with advanced
hepatocellular carcinoma. J Clin Oncol. 24:4293–4300. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ben Mousa A: Sorafenib in the treatment of
advanced hepatocellular carcinoma. Saudi J Gastroenterol. 14:40–42.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Waller LP, Deshpande V and Pyrsopoulos N:
Hepatocellular carcinoma: A comprehensive review. World J Hepatol.
7:2648–2663. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
George J and Patel T: Noncoding RNA as
therapeutic targets for hepatocellular carcinoma. Semin Liver Dis.
35:63–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Shen J, Wu WK, Ren SX, Zhang L, Chan RL,
Wong CC, Lu L and Cho CH: miRNAs in gastrointestinal and liver
cancers: Their perspectives and clinical applications. Curr Pharm
Des. 19:1301–1310. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Movahedi F, Hu RG, Becker DL and Xu C:
Stimuli-responsive liposomes for the delivery of nucleic acid
therapeutics. Nanomedicine. 11:1575–1584. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Hoelder S, Clarke PA and Workman P:
Discovery of small molecule cancer drugs: Successes, challenges and
opportunities. Mol Oncol. 6:155–176. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kuentz MT and Arnold Y: Influence of
molecular properties on oral bioavailability of lipophilic
drugs-mapping of bulkiness and different measures of polarity.
Pharm Dev Technol. 14:312–320. 2009. View Article : Google Scholar : PubMed/NCBI
|